Ecological and Evolutionary Patterns in the Enigmatic Protist Genus

Total Page:16

File Type:pdf, Size:1020Kb

Ecological and Evolutionary Patterns in the Enigmatic Protist Genus bioRxiv preprint doi: https://doi.org/10.1101/612531; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 1 Ecological and evolutionary patterns in the enigmatic protist 2 genus Percolomonas (Heterolobosea; Discoba) from diverse 3 habitats 4 Denis V. Tikhonenkov1,2, Soo Hwan Jhin3, Yana Eglit4, Kai Miller4, Andrey Plotnikov5, Alastair 5 G.B. Simpson4,6, Jong Soo Park3* 6 7 1 Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia 8 2Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia 9 3Department of Oceanography, Research Institute for Dok-do and Ulleung-do Island and 10 Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National 11 University, Daegu, Korea 12 4Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada 13 5Center of Shared Scientific Equipment “Persistence of Microorganisms”, Institute for Cellular and 14 Intracellular Symbiosis UB RAS, Orenburg, Russia 15 6Canadian Institute for Advanced Research, Program in Integrated Microbial Diversity, Toronto, 16 Ontario, Canada 17 18 * Corresponding author 19 E-mail: [email protected] (JSP) bioRxiv preprint doi: https://doi.org/10.1101/612531; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 2 20 Abstract 21 The heterotrophic flagellate Percolomonas cosmopolitus (Heterolobosea) is often observed 22 in saline habitats worldwide that range from coastal waters to saturated brines. However, only two 23 cultures assigned to this morphospecies have been examined using molecular methods, and their 24 18S rRNA gene sequences are extremely different. Further the salinity tolerances of individual 25 strains are unknown. Thus, our knowledge on the autecology and diversity in this morphospecies is 26 deficient. Here, we report 18S rRNA gene data on seven strains similar to P. cosmopolitus from 27 seven geographically remote locations (New Zealand, Kenya, Korea, Poland, Russia, Spain, and the 28 USA) with sample salinities ranging from 4‰ to 280‰, and compare morphology and salinity 29 tolerance of the nine available strains. Percolomonas cosmopolitus-like strains show few-to-no 30 consistent morphological differences, and form six clades separated by often extremely large 18S 31 rDNA divergences (up to 42.4%). Some strains grew best at salinities from 75 to 125‰ and 32 represent halophiles. All but one of these belonged to two geographically heterogeneous clusters 33 that formed a robust monophyletic group in phylogenetic trees; this likely represents an ecologically 34 specialized subclade of halophiles. Our results suggest that P. cosmopolitus is a cluster of several 35 cryptic species (at least), which are unlikely to be distinguished by geography. Interestingly, the 9 36 Percolomonas strains formed a clade in 18S rDNA phylogenies, unlike most previous analyses 37 based on two sequences. 38 39 40 bioRxiv preprint doi: https://doi.org/10.1101/612531; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 3 41 Introduction 42 The modern classification of eukaryotic microbes is usually based on molecular sequence 43 information combined with morphological characters obtained using diverse imaging techniques, 44 often including electron microscopy. Many taxonomists have a fundamental question whether small 45 morphological differences among the observed organisms represent multiple species or one variable 46 species [1–3]. Conversely, in protistology, many species (and genera) that were originally proposed 47 based on light microscopy alone have proved to encompass considerable genetic diversity. Also, 48 many morphospecies of protists are cosmopolitan and/or are found across a very wide range of 49 habitats, raising the possibility of recognizing species that are divided more by geography or 50 ecology than morphology [4]. Bickford et al. [1] regarded ‘cryptic species’ as cases where two or 51 more species are distinguished that were previously assigned to a single morphologically defined 52 species (i.e. morphospecies). The concept of cryptic (usually genetically different) species has been 53 examined in a diverse range of protists, e.g. [4, 5, 6]. This concept is widely accepted due to an 54 inconsistency between morphospecies and their DNA sequencing data. Obviously, the estimated 55 number of protist species will vary tremendously depending on the species concept employed [7, 8]. 56 The species Percolomonas cosmopolitus (formerly Tetramitus cosmopolitus Ruinen [9]) is a 57 heteroloboseid flagellate with one long and three shorter flagella at the head of a ventral feeding 58 groove, and no known amoeba stage in its lifecycle. Cell size is given as 6–12 μm long and 3–9 μm 59 wide in the seminal modern accounts [10, 11]; the largest cells reported by Ruinen [9] are somewhat 60 longer. This species is a particularly interesting protist for taxonomists and ecologists for several 61 reasons: Firstly, it is possible that P. cosmopolitus sensu lato may be a remarkably broad assemblage 62 of cryptic species. To date, two strains identified as P. cosmopolitus have been studied using bioRxiv preprint doi: https://doi.org/10.1101/612531; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 4 63 molecular methods, but their 18S rRNA gene sequences share remarkably low sequence identity 64 (58.4%). Secondly, P. cosmopolitus has been reported in samples from an extremely wide range of 65 saline habitats, from coastal waters to saturated brines, throughout the world [9–12]. It is unknown 66 whether there are ecologically or geographically defined subtypes. Thirdly, in addition to the genetic 67 divergence between them (see above) P. cosmopolitus strains are usually not inferred to be sisters in 68 phylogenetic trees, forming instead a paraphyletic group with respect to the pseudociliate 69 Stephanopogon, which has many more flagella and a completely different feeding system [13–21]. 70 Consequently, Percolomonas cosmopolitus and similar organisms (e.g. [22]) are interesting 71 candidates to study the interplay between species distinctions, autecology and evolutionary history 72 among protists. 73 Here, we examined seven Percolomonas cosmopolitus-like organisms, which were isolated 74 from samples with a salinity range from 4‰ to 280‰, from seven different countries (New Zealand, 75 Kenya, Korea, Poland, Russia, Spain, and the USA). The nine Percolomonas strains examined 76 (including the two P. cosmopolitus strains previously sequenced) were morphologically similar to 77 each other, but their 18S rRNA gene sequences showed considerable genetic divergence, and they 78 formed six genetically distinct clusters. The strains isolated from high salinity samples preferred to 79 grow in artificial media with salinity higher than seawater (75‰ or above), indicating ecological 80 specialization. Percolomonas formed a monophyletic group in the 18S rRNA gene phylogeny. 81 82 Materials and methods 83 Isolation and cultivation bioRxiv preprint doi: https://doi.org/10.1101/612531; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 5 84 Seven monoprotistan strains were isolated from brackish to high salinity (4–280‰) 85 water/sediment interface samples collected from New Zealand, Kenya, Korea, Poland, Russia, 86 Spain, and the USA between 2008 and 2015 (Table 1). Isolates from higher salinity waters were 87 LRS, SD2A, XLG1-P, S4, and P5-P; isolates from lower salinity waters were LO, and HLM-6. 88 Strain HLM-6 was examined morphologically by A.P. Mylnikov [22] under the name Percolomonas 89 lacustris. Each monoprotistan culture was established by single-cell isolation (from raw samples or 90 crude cultures) or by serial dilution. High salinity media (~100‰ salinity) was made by dilution of -1 91 Medium V (300‰; 272g NaCl, 7.6g KCl, 17.8g MgCl2, 1.8g MgSO4·7H2O, 1.3g CaCl2 l water, 92 see [23]) with sterile distilled water, whereas normal salinity media (~35‰ salinity) used autoclaved 93 seawater. Luria-Bertani Broth (final concentration of 0.5%, Difco) plus autoclaved barley grains 94 were added into each media to grow indigenous prokaryotes in the culture. For maintenance of each 95 culture, 0.1 ml of inoculum was added into 5 ml of 100‰ salinity liquid media (isolates LRS, 96 SD2A, XLG1-P, S4, and P5-P) or 35‰ salinity liquid media (isolates LO and HLM-6 plus the 97 already available strains ATCC 50343 and White Sea = ‘WS’). Strain HLM-6 was also maintained −1 −1 −1 98 in marine Schmalz-Pratt’s medium (NaCl–28.15 g l , KCl–0.67 g l , MgCl2·6H2O–5.51 g l , −1 −1 −1 −1 99 MgSO4·7H2O–6.92 g l , CaCl2·H2O–1.45 g l , KNO3–0.1 g l , K2HPO4·3H2O–0.01 g l with a 100 final salinity of 35‰) with addition of Pseudomonas fluorescens bacteria as food. All cultures were 101 incubated at 25 °C and subcultured every four weeks. bioRxiv preprint doi: https://doi.org/10.1101/612531; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
Recommended publications
  • The Morphology, Ultrastructure and Molecular Phylogeny of a New Freshwater Heterolobose Amoeba Parafumarolamoeba Stagnalis N. Sp
    diversity Article The Morphology, Ultrastructure and Molecular Phylogeny of a New Freshwater Heterolobose Amoeba Parafumarolamoeba stagnalis n. sp. (Vahlkampfiidae; Heterolobosea) Anastasia S. Borodina 1,2, Alexander P. Mylnikov 1,†, Jan Janouškovec 3 , Patrick J. Keeling 4 and Denis V. Tikhonenkov 1,5,* 1 Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; [email protected] 2 Department of Zoology and Parasitology, Voronezh State University, Universitetskaya Ploshad 1, 394036 Voronezh, Russia 3 Centre Algatech, Laboratory of Photosynthesis, Institute of Microbiology, Czech Academy of Sciences, Opatovický Mlýn, 37981 Tˇreboˇn,Czech Republic; [email protected] 4 Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T1Z4, Canada; [email protected] 5 AquaBioSafe Laboratory, University of Tyumen, 625003 Tyumen, Russia * Correspondence: [email protected]; Tel.: +7-485-472-4533 † Alexander P. Mylnikov is deceased. http://zoobank.org/References/e543a49a-16c1-4b7c-afdb-0bc56b632ef0 Abstract: Heterolobose amoebae are important members of marine, freshwater, and soil microbial Citation: Borodina, A.S.; Mylnikov, communities, but their diversity remains under-explored. We studied the diversity of Vahlkampfiidae A.P.; Janouškovec, J.; Keeling, P.J.; to improve our understanding of heterolobosean relationships and their representation in aquatic Tikhonenkov, D.V. The Morphology, benthos. Using light and electron microscopy, and molecular phylogenies based on the SSU rRNA Ultrastructure and Molecular and ITS loci, we describe the fine morphology and evolutionary relationships of a new heterolobosean Phylogeny of a New Freshwater Parafumarolamoeba stagnalis n. sp. from a small pond in European Russia. Cells of P. stagnalis possess Heterolobose Amoeba a clearly distinguishable anterior hyaline pseudopodium, eruptive movement, several thin and Parafumarolamoeba stagnalis n.
    [Show full text]
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • The Intestinal Protozoa
    The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately.
    [Show full text]
  • Primary Amoebic Meningoencephalitis Due to Naegleria Fowleri
    56 Case report Primary amoebic meningoencephalitis due to Naegleria fowleri A. Angrup, L. Chandel, A. Sood, K. Thakur, S. C. Jaryal Department of Microbiology,Dr. Rajendra Prasad Government Medical College, Kangra at Tanda, Himachal Pradesh, Pin Code- 176001, India. Correspondence to: Dr. Archana Angrup, Department of Microbiology, Dr. Rajendra Prasad Government Medical College, Kangra, Tanda, Himachal Pradesh, Pin Code-176001, India. Phone no. 09418119222, Facsimile: 01892-267115 Email: [email protected] Abstract The genus Naegleria comprises of free living ameboflagellates found in soil and fresh water. More than 30 species have been isolated but only N. fowleri has been associated with human disease. N. fowleri causes primary amoebic meningoencephalitis (PAM), an acute, often fulminant infection of CNS. Here we report a rare and first case of PAM in an immunocompetent elderly patient from this part of the country. Amoeboid and flagellate forms of N. fowleri were detected in the direct microscopic examination of CSF and confirmed by flagellation test in distilled water, demonstrating plaques /clear areas on 1.5% non nutrient agar and its survival at 42°C. Keywords: Meningitis, Naegleria fowleri, primary amoebic meningoencephalitis Introduction of our knowledge, in India, only eight cases have been reported so far .1, 5-8 Infection of the central nervous system (CNS) in human We hereby report a rare case of PAM in elderly beings with free living amoebae is uncommon. Among the immunocompetent patient from the hilly state of Himachal many different genera of amoebae, Naegleria spp, Pradesh (H.P) in Northern India. Acanthamoeba spp and Balamuthia spp are primarily pathogenic to the CNS.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Trichonympha Cf
    MOLECULAR PHYLOGENETICS OF TRICHONYMPHA CF. COLLARIS AND A PUTATIVE PYRSONYMPHID: THE RELEVANCE TO THE ORIGIN OF SEX by JOEL BRYAN DACKS B.Sc. The University of Alberta, 1995 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER'S OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA April 1998 © Joel Bryan Dacks, 1998 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of ~2—oc)^Oa^ The University of British Columbia Vancouver, Canada Date {X^ZY Z- V. /^P DE-6 (2/88) Abstract Why sex evolved is one of the central questions in evolutionary genetics. To address this question I have undertaken a molecular phylogenetic study of two candidate lineages to determine the first sexual line. In my thesis the hypermastigotes are confirmed as closely related to the trichomonads in the phylum Parabasalia and found to be more deeply divergent than a putative pyrsonymphid. This means that the Parabasalia are the first sexual lineage. From this I go on to infer that the ancestral sexual cycle included facultative sex.
    [Show full text]
  • That of a Typical Flagellate. the Flagella May Equally Well Be Called Cilia
    ZOOLOGY; KOFOID AND SWEZY 9 FLAGELLATE AFFINITIES OF TRICHONYMPHA BY CHARLES ATWOOD KOFOID AND OLIVE SWEZY ZOOLOGICAL LABORATORY, UNIVERSITY OF CALIFORNIA Communicated by W. M. Wheeler, November 13, 1918 The methods of division among the Protozoa are of fundamental signifi- cance from an evolutionary standpoint. Unlike the Metazoa which present, as a whole, only minor variations in this process in the different taxonomic groups and in the many different types of cells in the body, the Protozoa have evolved many and widely diverse types of mitotic phenomena, which are Fharacteristic of the groups into which the phylum is divided. Some strik- ing confirmation of the value of this as a clue to relationships has been found in recent work along these lines. The genus Trichonympha has, since its discovery in 1877 by Leidy,1 been placed, on the one hand, in the ciliates and, on the other, in the flagellates, and of late in an intermediate position between these two classes, by different investigators. Certain points in its structure would seem to justify each of these assignments. A more critical study of its morphology and especially of its methods of division, however, definitely place it in the flagellates near the Polymastigina. At first glance Trichonympha would undoubtedly be called a ciliate. The body is covered for about two-thirds of its surface with a thick coating of cilia or flagella of varying lengths, which stream out behind the body. It also has a thick, highly differentiated ectoplasm which contains an alveolar layer as well as a complex system of myonemes.
    [Show full text]
  • Control of Flagellum Number in Naegleria Temperature Shock Induction of Multiflagellate Cells
    jf. Cell Sci. 7) 463-481 (1970) 463 Printed in Great Britain CONTROL OF FLAGELLUM NUMBER IN NAEGLERIA TEMPERATURE SHOCK INDUCTION OF MULTIFLAGELLATE CELLS A. D. DINGLE Department of Biology, McMaster University, Hamilton, Ontario, Canada SUMMARY This paper describes the production of supernumerary flagella by flagellates of Naegleria gniberi exposed to sublethal temperature shocks during the amoeba-to-flagellate transforma- tion. When transformed at any constant temperature below 34 CC, cells of N. gniberi strain NB-i may develop from 1 to 4 flagella, but biflagellate cells predominate and the average number of flagella per cell in these populations is approximately 22. Populations exposed to a 38 °C temperature shock during transformation develop about twice as many flagella as controls (average number of flagella per cell is approximately 4's). The individual response of cells is extremely heterogeneous: some develop no more than the normal 2 flagella, whereas others develop as many as 18. At least half the cells produce 5 or more flagella, as opposed to fewer than 1 % with 5 or more flagella in control populations. Multiflagellate cells and popula- tions are normal in appearance, apart from the excess flagella and resulting disorientation of the normal swimming pattern. The supernumerary flagella, their basal bodies and the rhizoplast (which is also occasionally doubled) are indistinguishable from those of normal cells. Maximal production of flagella occurs over the narrow temperature range from 37-5 to 385 °C and is related to the duration of exposure to a given temperature: optimal flagellum induction is ob- tained following a 45-50 min exposure to a 38-2 °C temperature shock.
    [Show full text]
  • Protozoologica ACTA Doi:10.4467/16890027AP.17.016.7497 PROTOZOOLOGICA
    Acta Protozool. (2017) 56: 181–189 www.ejournals.eu/Acta-Protozoologica ACTA doi:10.4467/16890027AP.17.016.7497 PROTOZOOLOGICA Allovahlkampfia minuta nov. sp., (Acrasidae, Heterolobosea, Excavata) a New Soil Amoeba at the Boundary of the Acrasid Cellular Slime Moulds Alvaro DE OBESO FERNADEZ DEL VALLE, Sutherland K. MACIVER Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Scotland, UK Abstract. We report the isolation of a new species of Allovahlkampfia, a small cyst-forming heterolobosean soil amoeba. Phylogenetic analysis of the 18S rDNA and the internal transcribed spacers indicates that Allovahlkampfia is more closely related to the acrasids than to other heterolobosean groups and indicates that the new strain (GF1) groups with Allovahlkampfia tibetiensisand A. nederlandiensis despite being significantly smaller than these and any other described Allovahlkampfia species. GF1 forms aggregated cyst masses similar to the early stages of Acrasis sorocarp development, in agreement with the view that it shares ancestry with the acrasids. Time-lapse video mi- croscopy reveals that trophozoites are attracted to individuals that have already begun to encyst or that have formed cysts. Although some members of the genus are known to be pathogenic the strain GF1 does not grow above 28oC nor at elevated osmotic conditions, indicating that it is unlikely to be a pathogen. INTRODUCTION and habit. The heterolobosean acrasid slime moulds are very similar to the amoebozoan slime moulds too in life cycle, but these remarkable similarities in ap- The class heterolobosea was first created on mor- pearance and function are most probably due to parallel phological grounds to unite the schizopyrenid amoe- bae/amoeboflagellates with the acrasid slime moulds evolution.
    [Show full text]
  • The Amoeboid Parabasalid Flagellate Gigantomonas Herculeaof
    Acta Protozool. (2005) 44: 189 - 199 The Amoeboid Parabasalid Flagellate Gigantomonas herculea of the African Termite Hodotermes mossambicus Reinvestigated Using Immunological and Ultrastructural Techniques Guy BRUGEROLLE Biologie des Protistes, UMR 6023, CNRS and Université Blaise Pascal de Clermont-Ferrand, Aubière Cedex, France Summary. The amoeboid form of Gigantomonas herculea (Dogiel 1916, Kirby 1946), a symbiotic flagellate of the grass-eating subterranean termite Hodotermes mossambicus from East Africa, is observed by light, immunofluorescence and transmission electron microscopy. Amoeboid cells display a hyaline margin and a central granular area containing the nucleus, the internalized flagellar apparatus, and organelles such as Golgi bodies, hydrogenosomes, and food vacuoles with bacteria or wood particles. Immunofluorescence microscopy using monoclonal antibodies raised against Trichomonas vaginalis cytoskeleton, such as the anti-tubulin IG10, reveals the three long anteriorly-directed flagella, and the axostyle folded into the cytoplasm. A second antibody, 4E5, decorates the conspicuous crescent-shaped structure or cresta bordered by the adhering recurrent flagellum. Transmission electron micrographs show a microfibrillar network in the cytoplasmic margin and internal bundles of microfilaments similar to those of lobose amoebae that are indicative of cytoplasmic streaming. They also confirm the internalization of the flagella. The arrangement of basal bodies and fibre appendages, and the axostyle composed of a rolled sheet of microtubules are very close to that of the devescovinids Foaina and Devescovina. The very large microfibrillar cresta supporting an enlarged recurrent flagellum resembles that of Macrotrichomonas. The parabasal apparatus attached to the basal bodies is small in comparison to the cell size; this is probably related to the presence of many Golgi bodies supported by a striated fibre that are spread throughout the central cytoplasm in a similar way to Placojoenia and Mixotricha.
    [Show full text]