Lilavati (Bhaskara Ii Book)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sripati: an Eleventh-Century Indian Mathematician
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector HlSTORlA MATHEMATICA 12 (1985). 2.544 Sripati: An Eleventh-Century Indian Mathematician KRIPA NATH SINHA University of Kalyani, P.O. Kalyani, District Nadia, West Bengal, India Srlpati (fl. A.D. 1039-1056) is best known for his writings on astronomy, arithmetic, mensuration, and algebra. This article discusses Sripati’s arithmetic, the Ganitatilaka, as well as the arithmetical and algebraic chapters of the SiddhdntaSekhara. In addition to discussing the kinds of problems considered by Srlpati and the techniques he used to solve them, the article considers the sources upon which Sripati drew. A glossary of Indian treatises and technical terms is provided. o 1985 Academic PKSS. IOC. Srlpati (actif vers 1039-1056 ap. J.C.) est surtout connu pour ses Ccrits sur I’astronomie, I’arithmetique, le toise, et I’algebre. Dans cet article, nous abordons I’arithmetique de Sripati, le Ganitatilaka, de m&me que les chapitres arithmetiques et algebriques de son SiddhrintaSekh’ara. En plus d’aborder les types de problemes Ctudies par Sripati et les techniques qu’il a employees pour les resoudre, nous exminons aussi les sources auxquelles Srlpati fait appel. Un glossaire des trait& et des termes techniques indiens complete cet article. 0 1985 Academic Press, Inc. Sripati, der zwischen 1039 und 1056 wirkte, ist vor allem durch seine Schriften tiber Astronomie, Arithmetik, Mensuration und Algebra bekannt. In diesem Beitrag werden seine Arithmetik, die Gavitatilaka, und die arithmetischen und algebraischen Kapitel aus SiddhhtaSekhara behandelt. Neben der Art der Probleme, die Srlpati studierte, und den von ihm verwendeten Losungsmethoden werden such die von ihm benutzten Quellen be- trachtet. -
Roman Numerals
History of Numbers 1c. I can distinguish between an additive and positional system, and convert between Roman and Hindu-Arabic numbers. Roman Numerals The numeric system represented by Roman numerals originated in ancient Rome (753 BC–476 AD) and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. By the 11th century, the more efJicient Hindu–Arabic numerals had been introduced into Europe by way of Arab traders. Roman numerals, however, remained in commo use well into the 14th and 15th centuries, even in accounting and other business records (where the actual calculations would have been made using an abacus). Roman numerals are still used today, in certain contexts. See: Modern Uses of Roman Numerals Numbers in this system are represented by combinations of letters from the Latin alphabet. Roman numerals, as used today, are based on seven symbols: The numbers 1 to 10 are expressed in Roman numerals as: I, II, III, IV, V, VI, VII, VIII, IX, X. This an additive system. Numbers are formed by combining symbols and adding together their values. For example, III is three (three ones) and XIII is thirteen (a ten plus three ones). Because each symbol (I, V, X ...) has a Jixed value rather than representing multiples of ten, one hundred and so on (according to the numeral's position) there is no need for “place holding” zeros, as in numbers like 207 or 1066. Using Roman numerals, those numbers are written as CCVII (two hundreds, plus a ive and two ones) and MLXVI (a thousand plus a ifty plus a ten, a ive and a one). -
Notices of the American Mathematical Society June/July 2006
of the American Mathematical Society ... (I) , Ate._~ f.!.o~~Gffi·u. .4-e.e..~ ~~~- •i :/?I:(; $~/9/3, Honoring J ~ rt)d ~cLra-4/,:e~ o-n. /'~7 ~ ~<A at a Gift from fL ~ /i: $~ "'7/<J/3. .} -<.<>-a.-<> ~e.Lz?-1~ CL n.y.L;; ro'T>< 0 -<>-<~:4z_ I Kumbakonam li .d. ~ ~~d a. v#a.d--??">ovt<.·c.-6 ~~/f. t:JU- Lo,.,do-,......) ~a page 640 ~!! ?7?.-L ..(; ~7 Ca.-uM /3~~-d~ .Y~~:Li: ~·e.-l a:.--nd '?1.-d- p ~ .di.,r--·c/~ C(c£~r~~u . J~~~aq_ f< -e-.-.ol ~ ~ ~/IX~ ~ /~~ 4)r!'a.. /:~~c~ •.7~ The Millennium Grand Challenge .(/.) a..Lu.O<"'? ...0..0~ e--ne_.o.AA/T..C<.r~- /;;; '7?'E.G .£.rA-CLL~ ~ ·d ~ in Mathematics C>n.A..U-a.A-d ~~. J /"-L .h. ?n.~ ~?(!.,£ ~ ~ &..ct~ /U~ page 652 -~~r a-u..~~r/a.......<>l/.k> 0?-t- ~at o ~~ &~ -~·e.JL d ~~ o(!'/UJD/ J;I'J~~Lcr~~ 0 ??u£~ ifJ>JC.Qol J ~ ~ ~ -0-H·d~-<.() d Ld.orn.J,k, -F-'1-. ~- a-o a.rd· J-c~.<-r:~ rn-u-{-r·~ ~'rrx ~~/ ~-?naae ~~ a...-'XS.otA----o-n.<l C</.J.d:i. ~~~ ~cL.va- 7 ??.L<A) ~ - Ja/d ~~ ./1---J- d-.. ~if~ ~0:- ~oj'~ t1fd~u: - l + ~ _,. :~ _,. .~., -~- .. =- ~ ~ d.u. 7 ~'d . H J&."dIJ';;;::. cL. r ~·.d a..L- 0.-n(U. jz-o-cn-...l- o~- 4; ~ .«:... ~....£.~.:: a/.l~!T cLc.·£o.-4- ~ d.v. /-)-c~ a;- ~'>'T/JH'..,...~ ~ d~~ ~u ~ ~ a..t-4. l& foLk~ '{j ~~- e4 -7'~ -£T JZ~~c~ d.,_ .&~ o-n ~ -d YjtA:o ·C.LU~ ~or /)-<..,.,r &-. -
Brahmagupta, Mathematician Par Excellence
GENERAL ARTICLE Brahmagupta, Mathematician Par Excellence C R Pranesachar Brahmagupta holds a unique position in the his- tory of Ancient Indian Mathematics. He con- tributed such elegant results to Geometry and Number Theory that today's mathematicians still marvel at their originality. His theorems leading to the calculation of the circumradius of a trian- gle and the lengths of the diagonals of a cyclic quadrilateral, construction of a rational cyclic C R Pranesachar is involved in training Indian quadrilateral and integer solutions to a single sec- teams for the International ond degree equation are certainly the hallmarks Mathematical Olympiads. of a genius. He also takes interest in solving problems for the After the Greeks' ascendancy to supremacy in mathe- American Mathematical matics (especially geometry) during the period 7th cen- Monthly and Crux tury BC to 2nd century AD, there was a sudden lull in Mathematicorum. mathematical and scienti¯c activity for the next millen- nium until the Renaissance in Europe. But mathematics and astronomy °ourished in the Asian continent partic- ularly in India and the Arab world. There was a contin- uous exchange of information between the two regions and later between Europe and the Arab world. The dec- imal representation of positive integers along with zero, a unique contribution of the Indian mind, travelled even- tually to the West, although there was some resistance and reluctance to accept it at the beginning. Brahmagupta, a most accomplished mathematician, liv- ed during this medieval period and was responsible for creating good mathematics in the form of geometrical theorems and number-theoretic results. -
Indian Mathematics
Indian Mathemtics V. S. Varadarajan University of California, Los Angeles, CA, USA UCLA, March 3-5, 2008 Abstract In these two lectures I shall talk about some Indian mathe- maticians and their work. I have chosen two examples: one from the 7th century, Brahmagupta, and the other, Ra- manujan, from the 20th century. Both of these are very fascinating figures, and their histories illustrate various as- pects of mathematics in ancient and modern times. In a very real sense their works are still relevant to the mathe- matics of today. Some great ancient Indian figures of Science Varahamihira (505–587) Brahmagupta (598-670) Bhaskara II (1114–1185) The modern era Ramanujan, S (1887–1920) Raman, C. V (1888–1970) Mahalanobis, P. C (1893–1972) Harish-Chandra (1923–1983) Bhaskara represents the peak of mathematical and astro- nomical knowledge in the 12th century. He reached an un- derstanding of calculus, astronomy, the number systems, and solving equations, which were not to be achieved any- where else in the world for several centuries...(Wikipedia). Indian science languished after that, the British colonial occupation did not help, but in the 19th century there was a renaissance of arts and sciences, and Indian Science even- tually reached a level comparable to western science. BRAHMAGUPTA (598–670c) Some quotations of Brahmagupta As the sun eclipses the stars by its brilliancy, so the man of knowledge will eclipse the fame of others in assemblies of the people if he proposes algebraic problems, and still more, if he solves them. Quoted in F Cajori, A History of Mathematics A person who can, within a year, solve x2 92y2 =1, is a mathematician. -
Ancient Indian Mathematical Evolution Since Counting
Journal of Statistics and Mathematical Engineering e-ISSN: 2581-7647 Volume 5 Issue 3 Ancient Indian Mathematical Evolution since Counting 1 2 Sankar Prasad Mukherjee , Sandip Ghanta* 1Research Guide, 2Research Scholar 1,2Department of Mathematics, Seacom Skills University, Kolkata, West Bengal, India Email: *[email protected] DOI: Abstract This paper is an endeavor how chronologically since inception and into growth of mathematics occurred in Ancient India with an effort of counting to establish the numeral system through different ages, i.e., Rigveda, Yajurvada, Buddhist, Indo-Bactrian, Bramhi, Gupta and Devanagari Periods. Ancient India’s such contribution was of immense value helped to accelerate the progress of Mathematical development up to modern age as we see today. Keywords: Brahmi numerals, centesimal scale, devanagari, rigveda, kharosthi numerals, yajurveda INTRODUCTION main striking feature being counting and This research paper is an endeavor to evolution of numeral system thereby. synchronize all the historical research with essence of pre-historic and post-historic Mathematical Evolution in Vedic Period respectively interwoven into a texture of Decimal Number System in the Rigveda evolution process of Mathematics. The first Numbers are represented in decimal system form of writing human race was not (i.e., base 10) in the Rigveda, in all other literature but Mathematics. Arithmetic Vedic treatises, and in all subsequent Indian what is today was felt as an essential need texts. No other base occurs in ancient for day to day necessity of human race. In Indian texts, except a few instances of base various countries at various point of time, 100 (or higher powers of 10). -
Rationale of the Chakravala Process of Jayadeva and Bhaskara Ii
HISTORIA MATHEMATICA 2 (1975) , 167-184 RATIONALE OF THE CHAKRAVALA PROCESS OF JAYADEVA AND BHASKARA II BY CLAS-OLOF SELENIUS UNIVERSITY OF UPPSALA SUMMARIES The old Indian chakravala method for solving the Bhaskara-Pell equation or varga-prakrti x 2- Dy 2 = 1 is investigated and explained in detail. Previous mis- conceptions are corrected, for example that chakravgla, the short cut method bhavana included, corresponds to the quick-method of Fermat. The chakravala process corresponds to a half-regular best approximating algorithm of minimal length which has several deep minimization properties. The periodically appearing quantities (jyestha-mfila, kanistha-mfila, ksepaka, kuttak~ra, etc.) are correctly understood only with the new theory. Den fornindiska metoden cakravala att l~sa Bhaskara- Pell-ekvationen eller varga-prakrti x 2 - Dy 2 = 1 detaljunders~ks och f~rklaras h~r. Tidigare missuppfatt- 0 ningar r~ttas, sasom att cakravala, genv~gsmetoden bhavana inbegripen, motsvarade Fermats snabbmetod. Cakravalaprocessen motsvarar en halvregelbunden b~st- approximerande algoritm av minimal l~ngd med flera djupt liggande minimeringsegenskaper. De periodvis upptr~dande storheterna (jyestha-m~la, kanistha-mula, ksepaka, kuttakara, os~) blir forstaellga0. 0 . f~rst genom den nya teorin. Die alte indische Methode cakrav~la zur Lbsung der Bhaskara-Pell-Gleichung oder varga-prakrti x 2 - Dy 2 = 1 wird hier im einzelnen untersucht und erkl~rt. Fr~here Missverst~ndnisse werden aufgekl~rt, z.B. dass cakrav~la, einschliesslich der Richtwegmethode bhavana, der Fermat- schen Schnellmethode entspreche. Der cakravala-Prozess entspricht einem halbregelm~ssigen bestapproximierenden Algorithmus von minimaler L~nge und mit mehreren tief- liegenden Minimierungseigenschaften. Die periodisch auftretenden Quantit~ten (jyestha-mfila, kanistha-mfila, ksepaka, kuttak~ra, usw.) werden erst durch die neue Theorie verst~ndlich. -
The Brahmagupta Triangles Raymond A
The Brahmagupta Triangles Raymond A. Beauregard and E. R. Suryanarayan Ray Beauregard ([email protected]) received his Ph.D. at the University of New Hampshire in 1968, then joined the University of Rhode Island, where he is a professor of mathematics. He has published many articles in ring theory and two textbooks. Linear Algebra (written with John Fraleigh) is currently in its third edition. Besides babysitting for his grandchild Elyse, he enjoys sailing the New England coast on his sloop, Aleph One, and playing the piano. E. R. Suryanarayan ([email protected]) taught at universities in India before receiving his Ph.D. (1961) at the University of Michigan, under Nathaniel Coburn. He has been at the University of Rhode Island since 1960, where is a professor of mathematics. An author of more than 20 research articles in applied mathematics, crystallography, and the history of mathematics, he lists as his main hobbies music, languages, and aerobic walking. The study of geometric objects has been a catalyst in the development of number theory. For example, the figurate numbers (triangular, square, pentagonal, . ) were a source of many early results in this field [41.Measuring the length of a diagonal of a rectangle led to the problem of approxin~atingfi for a natural number N. The study of triangles has been of particular significance. Heron of Alexandria (c. A.D. 75)-gave the well-known formula for the area A of a triangle in terms of its sides: A = Js(s - a)(s- b)(s- c),where s = (a + b + c)/2 is the semiperimeter of the triangle having sides a,b, c [41.He illustrated this with a triangle whose sides are 13,14,15 and whose area is 84. -
Crowdsourcing
CROWDSOURCING The establishment of the ZerOrigIndia Foundation is predicated on a single premise, namely, that our decades-long studies indicate that there are sound reasons to assume that facilitating further independent scientific research into the origin of the zero digit as numeral may lead to theoretical insights and practical innovations equal to or perhaps even exceeding the revolutionary progress to which the historic emergence of the zero digit in India somewhere between 200 BCE and 500 CE has led across the planet, in the fields of mathematics, science and technology since its first emergence. No one to date can doubt the astounding utility of the tenth and last digit to complete the decimal system, yet the origin of the zero digit is shrouded in mystery to this day. It is high time, therefore, that a systematic and concerted effort is undertaken by a multidisciplinary team of experts to unearth any extant evidence bearing on the origin of the zero digit in India. The ZerOrigIndia Foundation is intended to serve as instrument to collect the requisite funds to finance said independent scientific research in a timely and effective manner. Research Academics and researchers worldwide are invited to join our efforts to unearth any extant evidence of the zero digit in India. The ZerOrigIndia Foundation will facilitate the research in various ways, chief among which is to engage in fundraising to finance projects related to our objective. Academics and researchers associated with reputed institutions of higher learning are invited to monitor progress reported by ZerOrigIndia Foundation, make suggestions and/or propose their own research projects to achieve the avowed aim. -
Aryabhatiya with English Commentary
ARYABHATIYA OF ARYABHATA Critically edited with Introduction, English Translation. Notes, Comments and Indexes By KRIPA SHANKAR SHUKLA Deptt. of Mathematics and Astronomy University of Lucknow in collaboration with K. V. SARMA Studies V. V. B. Institute of Sanskrit and Indological Panjab University INDIAN NATIONAL SCIENCE ACADEMY NEW DELHI 1 Published for THE NATIONAL COMMISSION FOR THE COMPILATION OF HISTORY OF SCIENCES IN INDIA by The Indian National Science Academy Bahadur Shah Zafar Marg, New Delhi— © Indian National Science Academy 1976 Rs. 21.50 (in India) $ 7.00 ; £ 2.75 (outside India) EDITORIAL COMMITTEE Chairman : F. C. Auluck Secretary : B. V. Subbarayappa Member : R. S. Sharma Editors : K. S. Shukla and K. V. Sarma Printed in India At the Vishveshvaranand Vedic Research Institute Press Sadhu Ashram, Hosbiarpur (Pb.) CONTENTS Page FOREWORD iii INTRODUCTION xvii 1. Aryabhata— The author xvii 2. His place xvii 1. Kusumapura xvii 2. Asmaka xix 3. His time xix 4. His pupils xxii 5. Aryabhata's works xxiii 6. The Aryabhatiya xxiii 1. Its contents xxiii 2. A collection of two compositions xxv 3. A work of the Brahma school xxvi 4. Its notable features xxvii 1. The alphabetical system of numeral notation xxvii 2. Circumference-diameter ratio, viz., tz xxviii table of sine-differences xxviii . 3. The 4. Formula for sin 0, when 6>rc/2 xxviii 5. Solution of indeterminate equations xxviii 6. Theory of the Earth's rotation xxix 7. The astronomical parameters xxix 8. Time and divisions of time xxix 9. Theory of planetary motion xxxi - 10. Innovations in planetary computation xxxiii 11. -
Vedic Math Seminar
Seminar on Vedic Mathematics Dr. Chandrasekharan Raman December 5, 2015 Bridgewater Temple Hall, NJ Ancient Indian Mathematics • Sulba Sutras (700 BC) – rational approximation to √2, proof to Pythagoras theorem etc. • Pingala’s Chandas (300 BC) – combinatorics • Jain Mathematicians (300 BC) – concept of infinity and zero (shunya) • Classical period (400 AD – 1600 AD) ▫ Aryabhata – sine table, trigonometry, π ▫ Brahmagupta – cyclic quadrilateral, indeterm Equ. ▫ Bhaskara II – Lilavati, Bijaganita ▫ Madhava – infinite series for π • Excellent source : Wikipedia (Indian Mathematics) Vedic Mathematics What is Vedic Mathematics? “Vedic Mathematics” is the name given to a work in Indian Mathematics by Sri Bharati Krsna Tirthaji (1884-1960). Vedic Math is based on sixteen Sutras or principles What it is not? It is not from the Vedas It is not ancient Why Vedic Mathematics? Gives an insight into the structure of numbers Very much amenable to mental calculations Decimal Number System in Ancient India • The decimal number system – representing numbers in base 10, was a contribution to the world by Indians • The Place Value System was also a contribution of India Name Value Name Value Eka 100 Arbudam 107 Dasa 101 Nyarbudam 108 Shatam 102 Samudra 109 Sahasram 103 Madhyam 1010 Ayutam 104 Anta 1011 Niyutam 105 Parardha 1012 Prayutam 106 Maths in day-to-day life of a vendor in India 1 11 21 31 41 • You buy some stuff from 2 12 22 32 42 a vendor for Rs 23 3 13 23 33 43 • You pay a 50-rupee note 4 14 24 34 44 5 15 25 35 45 • He pays you back 6 -
Numerical Notation: a Comparative History
This page intentionally left blank Numerical Notation Th is book is a cross-cultural reference volume of all attested numerical notation systems (graphic, nonphonetic systems for representing numbers), encompassing more than 100 such systems used over the past 5,500 years. Using a typology that defi es progressive, unilinear evolutionary models of change, Stephen Chrisomalis identifi es fi ve basic types of numerical notation systems, using a cultural phylo- genetic framework to show relationships between systems and to create a general theory of change in numerical systems. Numerical notation systems are prima- rily representational systems, not computational technologies. Cognitive factors that help explain how numerical systems change relate to general principles, such as conciseness and avoidance of ambiguity, which also apply to writing systems. Th e transformation and replacement of numerical notation systems relate to spe- cifi c social, economic, and technological changes, such as the development of the printing press and the expansion of the global world-system. Stephen Chrisomalis is an assistant professor of anthropology at Wayne State Uni- versity in Detroit, Michigan. He completed his Ph.D. at McGill University in Montreal, Quebec, where he studied under the late Bruce Trigger. Chrisomalis’s work has appeared in journals including Antiquity, Cambridge Archaeological Jour- nal, and Cross-Cultural Research. He is the editor of the Stop: Toutes Directions project and the author of the academic weblog Glossographia. Numerical Notation A Comparative History Stephen Chrisomalis Wayne State University CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521878180 © Stephen Chrisomalis 2010 This publication is in copyright.