applied sciences Article Inhibitory Potential of Mangiferin on Glucansucrase Producing Streptococcus mutans Biofilm in Dental Plaque Promise M. Emeka 1,* , Lorina I. Badger-Emeka 2 , Hairul-Islam M. Ibrahim 3, Krishnaraj Thirugnanasambantham 4 and Jamal Hussen 5 1 Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia 2 Department of Biomedical Science, College of Medicine King Faisal University, Al Ahsa 31982, Saudi Arabia;
[email protected] 3 Biological Science College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
[email protected] 4 Pondicherry Centre for Biological Science and Educational Trust, Kottakuppam 605104, Tamilnadu, India;
[email protected] 5 Department of Microbiology College of Veterinary Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia;
[email protected] * Correspondence:
[email protected]; Tel.: +966-503239033 Received: 31 October 2020; Accepted: 20 November 2020; Published: 23 November 2020 Abstract: Glucansucrase secreted by Streptococcus mutans and composed of virulence genes alters oral microbiota, creating adherent environment for structural bacteria colony forming dental biofilm. The present investigation studied the inhibitory and binding potentials of mangiferin against S. mutans and its enzyme glucansucrase implicated in biofilm formation. Antibacterial activity against planktonic S. mutans was carried out. Using reverse transcription PCR, the expression of crucial virulence genes, gtfB, gtfC, gtfD, gbpB, and comDE were determined. The effect of mangiferin on teeth surfaces biofilm was ascertained by scanning electron microscopy (SEM). Docking analysis of S. mutans glucansucrase and mangiferin revealed the binding energy of 7.35 and ten hydrogen − interactions. Antibacterial study revealed that mangiferin was not lethal to planktonic S.