Structure–Function Relationships of Family GH70 Glucansucrase and 4,6-A-Glucanotransferase Enzymes, and Their Evolutionary Relationships with Family GH13 Enzymes

Total Page:16

File Type:pdf, Size:1020Kb

Structure–Function Relationships of Family GH70 Glucansucrase and 4,6-A-Glucanotransferase Enzymes, and Their Evolutionary Relationships with Family GH13 Enzymes University of Groningen Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes Meng, Xiangfeng; Gangoiti, Joana; Bai, Yuxiang; Pijning, Tjaard; Van Leeuwen, Sander S; Dijkhuizen, Lubbert Published in: Cellular and molecular life sciences DOI: 10.1007/s00018-016-2245-7 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2016 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Meng, X., Gangoiti, J., Bai, Y., Pijning, T., Van Leeuwen, S. S., & Dijkhuizen, L. (2016). Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cellular and molecular life sciences, 73(14), 2681-2706. https://doi.org/10.1007/s00018-016-2245-7 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 Cell. Mol. Life Sci. (2016) 73:2681–2706 DOI 10.1007/s00018-016-2245-7 Cellular and Molecular Life Sciences MULTI-AUTHOR REVIEW Structure–function relationships of family GH70 glucansucrase and 4,6-a-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes 1 1 1 2 Xiangfeng Meng • Joana Gangoiti • Yuxiang Bai • Tjaard Pijning • 1 1 Sander S. Van Leeuwen • Lubbert Dijkhuizen Received: 21 April 2016 / Accepted: 22 April 2016 / Published online: 7 May 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Lactic acid bacteria (LAB) are known to pro- applications in the food, medicine and cosmetic industries. duce large amounts of a-glucan exopolysaccharides. In this review, we summarize the microbiological distri- Family GH70 glucansucrase (GS) enzymes catalyze the bution and the structure–function relationships of family synthesis of these a-glucans from sucrose. The elucidation GH70 enzymes, introduce the two newly identified GH70 of the crystal structures of representative GS enzymes has subfamilies, and discuss evolutionary relationships advanced our understanding of their reaction mechanism, between family GH70 and GH13 enzymes. especially structural features determining their linkage specificity. In addition, with the increase of genome Keywords GH70 Á GH13 Á Glucansucrase Á sequencing, more and more GS enzymes are identified and 4,6-a-Glucanotransferase Á Structure–function Á Evolution characterized. Together, such knowledge may promote the synthesis of a-glucans with desired structures and proper- Abbreviations ties from sucrose. In the meantime, two new GH70 EPS Extracellular polysaccharides subfamilies (GTFB- and GTFC-like) have been identified GRAS Generally regarded as safe as 4,6-a-glucanotransferases (4,6-a-GTs) that represent GS Glucansucrase novel evolutionary intermediates between the family GH13 4,6-a-GTs 4,6-a-Glucanotransferases and ‘‘classical GH70 enzymes’’. These enzymes are not HMM High-molecular-mass active on sucrose; instead, they use (a1 ? 4) glucans (i.e. HPAEC-PAD High-performance anion-exchange malto-oligosaccharides and starch) as substrates to syn- chromatography equipped with an ED40 thesize novel a-glucans by introducing linear chains of pulsed amperometric detection (PAD) (a1 ? 6) linkages. All these GH70 enzymes are very system interesting biocatalysts and hold strong potential for IMMO Isomalto-/malto-oligosaccharide IMMP Isomalto-/malto-polysaccharide LAB Lactic acid bacteria LMM Low-molecular-mass Electronic supplementary material The online version of this article (doi:10.1007/s00018-016-2245-7) contains supplementary material, which is available to authorized users. & Lubbert Dijkhuizen Introduction [email protected] Lactic acid bacteria (LAB) are known to produce lactic 1 Microbial Physiology, Groningen Biomolecular Sciences and acid from sugar metabolism and have been used for the Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands production of traditional dairy products since ancient times. Nowadays, LAB are exploited as starter cultures to 2 Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, improve the preservation, nutritional values, taste and Nijenborgh 7, 9747, AG, Groningen, The Netherlands mouthfeel of fermented foods [1]. Various strains are also 123 2682 X. Meng et al. proven probiotics due to their beneficial effects on human Microbiological distribution of GH70 GS enzymes health [2]. LAB have the ‘‘generally regarded as safe’’ (GRAS) status, and are known to produce extracellular Sucrose, also known as table sugar, is one of the most polysaccharides (EPS) [3–6]. These EPS are likely abundant carbohydrates consumed in our daily life. It is a involved in the protection of LAB from harsh environ- disaccharide with the formula C12H22O11, consisting of the mental conditions such as desiccation, osmotic stress and monosaccharides glucose (D-glucopyranose) and fructose the presence of antimicrobial factors [6–8]. Some EPS (D-fructofuranose), linked by an (a1$b2) glycosidic link- facilitate the adhesion of bacterial cells to surfaces and, age. Early in 1861, Pasteur found a microorganism-derived thus, help LAB to colonize different environments substance being responsible for the gelification of sugar- through biofilm formation [6–8]. The EPS produced by cane syrups and it was named ‘‘dextran’’ [19, 20]. Van Streptococcus mutans are important pathogenic factors in Tiehem isolated this microorganism and named it as Leu- dental caries [9, 10]. These EPS have also found valuable conostoc mesenteroides in 1878 [19, 20]. An enzyme from applications in food and medicine, and in the cosmetic the cell-free supernatant was found to be responsible for industries [3–8]. As food supplements, EPS of LAB are the synthesis of dextran [21, 22]. Now, dextran is defined explored as texturizers, emulsifiers and viscosifiers and as a homopolysaccharide which is composed of D-glucose they also hold potential health beneficial effects as dietary residues with (a1 ? 6) linkages in the main chain and fiber and prebiotics [5, 7, 8]. Depending on their com- different degrees of (a1 ? 2) or (a1 ? 3) branched glu- position, EPS are divided into two groups: cosyl units. The GS enzyme that synthesizes dextran is heteropolysaccharides and homopolysaccharides [11]. named accordingly as dextransucrase (EC 2.4.1.5). Heteropolysaccharides of LAB contain different types of GSs are exclusively found in LAB, such as Leuconostoc, monosaccharides (e.g., glucose, galactose and rhamnose), Streptococcus, Lactobacillus and Weissella [15]. GSs are while homopolysaccharides of LAB consist of only one extracellular enzymes and depending on the particular type of monosaccharide (glucose or fructose). The bacterial source, they are produced either as cell wall-at- biosynthesis of heteropolysaccharides is complex and tached or free enzymes in culture fluids, or both [23–25]. A requires the combined action of a large number of pro- diversity of GSs has been characterized from various LAB teins including enzymes, transporters and regulators [11, and were found to produce a-glucans with all the possible 12]. Generally, Leloir glycosyltransferase enzymes are glycosidic linkages [(a1 ? 2), (a1 ? 3), (a1 ? 4) and involved that require expensive nucleotide-activated (a1 ? 6)], each enzyme with its own linkage specificity. sugars (e.g., UDP-glucose) [11, 12]. On the contrary, With the fast development of genome sequencing, the homopolysaccharides are generally synthesized from number of GSs annotated is rapidly increasing. By Nov. sucroseusingasingleglucansucrase (GS) or fructansu- 2015, 264 GSs had been annotated, including 57 charac- crase enzyme [13]. terized in the family GH70 of Carbohydrate-Active The GS enzymes of LAB belong to glycoside Enzymes Database (CAZy; see http://www.cazy.org). GSs hydrolase family 70 and catalyze the synthesis of a- are mainly found within the genera Leuconostoc (64 of glucan homopolysaccharides from sucrose [11, 14–16]. 264), Streptococcus (154 of 264), and Lactobacillus (23 of Recently, two new GH70 subfamilies have been estab- 264). Some GSs are also present in other LAB, i.e. Weis- lished, including the GTFB-like 4,6-a- sella (22 of 264) and Oenococcus (1 of 264). Some LAB glucanotransferases (GTFB-like 4,6-a-GTs) and GTFC- strains produce more than one GS enzyme. For example, like 4,6-a-glucanotransferases (GTFC-like 4,6-a-GTs) Streptococcus mutans, which is the main pathogen [17, 18]. They both synthesize novel a-glucans, but use responsible for dental caries, produces three distinct GSs (a1 ? 4) linked glucans (i.e. malto-oligosaccharides and (GTFB, GTFC and GTFD) (Table 1)[26,
Recommended publications
  • University of Groningen Mutational and Biochemical Analysis Of
    University of Groningen Mutational and biochemical analysis of Lactobacillus reuteri glucansucrase enzymes Meng, Xiangfeng IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Meng, X. (2015). Mutational and biochemical analysis of Lactobacillus reuteri glucansucrase enzymes. University of Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 24-09-2021 Chapter 1 General introduction: Tailor-made α-glucans by GH70 glucansucrase enzymes In preparation for submission 7 Chapter 1 Introduction Fossil resources are currently the major energy source and primary feedstock for the chemical industry. However, these resources are finite and unsustainable. At the same time, the widespread use of fossil resources causes severe environmental problems, including climate changes and air pollution.
    [Show full text]
  • Structural Changes in the Oral Microbiome of the Adolescent
    www.nature.com/scientificreports OPEN Structural changes in the oral microbiome of the adolescent patients with moderate or severe dental fuorosis Qian Wang1,2, Xuelan Chen1,4, Huan Hu2, Xiaoyuan Wei3, Xiaofan Wang3, Zehui Peng4, Rui Ma4, Qian Zhao4, Jiangchao Zhao3*, Jianguo Liu1* & Feilong Deng1,2,3* Dental fuorosis is a very prevalent endemic disease. Although oral microbiome has been reported to correlate with diferent oral diseases, there appears to be an absence of research recognizing any relationship between the severity of dental fuorosis and the oral microbiome. To this end, we investigated the changes in oral microbial community structure and identifed bacterial species associated with moderate and severe dental fuorosis. Salivary samples of 42 individuals, assigned into Healthy (N = 9), Mild (N = 14) and Moderate/Severe (M&S, N = 19), were investigated using the V4 region of 16S rRNA gene. The oral microbial community structure based on Bray Curtis and Weighted Unifrac were signifcantly changed in the M&S group compared with both of Healthy and Mild. As the predominant phyla, Firmicutes and Bacteroidetes showed variation in the relative abundance among groups. The Firmicutes/Bacteroidetes (F/B) ratio was signifcantly higher in the M&S group. LEfSe analysis was used to identify diferentially represented taxa at the species level. Several genera such as Streptococcus mitis, Gemella parahaemolysans, Lactococcus lactis, and Fusobacterium nucleatum, were signifcantly more abundant in patients with moderate/severe dental fuorosis, while Prevotella melaninogenica and Schaalia odontolytica were enriched in the Healthy group. In conclusion, our study indicates oral microbiome shift in patients with moderate/severe dental fuorosis.
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria Sacha A
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Mar. 2006, p. 157–176 Vol. 70, No. 1 1092-2172/06/$08.00ϩ0 doi:10.1128/MMBR.70.1.157–176.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria Sacha A. F. T. van Hijum,1,2†* Slavko Kralj,1,2† Lukasz K. Ozimek,1,2 Lubbert Dijkhuizen,1,2 and Ineke G. H. van Geel-Schutten1,3 Centre for Carbohydrate Bioprocessing, TNO-University of Groningen,1 and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen,2 9750 AA Haren, The Netherlands, and Innovative Ingredients and Products Department, TNO Quality of Life, Utrechtseweg 48 3704 HE Zeist, The Netherlands3 INTRODUCTION .......................................................................................................................................................157 NOMENCLATURE AND CLASSIFICATION OF SUCRASE ENZYMES ........................................................158 GLUCANSUCRASES .................................................................................................................................................158 Reactions Catalyzed and Glucan Product Synthesis .........................................................................................161 Glucan synthesis .................................................................................................................................................161 Acceptor reaction ................................................................................................................................................161
    [Show full text]
  • Crystal Structure of Glucansucrase from the Dental Caries
    5 Life Science PF Activity Report 2010 #28 Crystal Structure of Glucansucrase from the Dental Caries Glucansucrases are members of the glycoside hy- second sucrose binding site, namely, subsite +1 and Pathogen, Streptococcus Mutans drolase family 70, and catalyze the formation of glucan +2 (Fig. 1(b) and 1(c)). Trp517 provides the platform with various types of glucosidic linkages, (1-3), (1- for glycosyl-acceptor binding, whereas residues such 4) or (1-6) bonds, from sucrose via transglycosylation as Tyr430, Asn481, and Ser589 comprising subsite lucansucrases from Streptococcus mutans (GTF-SI) catalyze an essential factor in the pathogenesis of dental reactions. In the oral cavity, glucan synthesis by S. mu- +1 are conserved in glucansucrases but not in sugar- caries. Resolution of the GTF-SI structure confi rmed that the domain order of glucansucrase-SI was circularly tans involves three extracellular enzymes, GTF-I, GTF- cutting enzymes. Among these residues, the position Gpermuted compared with that of the well-known -amylase, which catalyses the breakdown of starch into sug- SI and GTF-S. GTF-I and GTF-SI synthesize mainly in- of Asp593 in GTF-SI is critical for glucansucrases that ars. Based on the structure of GTF-SI and a comparison of the amino acids of other glucansucrases, it was revealed soluble sticky glucan with (1-3) glycosidic linkages. We make insoluble and sticky glucan with (1-3) glycosidic that the position of Asp593 in glucansucrase-SI is the most critical point for the orientation of the acceptor sugar, and have used AR-NE3A and 5A beamlines to identify the linkages.
    [Show full text]
  • (Α1‹ →‹ 6) Linkage Specificity in Reuteransucrase Of
    www.nature.com/scientificreports OPEN Structural determinants of alternating (α1 → 4) and (α1 → 6) linkage specificity in Received: 03 June 2016 Accepted: 26 September 2016 reuteransucrase of Lactobacillus Published: 17 October 2016 reuteri Xiangfeng Meng1, Tjaard Pijning2, Justyna M. Dobruchowska1, Huifang Yin1, Gerrit J. Gerwig1 & Lubbert Dijkhuizen1 The glucansucrase GTFA of Lactobacillus reuteri 121 produces an α-glucan (reuteran) with a large amount of alternating (α1 → 4) and (α1 → 6) linkages. The mechanism of alternating linkage formation by this reuteransucrase has remained unclear. GTFO of the probiotic bacterium Lactobacillus reuteri ATCC 55730 shows a high sequence similarity (80%) with GTFA of L. reuteri 121; it also synthesizes an α-glucan with (α1 → 4) and (α1 → 6) linkages, but with a clearly different ratio compared to GTFA. In the present study, we show that residues in loop977 (970DGKGYKGA977) and helix α4 (1083VSLKGA1088) are main determinants for the linkage specificity difference between GTFO and GTFA, and hence are important for the synthesis of alternating (α1 → 4) and (α1 → 6) linkages in GTFA. More remote acceptor substrate binding sites (i.e.+3) are also involved in the determination of alternating linkage synthesis, as shown by structural analysis of the oligosaccharides produced using panose and maltotriose as acceptor substrate. Our data show that the amino acid residues at acceptor substrate binding sites (+1, +2, +3…) together form a distinct physicochemical micro-environment that determines the alternating (α1 → 4) and (α1 → 6) linkages synthesis in GTFA. Lactic acid bacteria (LAB) have been widely explored for the production of fermented food, due to their abil- ity of producing lactic acid and their generally recognized as safe (GRAS) status1.
    [Show full text]
  • University of Groningen Engineering the Glucansucrase GTFR
    University of Groningen Engineering the glucansucrase GTFR enzyme reaction and glycosidic bond specificity Hellmuth, Hendrik; Wittrock, Sabine; Kralj, Slavko; Dijkhuizen, Lubbert; Hofer, Bernd; Seibel, Juergen; Seibel, Jürgen Published in: Biochemistry DOI: 10.1021/bi800563r IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hellmuth, H., Wittrock, S., Kralj, S., Dijkhuizen, L., Hofer, B., Seibel, J., & Seibel, J. (2008). Engineering the glucansucrase GTFR enzyme reaction and glycosidic bond specificity: Toward tailor-made polymer and oligosaccharide products. Biochemistry, 47(25), 6678-6684. https://doi.org/10.1021/bi800563r Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • University of Groningen Engineering the Glucansucrase GTFR Enzyme Reaction and Glycosidic Bond Specificity Hellmuth, Hendrik; Wi
    University of Groningen Engineering the glucansucrase GTFR enzyme reaction and glycosidic bond specificity Hellmuth, Hendrik; Wittrock, Sabine; Kralj, Slavko; Dijkhuizen, Lubbert; Hofer, Bernd; Seibel, Juergen; Seibel, Jürgen Published in: Biochemistry DOI: 10.1021/bi800563r IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hellmuth, H., Wittrock, S., Kralj, S., Dijkhuizen, L., Hofer, B., Seibel, J., & Seibel, J. (2008). Engineering the glucansucrase GTFR enzyme reaction and glycosidic bond specificity: Toward tailor-made polymer and oligosaccharide products. Biochemistry, 47(25), 6678-6684. https://doi.org/10.1021/bi800563r Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • Inhibitory Potential of Mangiferin on Glucansucrase Producing Streptococcus Mutans Biofilm in Dental Plaque
    applied sciences Article Inhibitory Potential of Mangiferin on Glucansucrase Producing Streptococcus mutans Biofilm in Dental Plaque Promise M. Emeka 1,* , Lorina I. Badger-Emeka 2 , Hairul-Islam M. Ibrahim 3, Krishnaraj Thirugnanasambantham 4 and Jamal Hussen 5 1 Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia 2 Department of Biomedical Science, College of Medicine King Faisal University, Al Ahsa 31982, Saudi Arabia; [email protected] 3 Biological Science College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; [email protected] 4 Pondicherry Centre for Biological Science and Educational Trust, Kottakuppam 605104, Tamilnadu, India; [email protected] 5 Department of Microbiology College of Veterinary Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia; [email protected] * Correspondence: [email protected]; Tel.: +966-503239033 Received: 31 October 2020; Accepted: 20 November 2020; Published: 23 November 2020 Abstract: Glucansucrase secreted by Streptococcus mutans and composed of virulence genes alters oral microbiota, creating adherent environment for structural bacteria colony forming dental biofilm. The present investigation studied the inhibitory and binding potentials of mangiferin against S. mutans and its enzyme glucansucrase implicated in biofilm formation. Antibacterial activity against planktonic S. mutans was carried out. Using reverse transcription PCR, the expression of crucial virulence genes, gtfB, gtfC, gtfD, gbpB, and comDE were determined. The effect of mangiferin on teeth surfaces biofilm was ascertained by scanning electron microscopy (SEM). Docking analysis of S. mutans glucansucrase and mangiferin revealed the binding energy of 7.35 and ten hydrogen − interactions. Antibacterial study revealed that mangiferin was not lethal to planktonic S.
    [Show full text]
  • University of Groningen Glycosidic Bond Specificity of Glucansucrases
    University of Groningen Glycosidic bond specificity of glucansucrases Leemhuis, Hans; Pijning, Tjaard; Dobruchowska, Justyna M.; Dijkstra, Bauke W.; Dijkhuizen, Lubbert Published in: Biocatalysis and Biotransformation DOI: 10.3109/10242422.2012.676301 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2012 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Leemhuis, H., Pijning, T., Dobruchowska, J. M., Dijkstra, B. W., & Dijkhuizen, L. (2012). Glycosidic bond specificity of glucansucrases: on the role of acceptor substrate binding residues. Biocatalysis and Biotransformation, 30(3), 366-376. DOI: 10.3109/10242422.2012.676301 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 11-02-2018 Biocatalysis and Biotransformation, May–June 2012; 30(3): 366–376 ORIGINAL ARTICLE Glycosidic bond specifi city of glucansucrases: on the role of acceptor substrate binding residues HANS LEEMHUIS 1 , TJAARD PIJNING 2 , JUSTYNA M.
    [Show full text]
  • Comparison of Anti-Bacterial Activity Between Commercial and Herbal Mouthwash
    ISSN: 2455-2631 © February 2020 IJSDR | Volume 5, Issue 2 Comparison of Anti-Bacterial Activity between Commercial and Herbal Mouthwash Type of manuscript: Research Article Running Title: Anti-Bacterial Activity between Commercial and Herbal Mouthwash Thejeswar EP Graduate Student Saveetha dental college, Saveetha University, Saveetha institute of medical and technical sciences Joseph John Professor Department of Public Health Dentistry Saveetha dental college, Saveetha University, Saveetha institute of medical and technical sciences Corresponding Author Thejeswar EP Graduate Student Saveetha dental college, Saveetha University, Saveetha institute of medical and technical sciences 162, Poonamallee High Road Chennai-600077 Tamil Nadu, India Abstract Aim Mouthwash, mouth rinse, or mouth bath is a liquid which is held in mouth and swilled around the oral cavity by contraction of the peri-oral muscles with movement of head, and the liquid is bubbled at the back of the mouth. The aim of the study is to a compare the antibacterial activity of commercially available and Herbal mouthwash. Materials and Methods This study is to compare the antibacterial activity of commercially available and herbal mouthwash in a sample of 20 individuals. Results Oral cavity consists of oral flora and other microbes. Commercially available and herbal mouthwashes exhibit different antimicrobial properties. Overall percentage reduction of bacteria after usage of chlorhexidine was found to be 85.5% of bacteria in oral cavity, whereas herbal mouthwash had the percentage reduction of 74.1% of bacteria. Conclusion To Recommend the mouthwash to patients based on anti-bacterial activity. Keywords: Antibacterial, Chlorhexidine, Herbal, Microbes, Mouthwash. Introduction Duthwash mixture of decoct extracted from the olive tree leaves, milk, wine and oil, pomegranate peelings, nutgalls and vinegar.
    [Show full text]
  • Glucansucrase (Mutant) Enzymes from Lactobacillus Reuteri 180 Efficiently Transglucosylate Stevia Component Rebaudioside A, Resu
    www.nature.com/scientificreports OPEN Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efciently transglucosylate Stevia Received: 18 July 2017 Accepted: 5 January 2018 component rebaudioside A, Published: xx xx xxxx resulting in a superior taste Evelien M. te Poele1,6, Tim Devlamynck1,2, Manuel Jäger3, Gerrit J. Gerwig1,4, Davy Van de Walle5, Koen Dewettinck5, Anna K. H. Hirsch 3, Johannis P. Kamerling1,4, Wim Soetaert2 & Lubbert Dijkhuizen1,6 Steviol glycosides from the leaves of the plant Stevia rebaudiana are high-potency natural sweeteners but sufer from a lingering bitterness. The Lactobacillus reuteri 180 wild-type glucansucrase Gtf180-ΔN, and in particular its Q1140E-mutant, efciently α-glucosylated rebaudioside A (RebA), using sucrose as donor substrate. Structural analysis of the products by MALDI-TOF mass spectrometry, methylation analysis and NMR spectroscopy showed that both enzymes exclusively glucosylate the Glc(β1→C-19 residue of RebA, with the initial formation of an (α1→6) linkage. Docking of RebA in the active site of the enzyme revealed that only the steviol C-19 β-D-glucosyl moiety is available for glucosylation. Response surface methodology was applied to optimize the Gtf180-ΔN-Q1140E-catalyzed α-glucosylation of RebA, resulting in a highly productive process with a RebA conversion of 95% and a production of 115 g/L α-glucosylated products within 3 h. Development of a fed-batch reaction allowed further suppression of α-glucan synthesis which improved the product yield to 270 g/L. Sensory analysis by a trained panel revealed that glucosylated RebA products show a signifcant reduction in bitterness, resulting in a superior taste profle compared to RebA.
    [Show full text]