University of Groningen Glycosidic Bond Specificity of Glucansucrases

Total Page:16

File Type:pdf, Size:1020Kb

University of Groningen Glycosidic Bond Specificity of Glucansucrases University of Groningen Glycosidic bond specificity of glucansucrases Leemhuis, Hans; Pijning, Tjaard; Dobruchowska, Justyna M.; Dijkstra, Bauke W.; Dijkhuizen, Lubbert Published in: Biocatalysis and Biotransformation DOI: 10.3109/10242422.2012.676301 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2012 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Leemhuis, H., Pijning, T., Dobruchowska, J. M., Dijkstra, B. W., & Dijkhuizen, L. (2012). Glycosidic bond specificity of glucansucrases: on the role of acceptor substrate binding residues. Biocatalysis and Biotransformation, 30(3), 366-376. DOI: 10.3109/10242422.2012.676301 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 11-02-2018 Biocatalysis and Biotransformation, May–June 2012; 30(3): 366–376 ORIGINAL ARTICLE Glycosidic bond specifi city of glucansucrases: on the role of acceptor substrate binding residues HANS LEEMHUIS 1 , TJAARD PIJNING 2 , JUSTYNA M. DOBRUCHOWSKA 1 , BAUKE W. DIJKSTRA 2 & LUBBERT DIJKHUIZEN 1 1 Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, The Netherlands and 2 Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, The Netherlands Abstract Many lactic acid bacteria produce extracellular a -glucan polysaccharides using a glucansucrase and sucrose as glucose donor. The structure and the physicochemical properties of the a -glucans produced are determined by the nature of the glucansu- crase. Typically, the a -glucans contain two types of a -glycosidic linkages, for example, (a 1 - 2), (a 1 - 3), (a 1- 4) or (a 1 - 6), which may be randomly or regularly distributed. Usually, the a -glucan chains are also branched, which gives rise to an additional level of complexity. Even though the fi rst crystal structure was reported in 2010, our current understanding of the structure– function relationships of glucansucrases is not advanced enough to predict the a -glucan specifi city from the sequence alone. Nevertheless, based on sequence alignments and site-directed mutagenesis, a few amino acid residues have been identifi ed as being important for the glycosidic bond specifi city of glucansucrases. A new development in GH70 research was the identifi cation of a cluster of a -glucan disproportionating enzymes. Here, we discuss the current insights into the structure– function relationships of GH70 enzymes in the light of the recently determined crystal structure of glucansucrases. Keywords: alternansucrase , dextransucrase , glycoside hydrolase , reuteransucrase , lactic acid bacteria , protein engineering For personal use only. Introduction Glucansucrases Many bacteria form a biofi lm matrix to protect them GSs are a -glucan synthesizing enzymes of the glyco- from environmental stress and to keep extracellular side hydrolase family 70 (GH70) (Cantarel et al. digestive enzymes in the vicinity of the cells, thus 2009), a group of extracellular enzymes produced ensuring that the extracellular enzymes are not pro- predominantly by Lactobacillales bacteria (van Hijum viding nutrients to competing organisms (Flemming et al. 2006). These enzymes are also known as glu- & Wingender 2010; Walter et al. 2008; Kaditzky cosyltransferases, abbreviated as ‘ GTF ’ , because et al. 2008). Moreover, biofi lms are key to surface they synthesize a -glucan polymers using the glucose colonization, such as tooth enamel colonization by unit of sucrose. GH70 enzymes are evolutionarily Streptococcus species (Nobbs et al. 2009; Freitas et al. closely related to the GH13 and GH77 enzymes and 2011). Biofi lms are typically composed of polymeric together they form the GH-H clan according to the Biocatal Biotransformation Downloaded from informahealthcare.com by University of Groningen on 06/27/12 compounds, for example, carbohydrates, proteins Carbohydrate-Active Enzymes (CAZy) (http://www. and DNA. Several lactic acid bacteria form biofi lms cazy.org) (Cantarel et al. 2009) classifi cation system. that are largely composed of a -glucan polymers, The GH-H clan encompasses a large group of which are synthesized from sucrose by an extracel- enzymes acting on a -glucan carbohydrates such as lular glucansucrase (GS) (Schwab et al. 2007; Anwar starch, glycogen, pullulan, sucrose, etc. Well known et al. 2010; Leathers & Bischoff 2011). In this review, enzymes of the GH-H clan are a -amylase, branching we focus on the structure – function relationships of enzyme, cyclodextrin glucanotransferase, pullula- GSs and the structural properties of the a -glucan nase and amylomaltase (MacGregor et al. 2001; produced by this class of enzymes. Kuriki & Imanaka 1999; van der Maarel et al. 2002; Correspondence: Lubbert Dijkhuizen, Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, The Netherlands. Tel: 31 - 50-3632150. Fax: 31 - 50-3632154. E-mail: [email protected] ISSN 1024-2422 print/ISSN 1029-2446 online © 2012 Informa UK, Ltd. DOI: 10.3109/10242422.2012.676301 Glycosidic bond specifi city of glucansucrases 367 Kelly et al. 2009b; Palomo et al. 2011). GSs are specifi cities have been observed among GSs, though intensively studied as they are found in many probi- typically GSs form two types of glycosidic linkages otic bacteria, and they are thought to contribute to only, for example, (a 1 - 3) and (a 1 - 6), (a 1 - 4) and the probiotic properties via the a -glucan products (a 1 - 6) or (a 1 - 2) and (a 1 - 6). The next level of com- they make. Moreover, there are indications that the plexity arises from the fact that the a -glucan prod- a -glucan products of GSs have prebiotic activities ucts formed are branched, which implies that the and may act as anti-adhesives hampering coloniza- acceptor subsites not only can accommodate the tion by harmful bacteria (Wang et al. 2010). non-reducing end of a glucan chain, resulting in chain elongation, but also the glucan chain itself to create a branch. How GSs can specifi cally recognize The catalytic cycle of glucansucrases and orient acceptor molecules to create highly com- plex a -glucans is a very intriguing question. Although Catalysis by GSs is generally believed to be a modelling of acceptor molecules in the active site has two-step process, which starts with the binding provided some clues (Vujicic-Zagar et al. 2010), our of the substrate sucrose and the cleavage of the current understanding of the glycosidic bond speci- (a 1 - 2)-glycosidic linkage between the glucose and fi city of GSs is only poorly developed. fructose moieties of sucrose yielding a covalent GSs can also transfer the glycosyl intermediate glycosyl-enzyme intermediate. In the catalytic to a wide variety of hydroxyl-group containing mol- machinery, Asp1025 acts as the nucleophile forming ecules in a so called acceptor reaction, which is use- a covalent linkage with the glycosyl moiety, and ful in (chemo-) enzymatic synthesis, as it prevents Glu1063 acts as a general acid/base catalyst (amino all kind of diffi culties regarding stereo- and regio- acid numbering according to GTF180 of Lactobacillus specifi city associated with the chemical synthesis of reuteri 180, unless stated otherwise). Following the (hybrid) carbohydrate compounds (Hanson et al. departure of fructose from the ϩ 1 acceptor subsite, 2004; Homann et al. 2009a,b; Leemhuis et al. an acceptor substrate can enter the acceptor subsites 2010). The acceptor substrate promiscuity of GSs to attack the covalent glycosyl-enzyme intermediate. has been used to elongate short oligosaccharides The resulting product again has an a -glycosidic link- (Cote & Sheng 2006), to label dextran with 13 C- age. The existence of the covalent glycosyl-enzyme glucose (Mukasa et al. 2001), to glucosylate gentio- intermediate has not yet been demonstrated experi- biose (Cote 2009a), raffi nose (Cote 2009b), mentally for a GH70 enzyme; however, its existence nigero-oligosaccharides (Komatsu et al. 2011), fl a- has convincingly been demonstrated by protein vonoids (Bertrand et al. 2006), hydroquinones (Seo crystallography for the GH13 enzymes, cyclodextrin et al. 2009), salicin and phenol (Seo et al. 2005), For personal use only. glucanotransferase (Uitdehaag et al. 1999) and primary alcohols (Seibel et al. 2006a), methyl, alkyl, amylosucrase (Jensen et al. 2004) and for the GH77 butyl and octyl-D-glucopyranosides (de Segura enzyme, amylomaltase (Barends et al. 2007), et al. 2006; Richard et al. 2003; Kim et al. 2009) which also belong to the GH-H clan of glycoside and to synthesize branched thiooligosaccharides hydrolases. (Hellmuth et al. 2007). Another well-known prod- uct of the acceptor reaction is the sucrose isomer leucrose
Recommended publications
  • University of Groningen Mutational and Biochemical Analysis Of
    University of Groningen Mutational and biochemical analysis of Lactobacillus reuteri glucansucrase enzymes Meng, Xiangfeng IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Meng, X. (2015). Mutational and biochemical analysis of Lactobacillus reuteri glucansucrase enzymes. University of Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 24-09-2021 Chapter 1 General introduction: Tailor-made α-glucans by GH70 glucansucrase enzymes In preparation for submission 7 Chapter 1 Introduction Fossil resources are currently the major energy source and primary feedstock for the chemical industry. However, these resources are finite and unsustainable. At the same time, the widespread use of fossil resources causes severe environmental problems, including climate changes and air pollution.
    [Show full text]
  • Structural Changes in the Oral Microbiome of the Adolescent
    www.nature.com/scientificreports OPEN Structural changes in the oral microbiome of the adolescent patients with moderate or severe dental fuorosis Qian Wang1,2, Xuelan Chen1,4, Huan Hu2, Xiaoyuan Wei3, Xiaofan Wang3, Zehui Peng4, Rui Ma4, Qian Zhao4, Jiangchao Zhao3*, Jianguo Liu1* & Feilong Deng1,2,3* Dental fuorosis is a very prevalent endemic disease. Although oral microbiome has been reported to correlate with diferent oral diseases, there appears to be an absence of research recognizing any relationship between the severity of dental fuorosis and the oral microbiome. To this end, we investigated the changes in oral microbial community structure and identifed bacterial species associated with moderate and severe dental fuorosis. Salivary samples of 42 individuals, assigned into Healthy (N = 9), Mild (N = 14) and Moderate/Severe (M&S, N = 19), were investigated using the V4 region of 16S rRNA gene. The oral microbial community structure based on Bray Curtis and Weighted Unifrac were signifcantly changed in the M&S group compared with both of Healthy and Mild. As the predominant phyla, Firmicutes and Bacteroidetes showed variation in the relative abundance among groups. The Firmicutes/Bacteroidetes (F/B) ratio was signifcantly higher in the M&S group. LEfSe analysis was used to identify diferentially represented taxa at the species level. Several genera such as Streptococcus mitis, Gemella parahaemolysans, Lactococcus lactis, and Fusobacterium nucleatum, were signifcantly more abundant in patients with moderate/severe dental fuorosis, while Prevotella melaninogenica and Schaalia odontolytica were enriched in the Healthy group. In conclusion, our study indicates oral microbiome shift in patients with moderate/severe dental fuorosis.
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria Sacha A
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Mar. 2006, p. 157–176 Vol. 70, No. 1 1092-2172/06/$08.00ϩ0 doi:10.1128/MMBR.70.1.157–176.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria Sacha A. F. T. van Hijum,1,2†* Slavko Kralj,1,2† Lukasz K. Ozimek,1,2 Lubbert Dijkhuizen,1,2 and Ineke G. H. van Geel-Schutten1,3 Centre for Carbohydrate Bioprocessing, TNO-University of Groningen,1 and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen,2 9750 AA Haren, The Netherlands, and Innovative Ingredients and Products Department, TNO Quality of Life, Utrechtseweg 48 3704 HE Zeist, The Netherlands3 INTRODUCTION .......................................................................................................................................................157 NOMENCLATURE AND CLASSIFICATION OF SUCRASE ENZYMES ........................................................158 GLUCANSUCRASES .................................................................................................................................................158 Reactions Catalyzed and Glucan Product Synthesis .........................................................................................161 Glucan synthesis .................................................................................................................................................161 Acceptor reaction ................................................................................................................................................161
    [Show full text]
  • Rational Re-Design of Lactobacillus Reuteri 121 Inulosucrase for Product
    RSC Advances View Article Online PAPER View Journal | View Issue Rational re-design of Lactobacillus reuteri 121 inulosucrase for product chain length control† Cite this: RSC Adv.,2019,9, 14957 Thanapon Charoenwongpaiboon,a Methus Klaewkla,ab Surasak Chunsrivirot,ab Karan Wangpaiboon,a Rath Pichyangkura,a Robert A. Field c and Manchumas Hengsakul Prousoontorn *a Fructooligosaccharides (FOSs) are well-known prebiotics that are widely used in the food, beverage and pharmaceutical industries. Inulosucrase (E.C. 2.4.1.9) can potentially be used to synthesise FOSs from sucrose. In this study, inulosucrase from Lactobacillus reuteri 121 was engineered by site-directed mutagenesis to change the FOS chain length. Three variants (R483F, R483Y and R483W) were designed, and their binding free energies with 1,1,1-kestopentaose (GF4) were calculated with the Rosetta software. R483F and R483Y were predicted to bind with GF4 better than the wild type, suggesting that these engineered enzymes should be able to effectively extend GF4 by one residue and produce a greater quantity of GF5 than the wild type. MALDI-TOF MS analysis showed that R483F, R483Y and R483W variants Creative Commons Attribution-NonCommercial 3.0 Unported Licence. could synthesise shorter chain FOSs with a degree of polymerization (DP) up to 11, 10, and 10, respectively, while wild type produced longer FOSs and in polymeric form. Although the decrease in catalytic activity and the increase of hydrolysis/transglycosylation activity ratio was observed, the variants could effectively Received 20th March 2019 synthesise FOSs with the yield up to 73% of substrate. Quantitative analysis demonstrated that these Accepted 7th May 2019 variants produced a larger quantity of GF5 than wild type, which was in good agreement with the predicted DOI: 10.1039/c9ra02137j binding free energy results.
    [Show full text]
  • Crystal Structure of Glucansucrase from the Dental Caries
    5 Life Science PF Activity Report 2010 #28 Crystal Structure of Glucansucrase from the Dental Caries Glucansucrases are members of the glycoside hy- second sucrose binding site, namely, subsite +1 and Pathogen, Streptococcus Mutans drolase family 70, and catalyze the formation of glucan +2 (Fig. 1(b) and 1(c)). Trp517 provides the platform with various types of glucosidic linkages, (1-3), (1- for glycosyl-acceptor binding, whereas residues such 4) or (1-6) bonds, from sucrose via transglycosylation as Tyr430, Asn481, and Ser589 comprising subsite lucansucrases from Streptococcus mutans (GTF-SI) catalyze an essential factor in the pathogenesis of dental reactions. In the oral cavity, glucan synthesis by S. mu- +1 are conserved in glucansucrases but not in sugar- caries. Resolution of the GTF-SI structure confi rmed that the domain order of glucansucrase-SI was circularly tans involves three extracellular enzymes, GTF-I, GTF- cutting enzymes. Among these residues, the position Gpermuted compared with that of the well-known -amylase, which catalyses the breakdown of starch into sug- SI and GTF-S. GTF-I and GTF-SI synthesize mainly in- of Asp593 in GTF-SI is critical for glucansucrases that ars. Based on the structure of GTF-SI and a comparison of the amino acids of other glucansucrases, it was revealed soluble sticky glucan with (1-3) glycosidic linkages. We make insoluble and sticky glucan with (1-3) glycosidic that the position of Asp593 in glucansucrase-SI is the most critical point for the orientation of the acceptor sugar, and have used AR-NE3A and 5A beamlines to identify the linkages.
    [Show full text]
  • (Α1‹ →‹ 6) Linkage Specificity in Reuteransucrase Of
    www.nature.com/scientificreports OPEN Structural determinants of alternating (α1 → 4) and (α1 → 6) linkage specificity in Received: 03 June 2016 Accepted: 26 September 2016 reuteransucrase of Lactobacillus Published: 17 October 2016 reuteri Xiangfeng Meng1, Tjaard Pijning2, Justyna M. Dobruchowska1, Huifang Yin1, Gerrit J. Gerwig1 & Lubbert Dijkhuizen1 The glucansucrase GTFA of Lactobacillus reuteri 121 produces an α-glucan (reuteran) with a large amount of alternating (α1 → 4) and (α1 → 6) linkages. The mechanism of alternating linkage formation by this reuteransucrase has remained unclear. GTFO of the probiotic bacterium Lactobacillus reuteri ATCC 55730 shows a high sequence similarity (80%) with GTFA of L. reuteri 121; it also synthesizes an α-glucan with (α1 → 4) and (α1 → 6) linkages, but with a clearly different ratio compared to GTFA. In the present study, we show that residues in loop977 (970DGKGYKGA977) and helix α4 (1083VSLKGA1088) are main determinants for the linkage specificity difference between GTFO and GTFA, and hence are important for the synthesis of alternating (α1 → 4) and (α1 → 6) linkages in GTFA. More remote acceptor substrate binding sites (i.e.+3) are also involved in the determination of alternating linkage synthesis, as shown by structural analysis of the oligosaccharides produced using panose and maltotriose as acceptor substrate. Our data show that the amino acid residues at acceptor substrate binding sites (+1, +2, +3…) together form a distinct physicochemical micro-environment that determines the alternating (α1 → 4) and (α1 → 6) linkages synthesis in GTFA. Lactic acid bacteria (LAB) have been widely explored for the production of fermented food, due to their abil- ity of producing lactic acid and their generally recognized as safe (GRAS) status1.
    [Show full text]
  • University of Groningen Engineering the Glucansucrase GTFR
    University of Groningen Engineering the glucansucrase GTFR enzyme reaction and glycosidic bond specificity Hellmuth, Hendrik; Wittrock, Sabine; Kralj, Slavko; Dijkhuizen, Lubbert; Hofer, Bernd; Seibel, Juergen; Seibel, Jürgen Published in: Biochemistry DOI: 10.1021/bi800563r IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hellmuth, H., Wittrock, S., Kralj, S., Dijkhuizen, L., Hofer, B., Seibel, J., & Seibel, J. (2008). Engineering the glucansucrase GTFR enzyme reaction and glycosidic bond specificity: Toward tailor-made polymer and oligosaccharide products. Biochemistry, 47(25), 6678-6684. https://doi.org/10.1021/bi800563r Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • Bacterial Exopolysaccharides: Biosynthesis Pathways and Engineering Strategies
    REVIEW published: 26 May 2015 doi: 10.3389/fmicb.2015.00496 Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies Jochen Schmid1*,VolkerSieber1 and Bernd Rehm2,3 1 Chair of Chemistry of Biogenic Resources, Technische Universität München, Straubing, Germany, 2 Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand, 3 The MacDiarmid Institute for Advanced Materials and Nanotechnology, Palmerston North, New Zealand Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the Edited by: Weiwen Zhang, natural design space for production of a variety of biopolymer will open up a range of Tianjin University, China new applications. Here, we summarize the key aspects of microbial exopolysaccharide Reviewed by: biosynthesis and highlight the latest engineering approaches toward the production Jun-Jie Zhang, of tailor-made variants with the potential to be used as valuable renewable and Wuhan Institute of Virology, Chinese Academy of Sciences, China high-performance products
    [Show full text]
  • Lactobacillus Rhamnosus HN001 1.1 Probiotic Bacteria
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. DDiirreecctt sseelleeccttiioonn aanndd pphhaaggee ddiissppllaayy ooff tthhee LLaaccttoobbaacciilllluuss rrhhaammnnoossuuss HHNN000011 sseeccrreettoommee A thesis presented to Massey University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Dragana Jankovic 2008 Acknowledgments ii Acknowledgments I would like to thank the following people for the time, help, and support they have given me during my PhD work. Firstly and primarily I would like to thank my supervisor Dr Jasna Rakonjac for her encouragement, help, support, and expedience which were most appreciated. Her great scientific enthusiasm and amazing energy have been and will always be the inspiration for me. Also many thanks go to my cosupervisors Dr Mark Lubbers and Dr Michael Collett who were always a well of new ideas and discussion topics off all kinds. Their support was invaluable. I thank my cosupervisor Dr John Tweedie for helpful discussions and critical comments on my work. Special thanks to my office mates from Helipad lab, especially David Sheerin and Nicholas Bennett whose tolerance, patience and entertaining discussions were sometimes the only thing that kept me sane. Thanks to everyone at the Institute of Molecular BioSciences for their support. Thanks to them I looked forward to every coffee break to discuss new and interesting current issues. It was a pleasure and privilege working with such a great group of people.
    [Show full text]
  • University of Groningen Engineering the Glucansucrase GTFR Enzyme Reaction and Glycosidic Bond Specificity Hellmuth, Hendrik; Wi
    University of Groningen Engineering the glucansucrase GTFR enzyme reaction and glycosidic bond specificity Hellmuth, Hendrik; Wittrock, Sabine; Kralj, Slavko; Dijkhuizen, Lubbert; Hofer, Bernd; Seibel, Juergen; Seibel, Jürgen Published in: Biochemistry DOI: 10.1021/bi800563r IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hellmuth, H., Wittrock, S., Kralj, S., Dijkhuizen, L., Hofer, B., Seibel, J., & Seibel, J. (2008). Engineering the glucansucrase GTFR enzyme reaction and glycosidic bond specificity: Toward tailor-made polymer and oligosaccharide products. Biochemistry, 47(25), 6678-6684. https://doi.org/10.1021/bi800563r Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • Lehrstuhl Für Technische Mikrobiologie Sucrose Metabolism
    Lehrstuhl für Technische Mikrobiologie Sucrose metabolism in lactobacilli and bifidobacteria Susanne B. Kaditzky Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing., Dr.-Ing. habil. Werner Back Prüfer der Dissertation: 1. Univ.-Prof. Dr. rer. nat. habil. Rudi F. Vogel 2. Univ.-Prof. Dr. rer. nat. habil. Siegfried Scherer 3. Ass. Prof. Dr. rer. nat. Michael Gänzle, University of Alberta / Kanada (schriftliche Beurteilung) Die Dissertation wurde am 25.10.2007 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 07.01.2008 angenommen. Lehrstuhl für Technische Mikrobiologie Sucrose metabolism in lactobacilli and bifidobacteria Susanne B. Kaditzky Doctoral thesis Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Freising 2008 Mein Dank gilt Rudi Vogel für die Überlassung des Themas und seine geduldige und unterstützende Begleitung durch die lehrreichen und interessanten Jahre, Michael Gänzle, Maher Korakli und Daniel Meissner für ihr Engagement und ihre Unterstützung, allen Kollegen für das gute und humorvolle Arbeitsklima, Andreas Stocker für die Charakterisierung des EPS mit FFF, Peter Kaden für die NMR- Analyse und Jürgen Behr für die Durchführung der 2D-Experimente,
    [Show full text]