Tropical Plant Collecting from the Field to the Internet

Total Page:16

File Type:pdf, Size:1020Kb

Tropical Plant Collecting from the Field to the Internet Tropical Plant Collecting From the Field to the Internet Edited by Scott A. Mori Amy Berkov Carol A. Gracie Edmund F. Hecklau TECC Editora Florianópolis, Brazil This book is dedicated to John Daniel Mitchell in recognition of his support of the Institute of Systematic Botany and the LuEsther T. Mertz Library of The New York Botanical Garden © 2012 by Scott A. Mori ISBN: (Color Edition) Published by TECC Editora Florianópolis, Brazil www.tecceditora.com - [email protected] Distributed by Itasca Books Cover painting by Michael Rothman All Rights Reserved. No part of this book may be reproduced in any form, electronic or mechanical, including photocopy, recording, or any information storage and re- trieval system, without prior permission from the publisher, except by a reviewer who may quote short passages in a review. The information in this book is true and complete to the best of our knowledge. It is offered without guarantee on the part of the editors, authors, and publisher. The editors, authors, and publisher disclaim all liability in connection with the use of this book. Contents Preface ix Acknowledgments xiv Chapter 1. My Career as a Tropical Botanist BY SCOTT A. MORI | 1 Box 1-1. The Difference between Monographs and Floras 2 Initiation to Botany 3 Becoming a Tropical Botanist 6 Monograph of the Brazil Nut Family 16 A Year in Panama 17 NYBG Post-Doc 24 Bahia, Brazil 27 NYBG Curator 31 French Guiana 32 Central French Guiana 35 Biological Dynamics of Forest Fragments Project 43 Nouragues 48 Saba 52 Osa Peninsula, Costa Rica 55 Conclusions 57 Chapter 2. Amy’s Year in the Rain Forest BY AMY BERKOV | 59 Flirting with Domesticity 61 Sensory Deprivation in the Midst of Plenty 63 Waiting for Things to Fall From the Sky 66 The Emerging of Scamps 69 The Giant Wild Forest Pussy Cat 71 La Carte de Sejour Vrai 72 Seasonal Changes in the Land of Endless Summer 74 N’habite pas à L’adresse Indiquée 75 Epilogue 75 Chapter 3. Tips for Tropical Biologists BY SCOTT A. MORI | 77 Hiking to Camp 78 Camp Sites 79 Camp Life 84 Dangers and Annoyances 85 Accidents 85 Box 3-1. Machete as a Cane 88 Lost in the Forest 89 Dangerous Waters 89 Box 3-2. Lost in the Forest 90 Arachnids 94 Chiggers 94 Scorpions 95 Spiders 95 Ticks 96 Insects 97 Ants 97 Bees and wasps 97 Box 3-3. Tarantula Hawk 101 Whiplash beetles 102 Butterflies and moths 103 Burrowing fleas 104 Tabanid flies 104 Black flies 105 Botflies 106 Parasites 108 Dengue fever 108 Cutaneous larva migrans 109 Leishmaniasis 109 Malaria 112 Snakes 114 Mammals 118 Jaguars 118 Pumas 120 Peccaries 120 Box 3-4. Pecari tajacu 121 Monkeys 123 Humans 124 Box 3-5. Guerrilleros 126 Conclusions 129 Chapter 4. From the Field BY SCOTT A. MORI | 131 Collection Numbers and Duplicates 135 How Many Collections? 138 What to Collect? 140 Vouchers for Ecological Studies 141 Equipment 145 Clothing 145 Collecting equipment 146 Specimen Collecting 148 Finding collections 148 Specimen notes 149 Climbing trees 152 Preparing specimens 163 Specimen images 167 Box 4-1. Protocol for Images of Lecythidaceae 168 Box 4-2. Construction of a Plant Holder for Photography 170 Drying specimens 171 Box 4-3. Construction of a Standard Wooden Propane- driven Drying Frame 173 Box 4-2. Construction of an Aluminum Hotplate-driven Mini Plant Drying Frame 176 Tips for Collecting in Neotropical Countries 183 Before the arrival 184 During the visit 186 Before the departure 187 After the expedition 188 Conclusions 188 Chapter 5. Into the Herbarium BY SCOTT A. MORI | 191 Herbarium Management 194 Geographical focus 194 Label making 195 Box 5-1. An Example of a Collection Label 197 Cataloging 198 How many records are needed? 200 Geo-referencing 202 Naming image files 205 Use of space 207 Specimen annotation 211 Herbarium mission statements and collection policies 211 Box 5-2. Mission and Collecting Policy 212 Conclusions 213 Chapter 6. Onto the Internet BY SCOTT A. MORI | 215 Electronic Monographs 217 Important Components of Electronic monographs 218 Specimens 219 Multimedia 220 Taxonomy 220 Box 6-1. Species Page Content 221 Literature 223 Glossaries 225 Keys 225 Electronic Floras 226 Box 6-2. Specimens from the Field onto the Internet 227 Citation of e-monographs and e-Floras 230 Problems Remaining to be Addressed 230 Conservation 236 Conclusions 238 Chapter 7. Rain Forests of Tropical America: Is there Hope for their Future? BY SCOTT A. MORI | 239 Tropical rain forest 239 Biodiversity 241 Why are there so many Species in the Neotropics? 242 Economic Importance 245 Plant Succession 248 Both Fragile and Resilient 249 Man’s Role 252 Ecosystem Services 259 Human Population and Consumption 263 Biofuels 264 Water and Climate Change 266 Is there Hope for the future? 270 Appendix A. Adopt-a-Forest Strategy BY SCOTT A. MORI | 273 Appendix B. Funding for Systematic Botany BY SCOTT A. MORI | 275 Why Support Systematic Botany? 276 Importance of Grants 278 The National Science Foundation (NSF) 279 Hypothesis conundrum 283 National Geographic Society (NGS) 284 Foundations 285 Contracts 287 Fellowships 287 Ecotours 288 Individual Giving 291 Additional Institutional Support 292 Miscellaneous Rund Raising 294 Appendix C. Personal Field Supplies BY SCOTT A. MORI | 295 Appendix D. Essential Collecting Equipment BY SCOTT A. MORI | 297 Literature Cited | 299 Index to Scientific Names, Common Names, and Place Names | 319 Preface The diversity of plants is described in two important kinds of publica- tions—Floras and monographs (Box 1-1). A Flora describes all plants in a given geographic area, and a monograph treats all species of a particular group of plants throughout its geographic range. Monographs, which include the information needed for identify- ing plants as well as a summary of what is known about the group stud- ied, provide the baseline information needed for other studies of plants, such as cytology, molecular biology, ecology, environmental assessments, conservation biology, and economic botany. Mares (1991) has pointed out that modern research on mammals in the United States is “built upon a firm foundation of basic research” and without this foundation “the excit- ing questions now being asked would be difficult to formulate.” Likewise, well-done and complete Floras are the most useful tools for determining the names of plants in specific areas, and also facilitate biological stud- ies that would be impossible without this important baseline information. An outstanding example is Croat’s (1978) classic Flora of Barro Colorado Island, which has been followed by studies of the island’s forest ecology (Leigh et al., 1982, 1996), as well as by studies of the insects, birds, mam- mals, and all other organisms that depend upon the plants described in the Flora. In other words, Floras and monographs serve as the basis for studies of evolution, ecology, ethnobotany, and conservation biology because they allow researchers to identify the plants they study. Published monographs and Floras provide the foundation needed to design studies that test ecological and evolutionary hypotheses. We do not mean to imply, however, that the botanists who produce monographs and Floras do not test hypotheses. Contrary to the claims of some crit- ics of systematic botany, who maintain that systematics is not a science, but merely “stamp collecting” or an enumeration of facts about the liv- ing world, hypothesis testing is the very foundation of systematic botany. The overwhelming amount of descriptive work in systematics masks the hypothesis testing, but every taxon (e.g., family, genus, species) defined x / Tropical Plant Collecting: From the Field to the Internet by a systematist is a hypothesis that is open to testing by the addition of new collections and the accumulation of new data. In short, there are as many hypotheses in systematic biology as there are taxa on the planet! In addition, the establishment of species boundaries paves the way for testing hypotheses about the evolutionary and ecological relationships between plants and animals, as well as the relationships that plants have with their abiotic environment. Mori et al.’s (2005) discussion demonstrates how the availability of both a published Flora and a bat Fauna facilitated a study of plant/bat interactions in the Neotropics (Lobova et al, 2009). Bats play an important role in the pollination and dispersal of tropical plants; however, details of these interactions in lowland neotropical forests are not thoroughly docu- mented because there are few areas in the Neotropics with published in- ventories of both plants and bats. An exception is found in central French Guiana, where the existence of both a Flora (Mori et al. 1997, 2002a) and a bat Fauna (Charles-Dominique et al. 2001) made it possible to identify the regional species. This, in turn, facilitated determining the identities of plants that specific bats depend upon for at least part of their nutrition, and the identities of bats that specific plants depend on for seed dispersal (Lobova et al. 2009). Lobova et al. (2009) addressed the hypothesis that the relationships between bats and plants have resulted in morphological adaptations in both groups. They also demonstrated that bats play a key role in maintaining biodiversity in tropical lowland forests. This book describes the field work involved in making plant col- lections and gathering the data used in producing monographs and Flor- as. Chapters 1 and 2 deal with Mori’s career as a tropical botanist and Berkov’s adaptation to the rigors of a year’s field work in French Guiana. The third chapter discusses the adventures and misadventures inherent to tropical field studies. Chapters 4, 5, and 6 provide insights into how botanical specimens are collected, processed, and integrated into herbaria, and how information about them is disseminated via the Internet.
Recommended publications
  • Ergosterol Purified from Medicinal Mushroom Amauroderma Rude Inhibits Cancer Growth in Vitro and in Vivo by Up-Regulating Multiple Tumor Suppressors
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 19 Ergosterol purified from medicinal mushroom Amauroderma rude inhibits cancer growth in vitro and in vivo by up-regulating multiple tumor suppressors Xiangmin Li1,2,3,4,*, Qingping Wu2,*, Yizhen Xie2, Yinrun Ding2, William W. Du3,4, Mouna Sdiri3,4, Burton B. Yang3,4 1School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China 2State Key Laboratory of Applied Microbiology Southern China (The Ministry-Province Joint Development), Guangdong Institute of Microbiology, Guangzhou, 510070, PR China 3Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, M4N3M5, Canada 4Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N3M5, Canada *These authors have contributed equally to this work Correspondence to: Yizhen Xie, e-mail: [email protected] Burton B. Yang, e-mail: [email protected] Keywords: herbal medicine, medicinal mushroom, Foxo3a, Bim, Fas Received: April 08, 2015 Accepted: May 13, 2015 Published: May 27, 2015 ABSTRACT We have previously screened thirteen medicinal mushrooms for their potential anti-cancer activities in eleven different cell lines and found that the extract of Amauroderma rude exerted the highest capacity in inducing cancer cell death. The current study aimed to purify molecules mediating the anti-cancer cell activity. The extract of Amauroderma rude was subject to fractionation, silica gel chromatography, and HPLC. We purified a compound and identified it as ergosterol by EI-MS and NMR, which was expressed at the highest level in Amauroderma rude compared with other medicinal mushrooms tested. We found that ergosterol induced cancer cell death, which was time and concentration dependent.
    [Show full text]
  • A New Pericarbonyl Lignan from Amauroderma Rude
    ORIGINAL ARTICLE Rec. Nat. Prod. 13:4 (2019) 296-300 A New Pericarbonyl Lignan from Amauroderma rude Miao Dong 1, Zuhong Ma 2, Qiaofen Yang 2, Qiuyue Hu 2, Yanqing Ye 2,* and Min Zhou 1,* 1Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, P.R. China 2 School of Chemistry and Environment, Yunnan Minzu University, Kunming 650031, P.R. China (Received October 24, 2018; Revised November 29, 2018; Accepted November 30, 2018) Abstract: A new pericarbonyl lignan (1), named amaurolignan A was isolated from an ethanol extract of the fruiting bodies in Amauroderma rude of family Ganodermataceae, together with two known lignans, 4-methoxymatairesinol 4′-β-D-glucoside (2) and lappaol F (3). The structures of compounds (1-3) were elucidated using NMR and MS spectroscopic methods. Keywords: Pericarbonyl lignan; amaurolignan A; Amauroderma rude. © 2019 ACG Publications. All rights reserved. 1. Introduction “Lingzhi” is a mushroom that has been renowned in China for more than 2000 years because of its claimed medicinal properties and symbolic fortune, which translates as ‘Ganodermataceae’ in a broad sense, and in a narrow sense it represents the highly prized medicinal Ganoderma species distributed in East Asia [1]. Its medicinal properties include anti-aging, lowering blood pressure, improving immunity, and preventing and treating various cancers, chronic bronchitis, gastric ulcers, hepatitis, neurasthenia and thrombosis [2-4]. The medicinal effects of many mushrooms such as Ganoderma lucidum, Lentinula edodes, Agaricus blazei, Antrodia camphorate and Grifola frondosaI come from their metabolites including polysaccharides, triterpenes, lucidenic acids, adenosine, ergosterol, glucosamine and cerebrosides [5-8].
    [Show full text]
  • Cambridge University Press 978-1-107-17944-8 — Evolution And
    Cambridge University Press 978-1-107-17944-8 — Evolution and Development of Fishes Edited by Zerina Johanson , Charlie Underwood , Martha Richter Index More Information Index abaxial muscle,33 Alizarin red, 110 arandaspids, 5, 61–62 abdominal muscles, 212 Alizarin red S whole mount staining, 127 Arandaspis, 5, 61, 69, 147 ability to repair fractures, 129 Allenypterus, 253 arcocentra, 192 Acanthodes, 14, 79, 83, 89–90, 104, 105–107, allometric growth, 129 Arctic char, 130 123, 152, 152, 156, 213, 221, 226 alveolar bone, 134 arcualia, 4, 49, 115, 146, 191, 206 Acanthodians, 3, 7, 13–15, 18, 23, 29, 63–65, Alx, 36, 47 areolar calcification, 114 68–69, 75, 79, 82, 84, 87–89, 91, 99, 102, Amdeh Formation, 61 areolar cartilage, 192 104–106, 114, 123, 148–149, 152–153, ameloblasts, 134 areolar mineralisation, 113 156, 160, 189, 192, 195, 198–199, 207, Amia, 154, 185, 190, 193, 258 Areyongalepis,7,64–65 213, 217–218, 220 ammocoete, 30, 40, 51, 56–57, 176, 206, 208, Argentina, 60–61, 67 Acanthodiformes, 14, 68 218 armoured agnathans, 150 Acanthodii, 152 amphiaspids, 5, 27 Arthrodira, 12, 24, 26, 28, 74, 82–84, 86, 194, Acanthomorpha, 20 amphibians, 1, 20, 150, 172, 180–182, 245, 248, 209, 222 Acanthostega, 22, 155–156, 255–258, 260 255–256 arthrodires, 7, 11–13, 22, 28, 71–72, 74–75, Acanthothoraci, 24, 74, 83 amphioxus, 49, 54–55, 124, 145, 155, 157, 159, 80–84, 152, 192, 207, 209, 212–213, 215, Acanthothoracida, 11 206, 224, 243–244, 249–250 219–220 acanthothoracids, 7, 12, 74, 81–82, 211, 215, Amphioxus, 120 Ascl,36 219 Amphystylic, 148 Asiaceratodus,21
    [Show full text]
  • William Wayt Thomas1,2 & Melissa Tulig1
    Rodriguésia 66(4): 983-987. 2015 http://rodriguesia.jbrj.gov.br DOI: 10.1590/2175-7860201566404 Hard Copy to Digital: Flora Neotropica and the World Flora Online William Wayt Thomas1,2 & Melissa Tulig1 Abstract One of the greatest challenges in achieving the goals of the World Flora Online (WFO) will be to make available the huge amount of botanical information that is not yet available digitally. The New York Botanical Garden is using the Flora Neotropica monograph series as a model for digitization. We describe our efforts at digitizing Flora Neotropica monographs and why digitization of hardcopy descriptions must be a priority for the WFO project. Key words: Electronic monographs, open access, Flora Neotropica, monographs. Resumo Um dos maiores desafios para alcançar as metas do projeto World Flora Online (WFO), será a disponibilizar a enorme quantidade de informações botânicas que ainda não estão disponíveis digitalmente. O New York Botanical Garden está utilizando a série de monografias da Flora Neotropica como um modelo para a digitalização. Nós aqui descrevemos nossos esforços na digitalização das monografias da Flora Neotropica e porque a digitalização das descrições impressas deve ser uma prioridade para o projeto WFO. Palavras-chave: Monografias eletrônicas, open access, Flora Neotropica, monografias. Introduction is called the World Flora Online (WFO). This consortium of professionals will create open- The World Flora Online (WFO) was access one-stop searching of world flora with developed as part of the United Nation’s Global verified information, including new and previously Strategy for Plant Conservation with the goal of published data, and coordinated with links to other providing “an online flora of all known plants,” One plant database and catalog Web sites.
    [Show full text]
  • A Population Genetic Survey of the Tropical Tree Cariniana Estrellensis (Lecythidaceae) in a Highly Fragmented Habitat
    Heredity (2016) 116, 339–347 & 2016 Macmillan Publishers Limited All rights reserved 0018-067X/16 www.nature.com/hdy ORIGINAL ARTICLE Small but not isolated: a population genetic survey of the tropical tree Cariniana estrellensis (Lecythidaceae) in a highly fragmented habitat MC Guidugli1,2, AG Nazareno3, JM Feres1,2, EPB Contel1,2, MA Mestriner1 and AL Alzate-Marin1,2 Here, we explore the mating pattern and genetic structure of a tropical tree species, Cariniana estrellensis, in a small population in which progeny arrays (n = 399), all adults (n = 28) and all seedlings (n = 39) were genotyped at nine highly informative microsatellite loci. From progeny arrays we were able to identify the source tree for at least 78% of pollination events. The gene immigration rates, mainly attributable to pollen, were high, varying from 23.5 to 53%. Although gene dispersal over long distance was observed, the effective gene dispersal distances within the small population were relatively short, with mean pollination distances varying from 69.9 to 146.9 m, and seed dispersal distances occurring up to a mean of 119.6 m. Mating system analyses showed that C. estrellensis is an allogamous species (tm = 0.999), with both biparental inbreeding (tm − ts = − 0.016) and selfing rates (s = 0.001) that are not significantly different from zero. Even though the population is small, the presence of private alleles in both seedlings and progeny arrays and the elevated rates of gene immigration indicate that the C. estrellensis population is not genetically isolated. However, genetic diversity expressed by allelic richness was significantly lower in postfragmentation life stages.
    [Show full text]
  • Upper Devonian) of Latvia
    Estonian Journal of Earth Sciences, 2021, 70, 1, 3–17 https://doi.org/10.3176/earth.2021.01 Revision of asterolepidoid antiarch remains from the Ogre Formation (Upper Devonian) of Latvia Ervīns Lukševičs Department of Geology, University of Latvia, Raiņa Boulevard 19, Riga LV­1586, Latvia; [email protected] Received 3 June 2020, accepted 8 September 2020, available online 15 December 2020 Abstract. The Frasnian (Upper Devonian) antiarch Walterilepis speciosa was first described in 1933 (as Taeniolepis) on the basis of a single specimen. The newly collected material has allowed the head to be described in a more detail, especially the nuchal and paranuchal plates. Other newly described elements include bones of the pectoral appendages and trunk armour, demonstrating a rather high and short trunk armour. The shape and proportions of the head and trunk armour suggest the attribution of Walterilepis to the family Pterichthyodidae; it is most probably closely related to Lepadolepis from the Late Frasnian of Germany. Whilst W. speciosa is endemic to the Latvian part of the Baltic Devonian Basin, the connection to the Rheinisches Schiefergebirge is probably closer than previously presumed. Walterilepis fits into the biostratigraphical column at the same level as Bothriolepis maxima and B. evaldi, indicating the high diversity of antiarchs during Pamūšis time. Key words: Frasnian, biostratigraphy, morphology, placoderm, Baltic Devonian basin. INTRODUCTION noted that the generic name of Gross (1932, 1933a) is preoccupied by the sarcopterygian name Taeniolepis The well­known Baltic German palaeontologist Walter Trautschold, 1874, and he erected the replacement name Gross, who was born in the close vicinity of Riga, made Walterilepis (Moloshnikov 2001).
    [Show full text]
  • (Cariniana Pyriformis Miers) En La
    Plan de Manejo y Conservación del Abarco (Cariniana pyriformis Miers) en la jurisdicción CAR 2020 Plan de manejo y conservación d el Abarco (Cariniana pyriformis Miers) en la jurisdicción CAR PLAN DE MANEJO Y CONSERVACIÓN DEL ABARCO (Cariniana pyriformis Miers) EN LA JURISDICCIÓN CAR DIRECCIÓN DE RECURSOS NATURALES DRN LUIS FERNADO SANABRIA MARTINEZ Director General RICHARD GIOVANNY VILLAMIL MALAVER Director Técnico DRN JOHN EDUARD ROJAS ROJAS Coordinador Grupo de Biodiversidad DRN JOSÉ EVERT PRIETO CAPERA Grupo de Biodiversidad DRN CORPORACIÓN AUTÓNOMA REGIONAL DE CUNDINAMARCA CAR ACTUALIZACIÓN 2020 2 TERRITORIO AMBIENTALMENTE SOSTENIBLE Bogotá, D. C. Avenida La Esperanza # 62 – 49, Centro Comercial Gran Estación costado Esfera, pisos 6 y 7 Plan de manejo y conservación d el Abarco (Cariniana pyriformis Miers) en la jurisdicción CAR Los textos de este documento podrán ser utilizados total o parcialmente siempre y cuando sea citada la fuente. Corporación Autónoma Regional de Cundinamarca Bogotá-Colombia Diciembre 2020 Este documento deberá citarse como: Corporación Autónoma Regional de Cundinamarca CAR. 2020. Plan de manejo y conservación d Abarco (Cariniana pyriformis Miers) en la jurisdicción CAR. 53p. 2020. Plan de manejo y conservación d el Abarco (Cariniana pyriformis Miers) en la jurisdicción CAR. Todos los derechos reservados. 3 TERRITORIO AMBIENTALMENTE SOSTENIBLE Bogotá, D. C. Avenida La Esperanza # 62 – 49, Centro Comercial Gran Estación costado Esfera, pisos 6 y 7 Plan de manejo y conservación d el Abarco (Cariniana pyriformis Miers) en la jurisdicción CAR PLAN DE MANEJO Y CONSERVACIÓN DEL ABARCO (Cariniana pyriformis Miers) EN LA JURISDICCIÓN CAR Autor: Giovanny Andrés Morales Mora Plan de manejo y conservación del Abarco (Cariniana pyriformis Miers) en la jurisdicción CAR.
    [Show full text]
  • Ganoderma: Progresos En Investigación, Manejo Y Retos a Futuro* Ganoderma: Research Advances, Management and Future Challenges
    sesión 1. plagas y enfermedades Ganoderma: progresos en investigación, manejo y retos a futuro* Ganoderma: Research Advances, Management and Future Challenges autores: Shamala Sundram, Idris Abu Seman, Nur Diyana Roslan, Lee Pei Lee Angel, Intan Nur Ainni Mohamed Azni, Salwa Abdullah Sirajuddin. citación: Sundram, S., Seman, I. A., Roslan, N. D., Angel, L. P. L., Mohamed- Azni, I. N. A., & Sirajuddin, S. A. (2019). Ganoderma: progresos en investigación, manejo y retos a futuro. Palmas, 40 (Especial Tomo I), 57-69. palabras clave: palma de aceite, Ganoderma, Pudrición basal del estípite, manejo, retos. keywords: Oil palm, Ganoderma, basal stem rot, control, challenges. *Artículo original recibido en inglés y traducido por Carlos Arenas París. Shamala Sundram Junta de Aceite de Palma de Malasia Malaysian Palm Oil Board (MPOB) Resumen La palma de aceite, el cultivo que se extiende por la región del cinturón ecuatorial, no está exenta de pestes y enfermedades. Este cultivo es altamente susceptible a una serie de enfermedades limitadas a la región donde se planta. La Pudrición basal del estípite es causada por Ganoderma spp., la amenaza número uno en la región del Sudeste Asiático. Históricamente, era percibida como una enfermedad senescente, pero pronto se descubrió que su prevalencia no tiene correlación con la edad de la palma. Además de los factores predisponentes que incluyen parámetros bióticos y abióticos, se planteó la hipótesis de que los materiales de siembra anteriores, el tipo de suelo, el estado de los nutrientes y las técnicas de replantación contribuían a su propagación. De todos estos factores, la técnica de replantación juega un papel fundamental para controlarla, pero no es suficiente.
    [Show full text]
  • Review on Combretaceae Family
    Int. J. Pharm. Sci. Rev. Res., 58(2), September - October 2019; Article No. 04, Pages: 22-29 ISSN 0976 – 044X Review Article Review on Combretaceae Family Soniya Rahate*, Atul Hemke, Milind Umekar Department of Quality Assurance, Shrimati Kishoritai Bhoyar College of Pharmacy, Kamptee, Dist-Nagpur 441002, India. *Corresponding author’s E-mail: [email protected] Received: 06-08-2019; Revised: 22-09-2019; Accepted: 28-09-2019. ABSTRACT Combretaceae, the family of flowering plants consisting of 20 genus and 600 important species in respective genus. The two largest genera of the family are Combretum and Terminalia which contains the more no. of species. The members of the family are widely distributed in tropical and subtropical regions of the world. Most members of the trees, shrubs or lianas of the combretaceae family are widely used medicinally. The members of this family contain the different phytoconstituents of medicinal value e.g tannins, flavonoids, terpenoids and alkaloids. Most of the species of this family are used as antimicrobial, antioxidant and antifungal. The biological activities of the some members of this family yet not found. Apart from the medicinal value many members of the Combretaceae are of culinary and ornamental value. Keywords: Combretaceae, Tannins, Flavonoid, Terminalia, Combretum. INTRODUCTION species of Combretum have edible kernels whereas Buchenavia species have edible succulent endocarps. he family combretaceae is a major group of Chemical constituents like tannins are also found in fruits, flowering plants (Angiosperms) included in the bark, leaves, roots and timber in buchenavia and order of Myrtales. Robert Brown established it in T terminalia genera. Many of the species are reputed to 1810 and its inclusion to the order is not in dispute.
    [Show full text]
  • Phylogenetic Relationships in the Order Ericales S.L.: Analyses of Molecular Data from Five Genes from the Plastid and Mitochondrial Genomes1
    American Journal of Botany 89(4): 677±687. 2002. PHYLOGENETIC RELATIONSHIPS IN THE ORDER ERICALES S.L.: ANALYSES OF MOLECULAR DATA FROM FIVE GENES FROM THE PLASTID AND MITOCHONDRIAL GENOMES1 ARNE A. ANDERBERG,2,5 CATARINA RYDIN,3 AND MARI KAÈ LLERSJOÈ 4 2Department of Phanerogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden; 3Department of Systematic Botany, University of Stockholm, SE-106 91 Stockholm, Sweden; and 4Laboratory for Molecular Systematics, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden Phylogenetic interrelationships in the enlarged order Ericales were investigated by jackknife analysis of a combination of DNA sequences from the plastid genes rbcL, ndhF, atpB, and the mitochondrial genes atp1 and matR. Several well-supported groups were identi®ed, but neither a combination of all gene sequences nor any one alone fully resolved the relationships between all major clades in Ericales. All investigated families except Theaceae were found to be monophyletic. Four families, Marcgraviaceae, Balsaminaceae, Pellicieraceae, and Tetrameristaceae form a monophyletic group that is the sister of the remaining families. On the next higher level, Fouquieriaceae and Polemoniaceae form a clade that is sister to the majority of families that form a group with eight supported clades between which the interrelationships are unresolved: Theaceae-Ternstroemioideae with Ficalhoa, Sladenia, and Pentaphylacaceae; Theaceae-Theoideae; Ebenaceae and Lissocarpaceae; Symplocaceae; Maesaceae, Theophrastaceae, Primulaceae, and Myrsinaceae; Styr- acaceae and Diapensiaceae; Lecythidaceae and Sapotaceae; Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae, and Ericaceae. Key words: atpB; atp1; cladistics; DNA; Ericales; jackknife; matR; ndhF; phylogeny; rbcL. Understanding of phylogenetic relationships among angio- was available for them at the time, viz.
    [Show full text]
  • Tropical Forests
    1740 TROPICAL FORESTS / Bombacaceae in turn cause wild swings in the ecology and these Birks JS and Barnes RD (1990) Provenance Variation in swings themselves can sometimes prove to be beyond Pinus caribaea, P. oocarpa and P. patula ssp. tecunuma- control through management. In the exotic environ- nii. Tropical Forestry Papers no. 21. Oxford, UK: Oxford ments, it is impossible to predict or even conceive of Forestry Institute. the events that may occur and to know their Critchfield WB and Little EL (1966) Geographic Distribu- consequences. Introduction of diversity in the forest tion of the Pines of the World. Washington, DC: USDA Miscellaneous Publications. through mixed ages, mixed species, rotation of Duffield JW (1952) Relationships and species hybridization species, silvicultural treatment, and genetic variation in the genus Pinus. Zeitschrift fu¨r Forstgenetik und may make ecology and management more complex Forstpflanzenzuchtung 1: 93–100. but it will render the crop ecosystem much more Farjon A and Styles BT (1997) Pinus (Pinaceae). Flora stable, robust, and self-perpetuating and provide Neotropica Monograph no. 75. New York: New York buffers against disasters. The forester must treat crop Botanical Garden. protection as part of silvicultural planning. Ivory MH (1980) Ectomycorrhizal fungi of lowland tropical pines in natural forests and exotic plantations. See also: Pathology: Diseases affecting Exotic Planta- In: Mikola P (ed.) Tropical Mycorrhiza Research, tion Species; Diseases of Forest Trees. Temperate and pp. 110–117. Oxford, UK: Oxford University Press. Mediterranean Forests: Northern Coniferous Forests; Ivory MH (1987) Diseases and Disorders of Pines in the Southern Coniferous Forests. Temperate Ecosystems: Tropics. Overseas Research Publication no.
    [Show full text]
  • VII. MORICHALES Y CANANGUCHALES DE LA ORINOQUIA Y AMAZONIA: COLOMBIA-VENEZUELA Parte I
    SERIE RECURSOS HIDROBIOLÓGICOS Y PESQUEROS CONTINENTALES DE COLOMBIA VII. MORICHALES Y CANANGUCHALES DE LA ORINOQUIA Y AMAZONIA: COLOMBIA-VENEZUELA Parte I Carlos A. Lasso, Anabel Rial y Valois González-B. (Editores) © Instituto de Investigación de Recursos Impresión Biológicos Alexander von Humboldt. 2013 JAVEGRAF – Fundación Cultural Javeriana de Artes Gráficas. Los textos pueden ser citados total o parcialmente citando la fuente. Impreso en Bogotá, D. C., Colombia, octubre de 2013 - 1.000 ejemplares. SERIE EDITORIAL RECURSOS HIDROBIOLÓGICOS Y PESQUEROS Citación sugerida CONTINENTALES DE COLOMBIA Obra completa: Lasso, C. A., A. Rial y V. Instituto de Investigación de Recursos Biológicos González-B. (Editores). 2013. VII. Morichales Alexander von Humboldt (IAvH). y canangunchales de la Orinoquia y Amazonia: Colombia - Venezuela. Parte I. Serie Editorial Editor: Carlos A. Lasso. Recursos Hidrobiológicos y Pesqueros Continen- tales de Colombia. Instituto de Investigación de Revisión científica: Ángel Fernández y Recursos Biológicos Alexander von Humboldt Fernando Trujillo. (IAvH). Bogotá, D. C., Colombia. 344 pp. Revisión de textos: Carlos A. Lasso y Paula Capítulos o fichas de especies: Isaza, C., Sánchez-Duarte. G. Galeano y R. Bernal. 2013. Manejo actual de Mauritia flexuosa para la producción de Asistencia editorial: Paula Sánchez-Duarte. frutos en el sur de la Amazonia colombiana. Capítulo 13. Pp. 247-276. En: Lasso, C. A., A. Fotos portada: Fernando Trujillo, Iván Mikolji, Rial y V. González-B. (Editores). 2013. VII. Santiago Duque y Carlos A. Lasso. Morichales y canangunchales de la Orinoquia y Amazonia: Colombia - Venezuela. Parte I. Serie Foto contraportada: Carolina Isaza. Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Foto portada interior: Fernando Trujillo.
    [Show full text]