Herpetologists' League

Total Page:16

File Type:pdf, Size:1020Kb

Herpetologists' League Herpetologists' League The Diets of Hispaniolan Colubrid Snakes II. Prey Species, Prey Size, and Phylogeny Author(s): Robert W. Henderson, Teresa A. Noeske-Hallin, Brian I. Crother, Albert Schwartz Source: Herpetologica, Vol. 44, No. 1 (Mar., 1988), pp. 55-70 Published by: Herpetologists' League Stable URL: http://www.jstor.org/stable/3892198 Accessed: 16/09/2008 16:57 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=herpetologists. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. Herpetologists' League is collaborating with JSTOR to digitize, preserve and extend access to Herpetologica. http://www.jstor.org March 1988] HERPETOLOGICA 55 STICKEL, L. F., W. H. STICKEL, AND F. C. SCHMID. WRIGHT, A. H., AND A. A. WRIGHT. 1957. Hand- 1980. Ecology of a Maryland population of black book of Snakes of the United States and Canada. rat snakes (Elapheo. obsoleta). Am. Midl. Nat. 103: Cornell University Press, Ithaca, New York. 1-14. ZAPPALORTI, R. T., AND J. BURGER. 1986. The im- USDA. 1980. A Soil Survey of Ocean County, New portance of man-made habitats to pine snakes. En- Jersey. U.S. Department of Agriculture, Somerville, viron. Cons. 12:358-361. New Jersey. Accepted: 13 April 1987 WEATHERHEAD, P. J., AND M. B. CHARLAND. 1985. Habitat selection in an Ontario population of the Associate Editor: Raymond Semlitsch snake, Elaphe obsoleta. J. Herpetol. 19:12-19. Herpetologica, 44(1), 1988, 55-70 ? 1988 by The Herpetologists'League, Inc. THE DIETS OF HISPANIOLAN COLUBRID SNAKES II. PREY SPECIES, PREY SIZE, AND PHYLOGENY ROBERT W. HENDERSON', TERESA A. NOESKE-HALLIN', BRIAN I. CROTHER2, AND ALBERT SCHWARTZ3 'Section of VertebrateZoology, Milwaukee Public Museum, Milwaukee, WI 53233, USA 2Departmentof Biology, University of Miami, P.O. Box 249118, Coral Gables, FL 33124, USA 3BiologyDepartment, Miami-Dade Community College-North Campus, Miami, FL 33167, USA ABSTRACT: Eight species of xenodontine colubrid snakes (n = 1874 specimens) from Hispaniola were examined for prey remains and yielded 557 prey items of which 63.1% were lizards of the iguanid genus Anolis. With the exception of Darlingtonia haetiana, an Eleutherodactylus frog specialist, all of the species in our sample preyed heavily upon anoles. In general, Hispaniolan colubrids were opportunistic predators, but the widespread exploitation of a single prey genus (Anolis) may be unique to the West Indies. Frequently exploited prey species were geographically widespread and generally found at high densities (Osteopilus dominicensis, Anolis coelestinus, A. cybotes, Ameiva chrysolaema). Active foraging snakes (Alsophis, Antillophis) were more eury- phagic, while sit-and-wait strategists (Hypsirhynchus, Uromacer oxyrhynchus) were trophically specialized. All of the species in our sample tended to eat relatively small prey items, even though larger individuals of a given prey species were available. The historical (phylogenetic) component of trophic ecology of these snakes is discussed. Key words: Anolis; Eleutherodactylus; Phylogeny; Hispaniola; Snake diets DESPITE its richness and geographical addition, anoles are uniformly exploited as uniqueness, the Antillean snake fauna has, food by colubrid snakeson all majorislands until recently, been ignored ecologically. and island groups in the Antilles (50-60% Investigation of the diets of West Indian of all prey items; Henderson and Crother, boid, tropidophiid, colubrid, and viperid 1988). Hispaniola has the richest snake snakes has revealed a spectacular (al- fauna and one of the largest anole faunas though not altogether surprising) trophic (second only to Cuba) of any West Indian relationship between the snakes and the island, and it has been singled out for de- iguanid lizard genus Anolis. Nearly 57% tailed studies of its boid (Henderson et al., of all prey items (n = 707) and 75.8% of 1987b) and colubrid (e.g., Henderson, all lizards recovered from the digestive 1984a; Henderson et al., 1987a,c) snakes. tracts of West Indian colubrid snakes were Besides a rich anole fauna, Hispaniola har- anoles (Henderson and Crother, 1988). In bors the richest frog and lizard faunas in 56 HERPETOLOGICA [Vol. 44, No. I the West Indies: i.e., a vertebrate fauna items for col- C)c very rich in potential prey 0 ubrid snakes. 0 + Hen- 0~~~~~~~~~~~~0 In this paper, a continuation of derson (1984a), we describe the prey exploited by the xenodontine col- "0 0 -~~~~> species C) o i~~~~~~~~~t ) c ubrid snakes of Hispaniola, the West In- dian island with the richest colubrid fauna. Specifically, we address not only questions CD~~~~~~C "0 CL. ~- originally posed by Henderson (1984a) but CO ~ "C~ C)"~ 0 -.~~~~~~~0.~~~~~0c also ask: (1) What prey species make the greatest contributions (frequency and vol- colubrids? C) 0 ~~~ -C C)CO ume) to the diets of Hispaniolan (2) What characteristics(if any) are shared * 0~~~~W0 by frequently eaten prey species? (3) Do Hispaniolan colubrids, despite having po- tential access to rich frog and lizard (other than Anolis) prey faunas, still predomi- 4- * "~~~~~~~~~~~~~~~ C)~~~~~~- nantly exploit anoles as their primary food source? (4) Is there an historical (phylo- C) ~~~~~~~~~~~~~~~f genetic) component to trophic ecology of Co ~ ~ ~ L) ~~~C) ~6i(= C these snakes? 0 MATERIALS AND METHODS '44 +I" ~~~~~~~~ A sample of 1874 colubrid snakes (rep- C). :) C resenting six genera and eight species) was examined for prey items. All were from -~~ J~~ 0 t~~o AC 00 Hispaniola except for Alsophis cantheri- a0C N gerus, which is native to Cuba and the "0 ~~~~~~005u7Z +I -, Cayman Islands. Hispaniola harbors two CO bJD c C)~v O+ C"~ endemic species of Alsophis, but because of their rarity in museum collections, we chose the closely related A. cantherigerus 0 C's0 1 to represent the genus. It is common in C4 1 0- collections and is intermediate in -Z CZ museum E~~~~~0., size between the two HispaniolanAlsophis (A. anomalus and A. melanichnus). Ta- C) CO C) 0 >O~ ~ C) 0 bles 1 and 2 provide brief summaries of OCO co 0 the natural history of Hispaniolan colu- brids and A. cantherigerus. of dissection, determination 0 0 ' Techniques of prey volumes, and recording morpho- C) Q logical measurements were explained in "0 " detail in Henderson (1984a). Many prey C) >>CZ 0 ( items were not identifiable to species, and we generally did not determine volumes for such items. There is probablysome bias in our prey identifications.Some common, frequently exploited species (e.g., Anolis cybotes) were easily identified, even from largely digested remains. Other less com- mon and infrequently consumed species -t TABLE 2.-Comparison of different aspects of the biology of three species of Uromacer. All are arboreal and diurnal. Variable U. catesbyi U. frenatus U. oxyrhynchus Source Head and body blunt snout; heavy body; wide attenuated snout; slender attenuated snout; slender Henderson et al., 1981 morphology head body; narrow head body; narrow head Henderson et al., 1987c Skull morphology least specialized highly specialized highly specialized Maglio, 1970 Internal topogra- anterior organ position intermediate organ position, posterior organ position Martinez et al., 1985 phy (= primitive) but closer to oxyrhynchus Foraging mode active and sit-and-wait sit-and-wait sit-and-wait Henderson 1982 Henderson et al., 1987c Binocular field of presumably the narrowest of presumably wide very wide Walls, 1942 | vision genus Striking distance strikes from closer distance; strikes from greatest distance intermediate between catesbyi Ulrich and Ford, 1985 0 and accuracy misses more frequently; and rarely misses and frenatus 0 chases prey C Diet tree frogs; trunk and ground terrestrial Ameiva; grass, primarily trunk and ground Henderson et al., 1987c Anolis trunk, and ground Anolis Anolis, some grass Anolis Mean prey size 4.0 ? 1.0 2.8 ? 0.3 2.2 ? 0.3 Henderson et al., 1987c (cm3) Movement ecology moves long distances on probably intermediate be- rarely travels on ground; uses Henderson et al., 1981, 1982 ground; uses heavy tween catesbyi and oxyrhyn- slender branches branches chus Distribution islandwide "south" island "north" island with invasion Horn, 1979; Schwartz, 1980 of "south" C,' -. 58 HERPETOLOGICA [Vol. 44, No. 1 were difficult to identify from body frag- History (USNM). The snakes were col- ments. lected at many localities throughout His- Index of relative importance (IRI) was paniola over a span of about 80 yr. Some used to evaluate the relative importance comparisons were made with diets of His- of food items in snake diets (Pinkas et al., paniolan boids (Epicrates) of which 214 1971). IRI was calculated by summing the were examined (Henderson et al., 1987b). numerical and volumetric percentage val- Species of snakes were categorized by ues of a food item (= prey species) and foraging mode on the basis of quantitative multiplying by percentage of occurrence (Henderson et al., 1982) and qualitative (N + V)F = IRI observations in the field by the authors (Henderson and Schwartz) and by col- where N = numerical percentage, V = leagues.
Recommended publications
  • Uromacer Catesbyi (Schlegel) 1. Uromacer Catesbyi Catesbyi Schlegel 2. Uromacer Catesbyi Cereolineatus Schwartz 3. Uromacer Cate
    T 356.1 REPTILIA: SQUAMATA: SERPENTES: COLUBRIDAE UROMACER CATESBYI Catalogue of American Amphibians and Reptiles. [but see Schwartz,' 1970]); ontogenetic color change (Henderson and Binder, 1980); head and body proportions (Henderson and SCHWARTZ,ALBERTANDROBERTW. HENDERSON.1984. Uroma• Binder, 1980; Henderson et a\., 1981; Henderson, 1982b); behav• cer catesbyi. ior and ecology (Werner, 1909; Mertens, 1939; Curtiss, 1947; Uromacer catesbyi (Schlegel) Horn, 1969; Schwartz, 1970, 1979, 1980; Henderson and Binder, 1980; Henderson et a\., 1981, 1982; Henderson, 1982a, 1982b; Dendrophis catesbyi Schlegel, 1837:226. Type-locality, "lie de Henderson and Horn, 1983). St.- Domingue." Syntypes, Mus. Nat. Hist. Nat., Paris, 8670• 71 (sexes unknown) taken by Alexandre Ricord (date of col• • ETYMOLOGY.The species is named for Mark Catesby, noted lection unknown) (not examined by authors). North American naturalist. The subspecies names are all derived Uromacer catesbyi: Dumeril, Bibron, and Dumeril, 1854:72l. from Latin, as follow: cereolineatus, "waxen" and "thread," in allusion to the white longitudinal lateral line; hariolatus meaning • CONTENT.Eight subspecies are recognized, catesbyi, cereo• "predicted" in allusion to the fact that the north island (sensu lineatus,frondicolor, hariolatus, inchausteguii, insulaevaccarum, Williams, 1961) population was expected to be distinct; inchaus• pampineus, and scandax. teguii in honor of Sixto J. Inchaustegui, of the Museo Nacional de • DEFINITION.An elongate Uromacer, but head less elongate Historia Natural de Santo Domingo, Republica Dominicana; insu• than in congeners, and the head scales accordingly not highly mod• laevaccarum, a literal translation of lIe-a-Vache (island of cows), ified. Ventrals are 157-177 in males, and 155-179 in females; pampineus, "pertaining to vine tendrils or leaves;" and scandax, subcaudals are 172-208 in males, and 159-201 in females.
    [Show full text]
  • Zootaxa, Molecular Phylogeny, Classification, and Biogeography Of
    Zootaxa 2067: 1–28 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) Molecular phylogeny, classification, and biogeography of West Indian racer snakes of the Tribe Alsophiini (Squamata, Dipsadidae, Xenodontinae) S. BLAIR HEDGES1, ARNAUD COULOUX2, & NICOLAS VIDAL3,4 1Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, PA 16802-5301 USA. E-mail: [email protected] 2Genoscope. Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, 91057 Evry Cedex, France www.genoscope.fr 3UMR 7138, Département Systématique et Evolution, Muséum National d’Histoire Naturelle, CP 26, 57 rue Cuvier, 75005 Paris, France 4Corresponding author. E-mail : [email protected] Abstract Most West Indian snakes of the family Dipsadidae belong to the Subfamily Xenodontinae and Tribe Alsophiini. As recognized here, alsophiine snakes are exclusively West Indian and comprise 43 species distributed throughout the region. These snakes are slender and typically fast-moving (active foraging), diurnal species often called racers. For the last four decades, their classification into six genera was based on a study utilizing hemipenial and external morphology and which concluded that their biogeographic history involved multiple colonizations from the mainland. Although subsequent studies have mostly disagreed with that phylogeny and taxonomy, no major changes in the classification have been proposed until now. Here we present a DNA sequence analysis of five mitochondrial genes and one nuclear gene in 35 species and subspecies of alsophiines. Our results are more consistent with geography than previous classifications based on morphology, and support a reclassification of the species of alsophiines into seven named and three new genera: Alsophis Fitzinger (Lesser Antilles), Arrhyton Günther (Cuba), Borikenophis Hedges & Vidal gen.
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • Ecological Functions of Neotropical Amphibians and Reptiles: a Review
    Univ. Sci. 2015, Vol. 20 (2): 229-245 doi: 10.11144/Javeriana.SC20-2.efna Freely available on line REVIEW ARTICLE Ecological functions of neotropical amphibians and reptiles: a review Cortés-Gomez AM1, Ruiz-Agudelo CA2 , Valencia-Aguilar A3, Ladle RJ4 Abstract Amphibians and reptiles (herps) are the most abundant and diverse vertebrate taxa in tropical ecosystems. Nevertheless, little is known about their role in maintaining and regulating ecosystem functions and, by extension, their potential value for supporting ecosystem services. Here, we review research on the ecological functions of Neotropical herps, in different sources (the bibliographic databases, book chapters, etc.). A total of 167 Neotropical herpetology studies published over the last four decades (1970 to 2014) were reviewed, providing information on more than 100 species that contribute to at least five categories of ecological functions: i) nutrient cycling; ii) bioturbation; iii) pollination; iv) seed dispersal, and; v) energy flow through ecosystems. We emphasize the need to expand the knowledge about ecological functions in Neotropical ecosystems and the mechanisms behind these, through the study of functional traits and analysis of ecological processes. Many of these functions provide key ecosystem services, such as biological pest control, seed dispersal and water quality. By knowing and understanding the functions that perform the herps in ecosystems, management plans for cultural landscapes, restoration or recovery projects of landscapes that involve aquatic and terrestrial systems, development of comprehensive plans and detailed conservation of species and ecosystems may be structured in a more appropriate way. Besides information gaps identified in this review, this contribution explores these issues in terms of better understanding of key questions in the study of ecosystem services and biodiversity and, also, of how these services are generated.
    [Show full text]
  • Recommendations for Tourism and Biodiversity Conservation at Laguna Bavaro Wildlife Refuge, Dominican Republic
    RECOMMENDATIONS FOR TOURISM AND BIODIVERSITY CONSERVATION AT LAGUNA BAVARO WILDLIFE REFUGE, DOMINICAN REPUBLIC June 2011 This publication was produced for review by the United States Agency for International Development. It was prepared in cooperation with US Forest Service, International Institute of Tropical Forestry, USAID and the Ornithological Society of Hispaniola (SOH) technical staff, and partners. Bibliographic Citation Bauer, Jerry, Jorge Brocca and Jerry Wylie. 2011. Recommendations for Tourism and Biodiversity Conservation at Laguna Bavaro Wildlife Refuge Dominican Republic. Report prepared by the US Forest Service International Institute of Tropical Forestry for the USAID/Dominican Republic in support of the Dominican Sustainable Tourism Alliance. Credits Photographs: Jerry Wylie, Jerry Bauer, Waldemar Alcobas and Jorge Brocca Graphic Design: Liliana Peralta Lopez TECHNICAL REPORT RECOMMENDATIONS FOR TOURISM AND BIODIVERSITY CONSERVATION AT LAGUNA BAVARO WILDLIFE REFUGE, DOMINICAN REPUBLIC Jerry Bauer Biological Scientist US Forest Service, International Institute of Tropical Forestry Jorge Brocca Executive Director Ornithological Society of Hispaniola and Jerry Wylie Ecotourism Specialist US Forest Service, International Institute of Tropical Forestry In cooperation with Dominican Sustainable Tourism Alliance La Altagracia Tourism Cluster Fundación Ecologica y Social Natura Park, Inc. June 2011 Sociedad Ornitológica de la Hispaniola SOH This work was completed with support from the people of the United States through USAID/Dominican Republic by the USDA Forest Service International Institute of Tropical Forestry under PAPA No. AEG-T-00-07-00003-00, TASK #7 (Sustainable Tourism Support) and the Ornithological Society of Hispaniola (SOH) in partnership with La Altagracia Tourism Cluster and assistance from local and international partners and collaborators. DISCLAIMER The authors’ views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government.
    [Show full text]
  • Reptile Diversity in an Amazing Tropical Environment: the West Indies - L
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. VIII - Reptile Diversity In An Amazing Tropical Environment: The West Indies - L. Rodriguez Schettino REPTILE DIVERSITY IN AN AMAZING TROPICAL ENVIRONMENT: THE WEST INDIES L. Rodriguez Schettino Department of Zoology, Institute of Ecology and Systematics, Cuba To the memory of Ernest E. Williams and Austin Stanley Rand Keywords: Reptiles, West Indies, geographic distribution, morphological and ecological diversity, ecomorphology, threatens, conservation, Cuba Contents 1. Introduction 2. Reptile diversity 2.1. Morphology 2.2.Habitat 3. West Indian reptiles 3.1. Greater Antilles 3.2. Lesser Antilles 3.3. Bahamas 3.4. Cuba (as a study case) 3.4.1. The Species 3.4.2. Geographic and Ecological Distribution 3.4.3. Ecomorphology 3.4.4. Threats and Conservation 4. Conclusions Acknowledgments Glossary Bibliography Biographical Sketch Summary The main features that differentiate “reptiles” from amphibians are their dry scaled tegument andUNESCO their shelled amniotic eggs. In– modern EOLSS studies, birds are classified under the higher category named “Reptilia”, but the term “reptiles” used here does not include birds. One can externally identify at least, three groups of reptiles: turtles, crocodiles, and lizards and snakes. However, all of these three groups are made up by many species that are differentSAMPLE in some morphological characters CHAPTERS like number of scales, color, size, presence or absence of limbs. Also, the habitat use is quite variable; there are reptiles living in almost all the habitats of the Earth, but the majority of the species are only found in the tropical regions of the world. The West Indies is a region of special interest because of its tropical climate, the high number of species living on the islands, the high level of endemism, the high population densities of many species, and the recognized adaptive radiation that has occurred there in some genera, such as Anolis, Sphaerodactylus, and Tropidophis.
    [Show full text]
  • Nerodia Taxispilota)
    ECOLOGY AND LIFE HISTORY OF THE BROWN WATER SNAKE (NERODIA TAXISPILOTA) by MARK S. MILLS (Under the direction of Dr. J. Whitfield Gibbons) ABSTRACT Population parameters, habitat, diet, reproductive traits, and other natural history characteristics of the brown water snake, Nerodia taxispilota, from the Savannah River Site, South Carolina, USA, were determined or estimated using mark-recapture data collected over an 8-yr period (1991-1998). Population size estimates for a 10-km section of the Savannah River ranged from 2782 - 3956 (approximately 0.14 - 0.20 snakes/m of shoreline). Growth was similar in juveniles of both sexes, but adult females grew significantly faster than adult males. Life history traits for this population include: 1) relatively high adult survivorship, 2) estimated ages at maturity of approximately 5-6 years for females and 3 years for males, 3) relatively long-lived (6+yr) individuals, 4) high fecundity (mean litter size =18.2), and 5) annual reproduction by females larger than 115 cm SVL. Litter size was positively correlated with female length and mass. No apparent trade-off exists between litter size and offspring size. Brown water snakes were not randomly distributed and were significantly associated with the steep-banked outer bends of the river and availability of potential perch sites. River sections with the highest number of captures were clustered within 200 m of backwater areas. Most (70%) of 164 recaptured N. taxispilota were <250 m from their previous capture site; however, three moved >1 km. Only large (>80 cm snout-vent length) individuals (n = 8) crossed the river (approximately 100 m).
    [Show full text]
  • Revisión Periódica De Reservas De La Biosfera
    2 REVISIÓN PERIÓDICA DE RESERVAS DE LA BIOSFERA [Enero de 2013] INTRODUCCIÓN La Conferencia General de la UNESCO, en su 28ª sesión, adoptó la Resolución 28 C/2.4 en el Marco Estatutario de la Red Mundial de Reservas de la Biosfera. Este texto define en particular, los criterios para que un área esté cualificada para ser designada como reserva de la biosfera (Artículo 4). Además, el Artículo 9 contempla una revisión periódica cada 10 años, que consiste en un informe que debe preparar la autoridad competente, en base a los criterios del Artículo 4 y enviarlo al secretariado del Estado correspondiente. El texto del Marco Estatutario se recoge en el tercer anexo. El formulario que se facilita a continuación sirve para ayudar a los Estados a preparar su informe nacional, de acuerdo con el Artículo 9, y para actualizar en la Secretaria los datos disponibles de la reserva de la biosfera correspondiente. Este informe deber permitir al Consejo Internacional de Coordinación (CIC) del Programa MAB, revisar cómo cada reserva de la biosfera está cumpliendo con los criterios del Artículo 4 del Marco Estatutario y en particular con las tres funciones. Cabe señalar que en la última parte del formulario (Criterios y Avances Logrados), se pide que se indique cómo las reservas de la biosfera cumplen con cada uno de estos criterios. La UNESCO utilizará de diversas maneras la información presentada en esta revisión periódica: (a) para la evaluación de la reserva de la biosfera por parte del Comité Consultivo Internacional de las Reservas de Biosfera y por la Mesa del Consejo Internacional de Coordinación del MAB; (b) para utilizarla en un sistema de información accesible a nivel mundial, en particular la red UNESCO-MAB y publicaciones, facilitando así la comunicación y la interacción entre personas interesadas en las reservas de la biosfera en todo el mundo.
    [Show full text]
  • An Overview of the Biology of the Brown Treesnake* (Boiga Irregularis), a Costly Introduced Pest on Pacific Islands
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service April 1999 An Overview of the Biology of the Brown Treesnake* (Boiga irregularis), a Costly Introduced Pest on Pacific Islands Gordon H. Rodda Thomas H. Fritts Michael J. McCoid Earl W. Campbell III Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Environmental Sciences Commons Rodda, Gordon H.; Fritts, Thomas H.; McCoid, Michael J.; and Campbell, Earl W. III, "An Overview of the Biology of the Brown Treesnake* (Boiga irregularis), a Costly Introduced Pest on Pacific Islands" (1999). USDA National Wildlife Research Center - Staff Publications. 659. https://digitalcommons.unl.edu/icwdm_usdanwrc/659 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 2 An Overview of the Biology of the Brown Treesna ke* ( Boigo irreguluris), a Costly Introduced Pest on Pacific Islands THE GENUS BOlGA The 2&30 species of the genus Boiga (Colubridae, Boiginae) range from tropical Africa through southern Asia to Melanesia and Australia (Leviton, 1968). Collec- tively, they are known as catsnakes, mangrove snakes, or treesnakes (Obst et al., 1988; Greene, 1989). The common name "catsnakes" is sometimes used for snakes in the genus Telescopus as well (Obst et 1,1988).
    [Show full text]
  • Baseline Ecological Inventory for Three Bays National Park, Haiti OCTOBER 2016
    Baseline Ecological Inventory for Three Bays National Park, Haiti OCTOBER 2016 Report for the Inter-American Development Bank (IDB) 1 To cite this report: Kramer, P, M Atis, S Schill, SM Williams, E Freid, G Moore, JC Martinez-Sanchez, F Benjamin, LS Cyprien, JR Alexis, R Grizzle, K Ward, K Marks, D Grenda (2016) Baseline Ecological Inventory for Three Bays National Park, Haiti. The Nature Conservancy: Report to the Inter-American Development Bank. Pp.1-180 Editors: Rumya Sundaram and Stacey Williams Cooperating Partners: Campus Roi Henri Christophe de Limonade Contributing Authors: Philip Kramer – Senior Scientist (Maxene Atis, Steve Schill) The Nature Conservancy Stacey Williams – Marine Invertebrates and Fish Institute for Socio-Ecological Research, Inc. Ken Marks – Marine Fish Atlantic and Gulf Rapid Reef Assessment (AGRRA) Dave Grenda – Marine Fish Tampa Bay Aquarium Ethan Freid – Terrestrial Vegetation Leon Levy Native Plant Preserve-Bahamas National Trust Gregg Moore – Mangroves and Wetlands University of New Hampshire Raymond Grizzle – Freshwater Fish and Invertebrates (Krystin Ward) University of New Hampshire Juan Carlos Martinez-Sanchez – Terrestrial Mammals, Birds, Reptiles and Amphibians (Françoise Benjamin, Landy Sabrina Cyprien, Jean Roudy Alexis) Vermont Center for Ecostudies 2 Acknowledgements This project was conducted in northeast Haiti, at Three Bays National Park, specifically in the coastal zones of three communes, Fort Liberté, Caracol, and Limonade, including Lagon aux Boeufs. Some government departments, agencies, local organizations and communities, and individuals contributed to the project through financial, intellectual, and logistical support. On behalf of TNC, we would like to express our sincere thanks to all of them. First, we would like to extend our gratitude to the Government of Haiti through the National Protected Areas Agency (ANAP) of the Ministry of Environment, and particularly Minister Dominique Pierre, Ministre Dieuseul Simon Desras, Mr.
    [Show full text]
  • A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
    BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St.
    [Show full text]