Consolidated Non-Financial Statement 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Esa Bulletin 135 - August 2008 45 Vega
Vega The former ELA-1 Ariane-1 launch pad at Kourou has Stefano Bianchi, Renato Lafranconi & been transformed for Vega. The Mobile Gantry is in place and the site almost complete. In the background, an Michel Bonnet Ariane-5 is seen being moved to its launch site ELA-3 Vega Programme, Directorate of Launchers, ESRIN, Frascati, Italy key element of the European launcher strategy for access to space, the Vega A small launcher is being preparing for its maiden flight in November 2009. The development of Vega passed major milestones in 2007 and 2008, providing essential results in terms of test data and design consolidation. These will lead to the Qualification Flight from Europe’s Spaceport in French Guiana at the end of 2009. This will be an important step in the implementation of the European strategy in the launcher sector and the guarantee of access to space for Europe, as endorsed by the ESA Ministerial Council in 2003. The ex p l o i t ation of this new ESA developed launcher will widen the range of launch services offered by launchers developed and produced by European industry and will improve launch flexibility by providing a more adapted response for a wide range of European institutional space missions, as well as an optimised family of launchers to serve commercial market needs. esa bulletin 135 - august 2008 45 Vega The former ELA-1 Ariane-1 launch pad at Kourou has Stefano Bianchi, Renato Lafranconi & been transformed for Vega. The Mobile Gantry is in place and the site almost complete. In the background, an Michel Bonnet Ariane-5 is seen being moved to its launch site ELA-3 Vega Programme, Directorate of Launchers, ESRIN, Frascati, Italy key element of the European launcher strategy for access to space, the Vega A small launcher is being preparing for its maiden flight in November 2009. -
Space UK Earth’S Surface Water
Issue #49 IN THIS ISSUE: Staring at the Sun MYSTERIOUS Helpline from Space Weightless in the Clouds MERCURY Contents News Cornwall Calling Space Weather Watcher Mapping the Route to Mars Honour for UK Astronaut New Satellite Tracks Pollution UK-France Space Deal In Pictures The Sun Features Mysterious Mercury Zero-G Science Helpline from Space Education Resources UK Space History Skylark Made in the UK Earth-i Info News Cornwall Calling The first Moon landing Cornwall Calling Credit: NASA Cornwall could soon be Antennas at Goonhilly beamed communicating with the Moon and images of the 1969 Moon landing Mars, following the announcement and, shortly after it was built in that the world’s first commercial deep 1985, the 32-metre Goonhilly-6 space communication base will be at antenna carried the historic Live Aid the Goonhilly Earth Station. concert broadcast to TV viewers An £8.4 million investment will see a around the world. two-year upgrade of the Goonhilly-6 A Space Industry Bill, announced antenna so it can communicate as part of the Queen’s speech in One of the large dishes at Goonhilly with future robotic and crewed 2017, will introduce new powers missions to the Moon and Mars. The to allow rocket and spaceplane Credit: Goonhilly Cornwall and Isles of Scilly Local launches from UK soil. Goonhilly is Enterprise Partnership’s Growth Deal also offering spacecraft tracking and the European Space Agency and communications facilities as (ESA) – which the UK Space Agency part of the Spaceport Cornwall contributes to – funded the contract, funding bid. which will allow Goonhilly to support “We see huge opportunities for ESA’s worldwide network of spacecraft the developing space sector in monitoring ground stations. -
Les Fusées-Sondes De Sud-Aviation
Les fusées-sondes de Sud-Aviation Jean-Jacques Serra Commission Histoire de la 3AF Origines : Centre national d'études des télécommunications (CNET) • Loi du 4 mai 1944, validée le 29 janvier 1945 • Demandes d'études - ministères (Guerre, Air, Marine), - Radiodiffusion française, - Comité d’action scientifique de la Défense nationale,... • Etudes sur la propagation radioélectrique plusieurs départements (Tubes et hyperfréquence, Transmission, Laboratoire national de radioélectricité) • Recherches sur la troposphère et sur l’ionosphère Programme spatial du CNET lancé en 1957 selon deux directions : • participation au lancement de fusées-sondes pour l’exploration de la haute atmosphère • traitement scientifique des données fournies par les signaux émis par les satellites artificiels Samedis de l'Histoire de la 3AF Les fusées-sondes de Sud Aviation 15/10/2011 - 2 Contexte : Fusées-sondes existantes Fusées du CASDN pour l'AGI : • Véronique AGI : dérivée des Véronique N et NA (1952-1954) 60 kg à 210 km d'altitude • Monica IV et V : dérivées des Monica I à III (1955-1956) 15 kg à 80 km ou 140 km d'altitude Fusées de l'ONERA utilisées par le CEA : • Daniel : dérivé d'Ardaltex (1957-1959) 15 kg à 125 km d'altitude • Antarès : dérivé de l'engin d'essais de rentrée (1959-1961) 35 kg à 280 km d'altitude Samedis de l'Histoire de la 3AF Les fusées-sondes de Sud Aviation 15/10/2011 - 3 Définition des besoins du CNET Envoi d'une charge utile de 32 kg à 80 km, 120 km, 400 km et 1000 km d'altitude • fusées commandées à Sud Aviation • unité mobile construite -
VI. Wednesday 19 April Meeting with General
Ref. Ares(2019)5332022 - 21/08/2019 V I. Wednesday 19 April Meeting with General Electric 10:15-12:00 GE HQ in Boston 41 Farnsworth St, Boston TABLE OF CONTENTS 0. AGENDA OF MEETING Page No 57 1. STEERING BRIEF Page No 58 2. SPEAKING POINTS Page No 60 3. BACKGROUND Page No 61 2/20 0. AGENDA OF MEETING 10:00 Meeting the of GE: ( ) ( ). 11:00 Meeting with of GE 3/20 1.2 Objectives This is a courtesy meeting aiming at maintaining good relations. • Confirming the importance of research and business relations between GE and their European-based companies (e.g. Italian AVIO, Czech Walter), as well their 43 and 57 year-old joint ventures/partnerships with French SAFRAN and German MTU respectively, in a mutual interest of Europe and the USA. 1.3 Line to take • To state that global aviation markets and global industrial supply chain will profit from targeted R&D collaboration in energy, transport and health sectors; • To explain the 3Os initiative and link it with the digital and data industrial transformation; • Regarding FP9 and future Clean Sky activities, explain that despite the political uncertainties and upcoming assessments and recommendations, FP9 would be strongly oriented to be open for collaboration with the USA and GE is very welcome in that context. • To share your views that USA-based European companies and EU-based USA companies should have a level-playing field, especially in IPR and transfer of knowledge issues; • To share your views on the role of the European Commission in public-private collaboration on research and innovation and in particular within Clean Sky, that such collaborations go beyond research funding and create business opportunities; • To explain that GE will have a greater role in Clean Sky 2, as following the 1st call for core partners, GE Aviation was selected. -
PRESS-KIT-VV19-08122021-EN.Pdf
www.arianespace.com www.avio.com www.avio Arianespace’s seventh launch of 2021 with the second Vega of the year will place its satellite passengers into Sun-synchronous orbit. The launcher will be carrying a total payload of approximately 1 029 kg. The launch will be performed in Kourou, French Guiana. MISSION DESCRIPTION 2 PLÉIADES NEO 4 SATELLITE 3 Liftoff is planned on at exactly: FOUR AUXILIARY PAYLOADS 4 - 5 09:47 p.m. Washington, D.C. time, 10:47 p.m. Kourou time, VEGA LAUNCHER 6 01:47 a.m. Universal time (UTC), August 17, LAUNCH CAMPAIGN 7 03:47 a.m. Paris time, August 17, 10:47 a.m. Tokyo time, August 17. FLIGHT SEQUENCES 7 STAKEHOLDERS OF A LAUNCH 8 The nominal duration of the mission (from liftoff to separation of the satellites) is: 1 hour, 44 minutes and 59 seconds. Satellite: Pléiades Neo 4 Customer: Airbus Defence and Space - Intelligence Satellites: Four auxiliary payloads Cyrielle BOUJU [email protected] +33 (0)6 32 65 97 48 For Pléiades Neo For the four auxiliary payloads Francesco DE LORENZO • Perigee altitude: 614 km • Perigee altitude: 540 km [email protected] • Apogee altitude: 625 km • Apogee altitude: 554 km + 39 (0)6 97285317 • Inclination : 97.89 degrees • Inclination : 97.55 degrees First Pléiades Neo constellation satellites have been achieved within only five years, thanks to the hard work of over 500 people, across seven sites in Europe, to deliver first-class 14 km swath imagery at 30 cm native resolution, capable to daily collect up to 2 million km² and image the entire Earth landmass five times per year. -
The Future of the European Space Sector How to Leverage Europe’S Technological Leadership and Boost Investments for Space Ventures Executive Summary
The future of the European space sector How to leverage Europe’s technological leadership and boost investments for space ventures Executive Summary The future of the European space sector How to leverage Europe’s technological leadership and boost investments for space ventures Executive Summary Prepared for: The European Commission (DG Grow, DG Research and Innovation) By: Innovation Finance Advisory in collaboration with the European Investment Advisory Hub, part of the European Investment Bank’s advisory services Contact: [email protected] Consultancy support: SpaceTec Partners © European Investment Bank, 2018. All rights reserved. All questions on rights and licensing should be addressed to [email protected] The future of the European space sector 02 How to leverage Europe’s technological leadership and boost investments for space ventures Executive Summary Europe boasts a strong space sector. This is largely the legacy of successful space programmes, particularly those on satellite navigation and Earth observation, mostly built on public support. However, the space sector is undergoing unprecedented transformation and development on a global scale. Major technology advancements, a new entrepreneurial spirit and a renewed policy focus have put the space sector under the spotlight on the global innovation stage. Such rapid and constant transformation calls for new approaches to funding and supporting space ventures. The global space economy grew by 6.7% on average per year between 2005 and 2017, almost twice the average yearly growth of the global economy of 3.5%. One aspect that has contributed to this growth has been the “NewSpace” phenomenon, a series of technological and business model innovations that have led to a significant reduction in costs and have resulted in the provision of new products and services that have broadened the existing customer base. -
Accesso Autonomo Ai Servizi Spaziali
Centro Militare di Studi Strategici Rapporto di Ricerca 2012 – STEPI AE-SA-02 ACCESSO AUTONOMO AI SERVIZI SPAZIALI Analisi del caso italiano a partire dall’esperienza Broglio, con i lanci dal poligono di Malindi ad arrivare al sistema VEGA. Le possibili scelte strategiche del Paese in ragione delle attuali e future esigenze nazionali e tenendo conto della realtà europea e del mercato internazionale. di T. Col. GArn (E) FUSCO Ing. Alessandro data di chiusura della ricerca: Febbraio 2012 Ai mie due figli Andrea e Francesca (che ci tiene tanto…) ed a Elisabetta per la sua pazienza, nell‟impazienza di tutti giorni space_20120723-1026.docx i Author: T. Col. GArn (E) FUSCO Ing. Alessandro Edit: T..Col. (A.M.) Monaci ing. Volfango INDICE ACCESSO AUTONOMO AI SERVIZI SPAZIALI. Analisi del caso italiano a partire dall’esperienza Broglio, con i lanci dal poligono di Malindi ad arrivare al sistema VEGA. Le possibili scelte strategiche del Paese in ragione delle attuali e future esigenze nazionali e tenendo conto della realtà europea e del mercato internazionale. SOMMARIO pag. 1 PARTE A. Sezione GENERALE / ANALITICA / PROPOSITIVA Capitolo 1 - Esperienze italiane in campo spaziale pag. 4 1.1. L'Anno Geofisico Internazionale (1957-1958): la corsa al lancio del primo satellite pag. 8 1.2. Italia e l’inizio della Cooperazione Internazionale (1959-1972) pag. 12 1.3. L’Italia e l’accesso autonomo allo spazio: Il Progetto San Marco (1962-1988) pag. 26 Capitolo 2 - Nascita di VEGA: un progetto europeo con una forte impronta italiana pag. 45 2.1. Il San Marco Scout pag. -
Appunti Per La Storia Della Scuola Di Ingegneria Aerospaziale
Filippo Graziani DALL’AERONAUTICA ALL’ASTRONAUTICA APPUNTI PER LA STORIA DELLA SCUOLA DI INGEGNERIA AEROSPAZIALE In occasione dell' 80.mo anniversario della fondazione della Scuola di Ingegneria Aerospaziale Roma, ottobre 2011 Sommario L’ambiente in cui è nata la Scuola. 3 Il momento aeronautico 5 Il momento aerospaziale 9 Il momento astronautico 17 La Scuola di Ingegneria Aerospaziale ritorna all’Aeroporto dell’Urbe 21 Conclusioni 22 Bibliografia 24 Appendice: De explorandis spatiis sideriis quae extra nos sunt et interiore homine qui intra nos est 25 1 2 L’ambiente in cui è nata la Scuola di Ingegneria Aerospaziale Siamo agli inizi del novecento, agli albori del volo aeronautico. Gaetano Arturo Crocco, appena trentenne, pilota su Roma, il 31 ottobre 1908, il dirigibile da lui costruito: andata e ritorno da Vigna di Valle (circa 80 km) in un’ ora e mezzo. E’ il primo volo sulla Capitale. Passa sul Campidoglio a 500 m di quota.(Figura 1 ) Figura 1 -Il dirigibile N1 di Gaetano Arturo Crocco, 31 Ottobre 1908 Qualche mese prima, a maggio 1 , era venuto a Roma, dalla Francia, Leone Delagrange con il suo biplano per mostrare a tutti che anche macchine più pesanti dell’aria potevano sollevarsi in volo. La sua impresa aveva avuto poco successo: il velivolo si era sollevato dal terreno della piazza d’Armi di Roma solo pochi centimetri (Figura 2).2 1 24 maggio 1908: centomila persone, 20 centesimi il biglietto 2 “ Sto fresco c’è venuto da la Francia Pé buggerà li sordi a noi Romani: Diceva de volà come un ucello E invece zampettava er sartarello.” (er Sor Capanna) 3 Figura 2 - Roma, Piazza d’Armi, Maggio 1908 A quei tempi il dirigibile andava bene, l’aereo ancora no, anche se già si intravedeva la possibilità di istituire le scuole di pilotaggio3. -
Download Here Avio's Company Profile
SPACE IS CLOSER CORPORATE PROFILE Where we come from Avio is a space propulsion leader, with over 1,000 employees located in Italy, France and French Guiana. Since its foundation in 1912, the company has played a key role in the design, manufacturing and integration of space launcher systems and tactical missiles. With such a long history and track record, Avio today has extensive expertise in solid and liquid propulsion systems, chemicals and propellants, composite materials, system integration, experimental testing, flight and simulation software, on-board avionics and satellite launch operations. Evolving towards the future Since 2017 Avio has been listed on the STAR segment of the Italian Stock Exchange and was the first rocket manufacturing company in the world to become a public company with over 70% of its share capital floating on the market. With such a set-up Avio is today equipped to accelerate its investment ambitions, pursuing rapid growth for the future. In recent years Avio has delivered revenue growth at an average annual rate in excess of 15%. Our mission Our mission is to provide reliable and competitive access to space to improve life on earth. To this end, Avio has developed the Vega Launch System, a combination of launchers and adapters to carry any small-medium satellite into Low Earth Orbit on single, dual or multi-payload missions, serving any type of customer globally. Avio is committed to over time deliver new versions of the Vega system to continuously improve reliability, flexibility and cost-competitiveness. Vega Launchers Avio has designed, manufactured and assembled solid and liquid propulsion systems for more than 50 years. -
19690009362.Pdf
i i t "V ir- -, ., NASA CONTRACTOR .." REPORT M OI LOAN COPY: RETURN TO AFWL (WLIL-2) KIRTLAND AFB, N MEX METEOROLOGICAL ROCKET RESEARCH SINCE 1959 AND CURRENT REQUIREMENTS FOR OBSERVATIONS AND ANALYSIS ABOVE 60 KILOMETERS by Roderick S. Qniroz Prepared by UPPER AIR BRANCH NATIONAL METEOROLOGICALCENTER WEATHER BUREAU Hillcrest Heights, Md. for LangZey Research Center NATIONALAERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. FEBRUARY 1969 NASA CR-1293 TECH LIBWRY KAFB. NM METEOROLOGICAL ROCKET RESEARCH SINCE 1959 AND CURRENT REQUIREMENTS FOR OBSERVATIONS AND ANALYSIS ABOVE 60 KILOMETERS By Roderick S. Quiroz Distribution of this report is provided in the interest of informationexchange. Responsibility for the contents resides in the author or organization that prepared it. Prepared under Order L-719 by UPPER AIR BRANCH, NATIONAL METEOROLOGICAL CENTER, WEATHER BUREAU Hillcrest Heights, Md. for Langley Research Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION .. ~ . ~. .~ ~ For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTl price $3.00 "_ CONTENTS Page ABSTRACT ............................................ V INTRODUCTION ........................................ 1 SCOPE AND IJMITATIONS OF METEOROLOGICAL ROCKET SOUNDINGS ................................... 4 RocketNetwork Soundings ............................ 6 SpecialRocket Soundings ............................. 20 PRESENT KNOWLEDGE BASED ON METEOROLOGICAL ROCKETDATA ......................................... 23 ClimatologicalFindings -
LAZIO, SPACE to INNOVATE International Paris Air Show Regione Lazio Stand Hall 1 F 299
LAZIO, SPACE TO INNOVATE International Paris Air Show Regione Lazio Stand Hall 1 F 299 PAGE 03 FOREWORD PAGE 07 AEROSPACE IN LAZIO PAGE LAZIO COMPANIES 09 in the Regional stand PAGE LEADING INTERNATIONAL PLAYERS 27 located in Lazio PAGE 33 ESA BIC STARTUPS FOREWORD Lazio is a ‘region of Space’. It was in our region that the first steps of the Italian space adventure were taken back in the 1950s, through the inspiration of pioneers as Luigi Broglio and Carlo Buongiorno. This story continues until now. And Lazio is still, very much, a Region of ‘Space’. Today, the presence of industrial champions, together with high-tech, small and medium-sized enterprises, Universities and research centres and national and international institutions such as ASI (Agenzia Spaziale Italiana) and ESA (European Space Agency), strongly defines our region’s economic and scientific profile. As a matter of fact, we pride ourselves on being among the few regions in the world where all different components of the industry are well represented: from space transport (e.g. the European launcher VEGA), to design and development of satellites, to the ability of reading data and transforming it into services for our citizens, industries and public administrations. An activity where giants such as Leonardo work in close cooperation, and with great added value, with smaller companies. 3 FOREWORD As future challenges put Space at the forefront of Europe’s industrial strategy, this long history puts an additional responsibility on our current policy choices. We, as a public administration, are ready to face them. Not only with a full understanding of the strategic importance of this industry, but also with the willingness to continue working with our partners in the years to come: enterprises covering all sectors of the industry - from avionics and electronics, to air and maritime traffic management systems – and Universities and Research centres, very often at the forefront of the technology of the sector. -
DTFT Preliminary Results
WEST-EAST HIGH SPEED FLOW FIELD CONFERENCE 19-22, November 2007 Moscow, Russia PRORA-USV: CLOSER SPACE AND AERONAUTICS G. Russo 1 CIRA, Italian Aerospace Research Center 81043 Capua, Italy Email: [email protected], web page: http://www.cira.it Key words: unmanned space vehicle, transonic flight, flight experiments, stratospheric balloon, reentry. Abstract. The first Dropped Transonic Flight Test of USV (Unmanned Space Vehicles), performed with “Castor”, the first of the two spacecrafts developed within the USV Program, was performed on Saturday 24th February 2007, from Tortolì Airport in Sardinia. At 8:30 a.m. the 340000 cubic meters stratospheric balloon lifted off from the East coast of Sardinia, bringing the Flying Test Bed up to 20.2 km before release within the isolated sea polygon controlled by Italian Air Force Fire Test Range in Salto di Quirra (PISQ). The mission ended at 10:30 a.m. with the splash-down of the space vehicle. The flight itself was very good, with a nose-up maneuver under transonic conditions, reaching a maximum Mach as high as 1.08. The mission target was completely achieved as some 2 million measures were taken related to flight data, housekeeping, as well as 500 aerodynamic and structural experimental sensors. Unfortunately, the vehicle has been damaged more than expected during splash down. 1. THE PRO.R.A.-USV PROGRAM The development and validation of technologies, which are able to provide future spacecraft with a wider operational capabilities, is a key factor for a more affordable, easier and quicker access to space. A peculiar aspect of the future spacecraft is indeed the possibility to land on any spaceport, in the same way as a conventional transport aircraft.