WO 2018/151820 Al 23 August 2018 (23.08.2018) W !P O PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2018/151820 Al 23 August 2018 (23.08.2018) W !P O PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/151820 Al 23 August 2018 (23.08.2018) W !P O PCT (51) International Patent Classification: Declarations under Rule 4.17: A61K 39/395 (2006.01) C07K 14/705 (2006.01) — as to applicant's entitlement to apply for and be granted a (21) International Application Number: patent (Rule 4.1 7(H)) PCT/US20 18/00003 1 — as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(Hi)) (22) International Filing Date: 16 February 2018 (16.02.2018) Published: — with international search report (Art. 21(3)) (25) Filing Language: English — before the expiration of the time limit for amending the (26) Publication Langi English claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) (30) Priority Data: 62/459,846 16 February 2017 (16.02.2017) 62/491,626 28 April 2017 (28.04.2017) 62/501,620 04 May 2017 (04.05.2017) (71) Applicant: ELSTAR THERAPEUTICS, INC. [US/US]; 840 Memorial Drive, 4th Floor, Cambridge, MA 02139 (US). (72) Inventors: LOEW, Andreas; 476 Shawmut Avenue, Apt. 6, Boston, MA 021 18 (US). VASH, Brian, Edward; 303 3rd St Unit 717, Cambridge, MA 02 142 (US). MAIOCCO, Stephanie, J.; 215 Massachusetts Ave, Apt 15, Arlington, MA 02474 (US). (74) Agent: COLLAZO, Diana, M. et al; Lando & Anastasi, LLP, Riverfront Office Park, One Main Street, Suite 1100, Cambridge, MA 02142 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). o 00 00 (54) Title: MULTIFUNCTIONAL MOLECULES COMPRISING A TRIMERIC LIGAND AND USES THEREOF o (57) Abstract: Disclosed herein are novel multifunctional, e.g., bifunctional, or trifunctional, molecules (e.g., fusion polypeptides or nucleic acids) that include a trimeric ligand, and optionally, an immunoglobulin constant domain, as well as methods of making and using the multifunctional molecules, e.g., for treating cancer. MULTIFUNCTIONAL MOLECULES COMPRISING A TRIMERIC LIGAND AND USES THEREOF RELATED APPLICATION This application claims priority to U.S. Serial No. 62/459846 filed February 16, 2017 and U.S. Serial No. 62/501620 filed May 4, 2017, the content of each of which is incorporated herein by reference in its entirety. SEQUENCE LISTING The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on February 16, 2018, is named E2070-7004WO_SL.txt and is 522,047 bytes in size. BACKGROUND Multifunctional molecules comprising a trimeric ligand, e.g., one, two or three tumor necrosis factor superfamily (TNFSF) or TNFSF-like members, and, optionally, a dimerization module, e.g., an immunoglobulin constant region, are disclosed. SUMMARY OF THE INVENTION The present application discloses, at least in part, a novel multifunctional molecule (also interchangeably referred to herein as "multispecific molecule") comprising a trimeric ligand, e.g., one, two or three trimeric ligands. In embodiments, the trimeric ligand includes three monomer molecules, e.g., wherein two of the monomer molecules are coupled, e.g., covalently linked, to one another, and the third monomer molecule is non-covalently associated to the other two monomer molecules. In some embodiments, the multifunctional molecule comprises two, three or more trimeric ligands that are the same or different. In some embodiments, the trimeric ligand in the multifunctional molecule is a homotrimer, e.g., is composed of the same monomer molecules, or a heterotrimer, e.g., is composed of two or three different monomer molecules. In some embodiments, the trimeric ligand is a member of the tumor necrosis factor superfamily (TNFSF) or TNFSF-like members, or a combination of TNFSF- and TNFSF-like monomers. In some embodiments, the multifunctional molecule comprises a trimeric ligand (e.g., one or more (e.g., one, two or three) trimeric ligands), wherein said trimeric ligand comprises three monomer molecules, (e.g., three monomer molecules of the tumor necrosis factor superfamily (TNFSF) or TNSF-like member, or a combination thereof), wherein two of the monomer molecules are coupled, e.g., covalently linked, to one another, and the third monomer molecule is non-covalently associated to the other two monomer molecules. In some embodiments, the multifunctional molecule further comprises a dimerization module (e.g., an immunoglobulin constant domain (e.g., an Fc or a dimerization module comprising a non-immunoglobulin dimerization domain, e.g., a TCRa constant domain and a TCRp constant domain)). In some embodiments, the multifunctional molecule further comprises one or more other binding specificities or functionalities chosen from one, two or more of: a targeting moiety, e.g., a tumor targeting moiety; an immune cell engager (e.g., chosen from one, two, three, or all of an NK cell engager, a B cell engager, a dendritic cell engager, or a macrophage cell engager); and/or a cytokine molecule. In some embodiments, the multifunctional molecule comprises one trimeric ligand, two trimeric ligands, or three trimeric ligands. In an embodiment, the multifunctional molecule comprises any of the configurations depicted in FIG3. 1lA-1 1C, e.g., mullispecific molecules attached to a dimerization module, e.g., an immunoglobulin constant domain. In embodiments, A, B, C and D, are coupled to, e.g., covalently linked, to a heterodimeric Fc domain, see Fig. 11A. In other embodiments, A, B, C and D, are coupled to, e.g., covalently linked, to a homodimeric Fc domain, see Fig. 1IB. In other embodiments, A, B, C and D, covalently linked to a heterodimeric heavy and light variable region constant domains (e.g., a Fab CHI and a Fab CL), see e.g., FIG. 11C. In one embodiment, the multifunctional molecule comprises a dimerization module comprising an immunoglobulin heavy chain constant region (e.g., an Fc region), e.g., a heterodimeric heavy chain constant region (e.g., a knob-in-hole heterodimer) as illustrated below: In some embodiments, the multifunctional molecule comprises any of the configurations depicted in FIGs. 1lA-1 1C or any of the configurations depicted in FIGs. 1lA-1 1C wherein the dimerization domain does not contain a disulfide bond. In some embodiments, A, B, C and D, are coupled to, e.g., covalently linked, to a heterodimeric or a homodimeric dimerization domain (e.g., an immunoglobulin constant domain (e.g., an Fc or a dimerization module comprising a non-immunoglobulhi dimerization domain, e.g., a 'C a constant domain and a TCR-β constant domain)). In some embodiments, A, B, C and D, are coupled to, e.g., covalently linked, to a heterodimeric Fab heavy and light constant domains (e.g., a CHI domain and a CL domain). In some embodiments, the multifunctional molecule includes the following configuration: A, B-[dimerization module]-C, -D wherein: 1) the dimerization module comprises an immunoglobulin constant domain, e.g., a heavy chain constant domain (e.g., a homodimeric or heterodimeric heavy chain constant region, e.g., an Fc region), or a constant domain of an immunoglobulin Fab region; or a dimerization module comprising a non-immunoglobulin dimerization domain, e.g., a TCRa constant domain and a TCRP constant domain); 2) A, B, C, and D are independently absent; a trimeric ligand; a targeting moiety, e.g., a tumor targeting moiety; an immune cell engager; or a cytokine molecule, Provided that: i) at least one, two or three of A, B, C, and D comprises a trimeric ligand; ii) at least one of A, B, C, and D comprises a trimeric ligand, and any of the remaining A, B, C, and D comprises one, two or more of a targeting moiety, an immune cell engager, or a cytokine molecule; iii) at least two of A, B, C, and D comprise a trimeric ligand, and any of the remaining A, B, C, and D comprises one, or two of a targeting moiety, an immune cell engager, or a cytokine molecule; or iv) at least three of A, B, C, and D comprise a trimeric ligand, and any of the remaining A, B, C, and D is absent. In some embodiments, 1) A, B, C, and D are independently chosen from being absent; a trimeric ligand; a targeting moiety, e.g., a tumor targeting moiety; an immune cell engager; or a cytokine molecule, or a combination thereof, wherein: i) A is or comprises a trimeric ligand, and at least one, two or three of B, C, and D is or comprises a second trimeric ligand, a targeting moiety, an immune cell engager,
Recommended publications
  • HCST (NM 001007469) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP319253 HCST (NM_001007469) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human hematopoietic cell signal transducer (HCST), transcript variant 2 Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 7.3 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_001007470 Locus ID: 10870 UniProt ID: Q9UBK5 RefSeq Size: 521 Cytogenetics: 19q13.12 RefSeq ORF: 279 Synonyms: DAP10; KAP10; PIK3AP This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 HCST (NM_001007469) Human Recombinant Protein – TP319253 Summary: This gene encodes a transmembrane signaling adaptor that contains a YxxM motif in its cytoplasmic domain. The encoded protein may form part of the immune recognition receptor complex with the C-type lectin-like receptor NKG2D. As part of this receptor complex, this protein may activate phosphatidylinositol 3-kinase dependent signaling pathways through its intracytoplasmic YxxM motif.
    [Show full text]
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • The Role of Biological Therapy in Metastatic Colorectal Cancer After First-Line Treatment: a Meta-Analysis of Randomised Trials
    REVIEW British Journal of Cancer (2014) 111, 1122–1131 | doi: 10.1038/bjc.2014.404 Keywords: colorectal; biological; meta-analysis The role of biological therapy in metastatic colorectal cancer after first-line treatment: a meta-analysis of randomised trials E Segelov1, D Chan*,2, J Shapiro3, T J Price4, C S Karapetis5, N C Tebbutt6 and N Pavlakis2 1St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2052, Australia; 2Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia; 3Monash University and Cabrini Hospital, Melbourne, VIC 3800, Australia; 4The Queen Elizabeth Hospital and University of Adelaide, Woodville South, SA 5011, Australia; 5Flinders University and Flinders Medical Centre, Flinders Centre for Innovation in Cancer, Bedford Park, SA, 5042, Australia and 6Austin Health, VIC 3084, Australia Purpose: Biologic agents have achieved variable results in relapsed metastatic colorectal cancer (mCRC). Systematic meta-analysis was undertaken to determine the efficacy of biological therapy. Methods: Major databases were searched for randomised studies of mCRC after first-line treatment comparing (1) standard treatment plus biologic agent with standard treatment or (2) standard treatment with biologic agent with the same treatment with different biologic agent(s). Data were extracted on study design, participants, interventions and outcomes. Study quality was assessed using the MERGE criteria. Comparable data were pooled for meta-analysis. Results: Twenty eligible studies with 8225 patients were identified. The use of any biologic therapy improved overall survival with hazard ratio (HR) 0.87 (95% confidence interval (CI) 0.82–0.91, Po0.00001), progression-free survival (PFS) with HR 0.71 (95% CI 0.67–0.74, Po0.0001) and overall response rate (ORR) with odds ratio (OR) 2.38 (95% CI 2.03–2.78, Po0.00001).
    [Show full text]
  • Activating Death Receptor DR5 As a Therapeutic Strategy for Rhabdomyosarcoma
    International Scholarly Research Network ISRN Oncology Volume 2012, Article ID 395952, 10 pages doi:10.5402/2012/395952 Review Article Activating Death Receptor DR5 as a Therapeutic Strategy for Rhabdomyosarcoma Zhigang Kang,1, 2 Shi-Yong Sun,3 and Liang Cao1 1 Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA 2 Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., NCI Frederick, Frederick, MD 21702, USA 3 Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Correspondence should be addressed to Liang Cao, [email protected] Received 4 January 2012; Accepted 24 January 2012 Academic Editors: E. Boven and S. Mandruzzato Copyright © 2012 Zhigang Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. It is believed to arise from skeletal muscle progenitors, preserving the expression of genes critical for embryonic myogenic development such as MYOD1 and myogenin. RMS is classified as embryonal, which is more common in younger children, or alveolar, which is more prevalent in elder children and adults. Despite aggressive management including surgery, radiation, and chemotherapy, the outcome for children with metastatic RMS is dismal, and the prognosis has remained unchanged for decades. Apoptosis is a highly regulated process critical for embryonic development and tissue and organ homeostasis. Like other types of cancers, RMS develops by evading intrinsic apoptosis via mutations in the p53 tumor suppressor gene.
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix
    United States International Trade Commission Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix USITC Publication 4208 December 2010 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix Publication 4208 December 2010 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 15, 2010, set forth at the end of this publication, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the United States International Trade Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement changes to the Pharmaceutical Appendix, effective on January 1, 2011. Table 1 International Nonproprietary Name (INN) products proposed for addition to the Pharmaceutical Appendix to the Harmonized Tariff Schedule INN CAS Number Abagovomab 792921-10-9 Aclidinium Bromide 320345-99-1 Aderbasib 791828-58-5 Adipiplon 840486-93-3 Adoprazine 222551-17-9 Afimoxifene 68392-35-8 Aflibercept 862111-32-8 Agatolimod
    [Show full text]
  • Genetic Correlations Reveal the Shared Genetic Architecture of Transcription in Human Peripheral Blood
    Hemani, G. (2017). Genetic correlations reveal the shared genetic architecture of transcription in human peripheral blood. Nature Communications, 8, [483]. https://doi.org/10.1038/s41467-017-00473- z Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1038/s41467-017-00473-z Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Nature Publishing Group at https://www.nature.com/articles/s41467-017-00473-z . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ ARTICLE DOI: 10.1038/s41467-017-00473-z OPEN Genetic correlations reveal the shared genetic architecture of transcription in human peripheral blood Samuel W. Lukowski 1, Luke R. Lloyd-Jones1,2, Alexander Holloway2, Holger Kirsten3,4, Gibran Hemani 5,6, Jian Yang 1,2, Kerrin Small 7, Jing Zhao8, Andres Metspalu9, Emmanouil T. Dermitzakis10, Greg Gibson 8, Timothy D. Spector7, Joachim Thiery4,11, Markus Scholz 3,4, Grant W. Montgomery1,12, Tonu Esko 9, Peter M. Visscher 1,2 & Joseph E. Powell1,2 Transcript co-expression is regulated by a combination of shared genetic and environmental factors. Here, we estimate the proportion of co-expression that is due to shared genetic variance.
    [Show full text]
  • Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy
    cancers Review Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy Laura Boyero 1 , Amparo Sánchez-Gastaldo 2, Miriam Alonso 2, 1 1,2,3, , 1,2, , José Francisco Noguera-Uclés , Sonia Molina-Pinelo * y and Reyes Bernabé-Caro * y 1 Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; [email protected] (L.B.); [email protected] (J.F.N.-U.) 2 Medical Oncology Department, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain; [email protected] (A.S.-G.); [email protected] (M.A.) 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain * Correspondence: [email protected] (S.M.-P.); [email protected] (R.B.-C.) These authors contributed equally to this work. y Received: 16 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Simple Summary: Immuno-oncology has redefined the treatment of lung cancer, with the ultimate goal being the reactivation of the anti-tumor immune response. This has led to the development of several therapeutic strategies focused in this direction. However, a high percentage of lung cancer patients do not respond to these therapies or their responses are transient. Here, we summarized the impact of immunotherapy on lung cancer patients in the latest clinical trials conducted on this disease. As well as the mechanisms of primary and acquired resistance to immunotherapy in this disease. Abstract: After several decades without maintained responses or long-term survival of patients with lung cancer, novel therapies have emerged as a hopeful milestone in this research field.
    [Show full text]
  • Format Chain Exchange (FORCE) for High- Throughput Generation of Bispecific Antibodies in Combinatorial Binder-Format Matrices
    ARTICLE https://doi.org/10.1038/s41467-020-18477-7 OPEN Format chain exchange (FORCE) for high- throughput generation of bispecific antibodies in combinatorial binder-format matrices Stefan Dengl1, Klaus Mayer1, Felix Bormann1, Harald Duerr1, Eike Hoffmann1, Bianca Nussbaum1, Michael Tischler1, Martina Wagner1, Andreas Kuglstatter2, Lea Leibrock2, Can Buldun1, Guy Georges1 & ✉ Ulrich Brinkmann 1 1234567890():,; Generation of bispecific antibodies (bsAbs) requires a combination of compatible binders in formats that support desired functionalities. Here, we report that bsAb-matrices can be generated by Format Chain Exchange (FORCE), enabling screening of combinatorial binder/ format spaces. Input molecules for generation of bi/multi-valent bsAbs are monospecific entities similar to knob-into-hole half-antibodies, yet with complementary CH3-interface- modulated and affinity-tagged dummy-chains. These contain mutations that lead to limited interface repulsions without compromising expression or biophysical properties of educts. Mild reduction of combinations of educts triggers spontaneous chain-exchange reactions driven by partially flawed CH3-educt interfaces resolving to perfect complementarity. This generates large bsAb matrices harboring different binders in multiple formats. Benign bio- physical properties and good expression yields of educts, combined with simplicity of pur- ification enables process automation. Examples that demonstrate the relevance of screening binder/format combinations are provided as a matrix of bsAbs that simultaneously
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States To
    U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b).
    [Show full text]
  • Plasma Cells in Vitro Generation of Long-Lived Human
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology , 32 of which you can access for free at: 2012; 189:5773-5785; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication November 2012; doi: 10.4049/jimmunol.1103720 http://www.jimmunol.org/content/189/12/5773 In Vitro Generation of Long-lived Human Plasma Cells Mario Cocco, Sophie Stephenson, Matthew A. Care, Darren Newton, Nicholas A. Barnes, Adam Davison, Andy Rawstron, David R. Westhead, Gina M. Doody and Reuben M. Tooze J Immunol cites 65 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/11/16/jimmunol.110372 0.DC1 This article http://www.jimmunol.org/content/189/12/5773.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. The Journal of Immunology In Vitro Generation of Long-lived Human Plasma Cells Mario Cocco,*,1 Sophie Stephenson,*,1 Matthew A.
    [Show full text]
  • I Regulations
    23.2.2007 EN Official Journal of the European Union L 56/1 I (Acts adopted under the EC Treaty/Euratom Treaty whose publication is obligatory) REGULATIONS COUNCIL REGULATION (EC) No 129/2007 of 12 February 2007 providing for duty-free treatment for specified pharmaceutical active ingredients bearing an ‘international non-proprietary name’ (INN) from the World Health Organisation and specified products used for the manufacture of finished pharmaceuticals and amending Annex I to Regulation (EEC) No 2658/87 THE COUNCIL OF THE EUROPEAN UNION, (4) In the course of three such reviews it was concluded that a certain number of additional INNs and intermediates used for production and manufacture of finished pharmaceu- ticals should be granted duty-free treatment, that certain of Having regard to the Treaty establishing the European Commu- these intermediates should be transferred to the list of INNs, nity, and in particular Article 133 thereof, and that the list of specified prefixes and suffixes for salts, esters or hydrates of INNs should be expanded. Having regard to the proposal from the Commission, (5) Council Regulation (EEC) No 2658/87 of 23 July 1987 on the tariff and statistical nomenclature and on the Common Customs Tariff (1) established the Combined Nomenclature Whereas: (CN) and set out the conventional duty rates of the Common Customs Tariff. (1) In the course of the Uruguay Round negotiations, the Community and a number of countries agreed that duty- (6) Regulation (EEC) No 2658/87 should therefore be amended free treatment should be granted to pharmaceutical accordingly, products falling within the Harmonised System (HS) Chapter 30 and HS headings 2936, 2937, 2939 and 2941 as well as to designated pharmaceutical active HAS ADOPTED THIS REGULATION: ingredients bearing an ‘international non-proprietary name’ (INN) from the World Health Organisation, specified salts, esters or hydrates of such INNs, and designated inter- Article 1 mediates used for the production and manufacture of finished products.
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    INN Working Document 05.179 Update 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) © World Health Organization 2013 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int ) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected] ). Requests for permission to reproduce or translate WHO publications – whether for sale or for non-commercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html ). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]