Ep 2505209 A1

Total Page:16

File Type:pdf, Size:1020Kb

Ep 2505209 A1 (19) TZZ Z Z_T (11) EP 2 505 209 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 03.10.2012 Bulletin 2012/40 A61K 39/395 (2006.01) C07K 16/00 (2006.01) A61P 35/00 (2006.01) C07K 16/28 (2006.01) (21) Application number: 12155325.9 (22) Date of filing: 26.06.2007 (84) Designated Contracting States: • Johnson, Leslie AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Darnestown, MD 20874 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE • Huang, Ling SI SK TR Bethesda, MD 20817 (US) (30) Priority: 26.06.2006 US 816688 P (74) Representative: Vossius & Partner Siebertstrasse 4 (62) Document number(s) of the earlier application(s) in 81675 München (DE) accordance with Art. 76 EPC: 07812341.1 / 2 029 173 Remarks: This application was filed on 14-02-2012 as a (71) Applicant: MacroGenics, Inc. divisional application to the application mentioned Rockville, MD 20850 (US) under INID code 62. (72) Inventors: • Gerena, Robyn Sandston, VA 23510 (US) (54) Fcgamma-RIIB-specific antibodies and methods of the use thereof (57) The present invention relates to antibodies or ma, an autoimmune disorder, an inflammatory disorder, fragments thereof that specifically bind FcγRIIB, partic- an IgE-mediated allergic disorder, or one or more symp- ularly human FcγRIIB, with greater affinity than said an- toms thereof. The invention provides methods of enhanc- tibodies or fragments thereof bind FcγRIIA, particularly ing the therapeutic effect of therapeutic antibodies by human FcγRIIA. The present invention also provides the administering the antibodies of the invention to enhance use of an anti-FcγRIIB antibody or an antigen-binding the effector function of the therapeutic antibodies. The fragment thereof, as a single agent therapy for the treat- invention also provides methods of enhancing efficacy ment, prevention, management, or amelioration of a can- of a vaccine composition by administering the antibodies cer, preferably a B-cell malignancy, particularly, B-cell of the invention. chronic lymphocytic leukemia or non-Hodgkin’s lympho- EP 2 505 209 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 505 209 A1 Description CROSS-REFERENCE TO RELATED APPLICATIONS 5 [0001] This application claims benefit of U.S. Provisional Patent Application Serial No.: 60/816,688, filed June 26, 2006, the contents of which are incorporated herein by reference for all purposes. 1. FIELD OF THE INVENTION 10 [0002] The present invention relates to antibodies or fragments thereof that specifically bind FcγRIIB, particularly human FcγRIIB, with greater affinity than said antibodies or fragments thereof bind FcγRIIA, particularly human FcγRIIA. The present invention also encompasses the use of an anti-FcγRIIB antibody or an antigen-binding fragment thereof, as a single agent therapy for the treatment, prevention, management, or amelioration of a cancer, preferably a B-cell malignancy, particularly, B-cell chronic lymphocytic leukemia or non-Hodgkin’s lymphoma, an autoimmune disorder, an 15 inflammatory disorder, an IgE-mediated allergic disorder, or one or more symptoms thereof. The present invention also encompasses the use of an anti-FcγRIIB antibody or an antigen-binding fragment thereof, in combination with other cancer therapies. The present invention provides pharmaceutical compositions comprising an anti-FcγRIIB antibody or an antigen-binding fragment thereof, in amounts effective to prevent, treat, manage, or ameliorate a cancer, such as a B-cell malignancy, an autoimmune disorder, an inflammatory disorder, an IgE-mediated allergic disorder, or one or more 20 symptoms thereof. The invention further provides methods of enhancing the therapeutic effect of therapeutic antibodies by administering the antibodies of the invention to enhance the effector function of the therapeutic antibodies. The invention also provides methods of enhancing efficacy of a vaccine composition by administering the antibodies of the invention with a vaccine composition. 25 2. BACKGROUND OF THE INVENTION 2.1 Fc RECEPTORS AND THEIR ROLES IN THE IMMUNE SYSTEM [0003] The interaction of antibody-antigen complexes with cells of the immune system results in a wide array of 30 responses, ranging from effector functions such as antibody-dependent cell-mediated cytotoxicity, mast cell degranu- lation, and phagocytosis to immunomodulatory signals such as regulating lymphocyte proliferation and antibody secre- tion. All these interactions are initiated through the binding of the Fc domain of antibodies or immune complexes to specialized cell surface receptors on hematopoietic cells. The diversity of cellular responses triggered by antibodies and immune complexes results from the structural heterogeneity of Fc receptors. Fc receptors share structurally related 35 ligand binding domains which presumably mediate intracellular signaling. [0004] The Fc receptors, members of the immunoglobulin gene superfamily of proteins, are surface glycoproteins that can bind the Fc portion of immunoglobulin molecules. Each member of the family recognizes immunoglobulins of one or more isotypes through a recognition domain on the a chain of the Fc receptor. Fc receptors are defined by their specificity for immunoglobulin subtypes. Fc receptors for IgG are referred to as FcγR, for IgE as FcεR, and for IgA as 40 FcαR. Different accessory cells bear Fc receptors for antibodies of different isotype, and the isotype of the antibody determines which accessory cells will be engaged in a given response (reviewed by Ravetch J.V. et al. 1991, Annu. Rev. Immunol. 9: 457-92; Gerber J.S. et al. 2001 Microbes and Infection, 3: 131-139; Billadeau D.D. et al, 2002, The Journal of Clinical investigation, 2(109): 161-1681; Ravetch J.V. et al. 2000, Science, 290: 84-89; Ravetch J.V. et al., 2001 Annu. Rev. Immunol. 19:275-90; Ravetch J.V. 1994, Cell, 78(4): 553-60). The different Fc receptors, the cells that 45 express them, and their isotype specificity is summarized in Table 1 (adapted from Immunobiology: The Immune System in Health and Disease, 4th ed. 1999, Elsevier Science Ltd/Garland Publishing, New York). Fcy Receptors 50 [0005] Each member of this family is an integral membrane glycoprotein, possessing extracellular domains related to a C2-set of immunoglobulin-related domains, a single membrane spanning domain and an intracytoplasmic domain of variable length. There are three known FcγRs, designated FcγRI(CD64), FcγRII(CD32), and FcγRIII(CD16). The three receptors are encoded by distinct genes; however, the extensive homology between the three family members suggest they arose from a common progenitor perhaps by gene duplication. This invention specifically focuses on FcγRII(CD32). 55 FcγRII(CD32) [0006] FcγRII proteins are 40 KDa integral membrane glycoproteins which bind only the complexed IgG due to a low 2 EP 2 505 209 A1 affinity for monomeric Ig (106 M-1). This receptor is the most widely expressed FcγR, present on all hematopoietic cells, including monocytes, macrophages, B cells, NK cells, neutrophils, mast cells, and platelets. FcγRII has only two immu- noglobulin-like regions in its immunoglobulin binding chain and hence a much lower affinity for IgG than FcγRI. There are three human FcγRII genes (FcγRII-A, FcγRII-B, FcγRII-C), all of which bind IgG in aggregates or immune complexes. 5 [0007] Distinct differences within the cytoplasmic domains of FcγRII-A (CD32A) and FcγRII-B (CD32B) create two functionally heterogeneous responses to receptor ligation. The fundamental difference is that the A isoform initiates intracellular signaling leading to cell activation such as phagocytosis and respiratory burst, whereas the B isoform initiates inhibitory signals, e.g., inhibiting B-cell activation. 10 Signaling through FcγRs [0008] Both activating and inhibitory signals are transduced through the FcγRs following ligation. These diametrically opposing functions result from structural differences among the different receptor isoform. Two distinct domains within the cytoplasmic signaling domains of the receptor called immunoreceptor tyrosine based activation motifs (ITAMs) or 15 immunoreceptor tyrosine based inhibitory motifs (ITIMS) account for the different responses. The recruitment of different cytoplasmic enzymes to these structures dictates the outcome of the FcγR-mediated cellular responses. ITAM-containing FcγR complexes include FcγRI, FcγRIIA, FcγRIIIA, whereas ITIM-containing complexes only include FcγRIIB. [0009] Human neutrophils express the FcγRIIA gene. FcγRIIA clustering via immune complexes or specific antibody cross-linking serves to aggregate ITAMs along with receptor-associated kinases which facilitate ITAM phosphorylation. 20 ITAM phosphorylation serves as a docking site for Syk kinase, activation of which results in activation of downstream substrates (e.g., PI3K). Cellular activation leads to release of proinflammatory mediators. [0010] The FcγRIIB gene is expressed on B lymphocytes; its extracellular domain is 96% identical to FcγRIIA and binds IgG complexes in an indistinguishable manner. The presence of an ITIM in the cytoplasmic domain of FcγRIIB defines this inhibitory subclass of FcγR. Recently the molecular basis of this inhibition was established. When colligated 25 along with an activating FcγR, the ITIM in FcγRIIB becomes phosphorylated and attracts the SH2 domain of the inositol polyphosphate 5’-phosphatase, (SHIP), which hydrolyzes phosphoinositol messengers released as a consequence of ITAM-containing FcγR- mediated tyrosine kinase activation, consequently preventing the influx of intracellular
Recommended publications
  • Lipid Raft-Mediated Akt Signaling As a Therapeutic Target in Mantle Cell Lymphoma
    OPEN Citation: Blood Cancer Journal (2013) 3, e118; doi:10.1038/bcj.2013.15 & 2013 Macmillan Publishers Limited All rights reserved 2044-5385/13 www.nature.com/bcj ORIGINAL ARTICLE Lipid raft-mediated Akt signaling as a therapeutic target in mantle cell lymphoma M Reis-Sobreiro1, G Roue´ 2, A Moros2, C Gajate1, J de la Iglesia-Vicente1, D Colomer2 and F Mollinedo1 Recent evidence shows that lipid raft membrane domains modulate both cell survival and death. Here, we have found that the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway is present in the lipid rafts of mantle cell lymphoma (MCL) cells, and this location seems to be critical for full activation and MCL cell survival. The antitumor lipids (ATLs) edelfosine and perifosine target rafts, and we found that ATLs exerted in vitro and in vivo antitumor activity against MCL cells by displacing Akt as well as key regulatory kinases p-PDK1 (phosphatidylinositol-dependent protein kinase 1), PI3K and mTOR (mammalian TOR) from lipid rafts. This raft reorganization led to Akt dephosphorylation, while proapoptotic Fas/CD95 death receptor was recruited into rafts. Raft integrity was critical for Ser473 Akt phosphorylation. ATL-induced apoptosis appeared to correlate with the basal Akt phosphorylation status in MCL cell lines and primary cultures, and could be potentiated by the PI3K inhibitor wortmannin, or inhibited by the Akt activator pervanadate. Classical Akt inhibitors induced apoptosis in MCL cells. Microenvironmental stimuli, such as CD40 ligation or stromal cell contact, did not prevent ATL-induced apoptosis in MCL cell lines and patient-derived cells. These results highlight the role of raft-mediated PI3K/Akt signaling in MCL cell survival and chemotherapy, thus becoming a new target for MCL treatment.
    [Show full text]
  • Overexpression of Salicylic Acid Carboxyl Methyltransferase (Cssamt1) Enhances Tolerance to Huanglongbing Disease in Wanjincheng Orange (Citrus Sinensis (L.) Osbeck)
    International Journal of Molecular Sciences Article Overexpression of Salicylic Acid Carboxyl Methyltransferase (CsSAMT1) Enhances Tolerance to Huanglongbing Disease in Wanjincheng Orange (Citrus sinensis (L.) Osbeck) Xiuping Zou * , Ke Zhao, Yunuo Liu, Meixia Du, Lin Zheng, Shuai Wang, Lanzhen Xu, Aihong Peng, Yongrui He, Qin Long and Shanchun Chen * Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400716, China; [email protected] (K.Z.); [email protected] (Y.L.); [email protected] (M.D.); [email protected] (L.Z.); [email protected] (S.W.); [email protected] (L.X.); [email protected] (A.P.); [email protected] (Y.H.); [email protected] (Q.L.) * Correspondence: [email protected] (X.Z.); [email protected] (S.C.) Abstract: Citrus Huanglongbing (HLB) disease or citrus greening is caused by Candidatus Liberibacter asiaticus (Las) and is the most devastating disease in the global citrus industry. Salicylic acid (SA) plays a central role in regulating plant defenses against pathogenic attack. SA methyltransferase (SAMT) modulates SA homeostasis by converting SA to methyl salicylate (MeSA). Here, we report on the functions of the citrus SAMT (CsSAMT1) gene from HLB-susceptible Wanjincheng orange Citation: Zou, X.; Zhao, K.; Liu, Y.; (Citrus sinensis (L.) Osbeck) in plant defenses against Las infection. The CsSAMT1 cDNA was Du, M.; Zheng, L.; Wang, S.; Xu, L.; expressed in yeast. Using in vitro enzyme assays, yeast expressing CsSAMT1 was confirmed to Peng, A.; He, Y.; Long, Q.; et al. specifically catalyze the formation of MeSA using SA as a substrate. Transgenic Wanjincheng orange Overexpression of Salicylic Acid plants overexpressing CsSAMT1 had significantly increased levels of SA and MeSA compared to Carboxyl Methyltransferase wild-type controls.
    [Show full text]
  • Immune Regulation by CD52-Expressing CD4 T Cells
    Cellular & Molecular Immunology (2013) 10, 379–382 ß 2013 CSI and USTC. All rights reserved 1672-7681/13 $32.00 www.nature.com/cmi RESEARCH HIGHLIGHT Immune regulation by CD52-expressing CD4 T cells Ban-Hock Toh1, Tin Kyaw1,2, Peter Tipping1 and Alex Bobik2 T-cell regulation by CD52-expressing CD4 T cells appears to operate by two different and possibly synergistic mechanisms. The first is by its release from the cell surface of CD4 T cells that express high levels of CD52 that then binds to the inhibitory sialic acid-binding immunoglobulin-like lectins-10 (Siglec-10) receptor to attenuate effector T-cell activation by impairing phosphorylation of T-cell receptor associated lck and zap-70. The second mechanism appears to be by crosslinkage of the CD52 molecules by an as yet unidentified endogenous ligand that is mimicked by a bivalent anti-CD52 antibody that results in their expansion. Cellular & Molecular Immunology (2013) 10, 379–382; doi:10.1038/cmi.2013.35; published online 12 August 2013 he immune system is designed to appears in the affirmative, and includes suppression was lost by cleavage of N- T protect its host from invading players such as IL-10-secreting Tr1 and glycans from CD52-Fc by peptide N- pathogens and yet remain non-reactive TGF-b-secreting Th3. cells. Absence of glycosidase or by removal of sialic acid to self. Immunological homeostasis is surface markers limited the usefulness residues by neuraminidase. Suppression maintained by purging self-reactive lym- of these other regulators. However, the was also blocked by antibody to the phocytes by clonal deletion coupled with recent report that CD49b and lympho- extracellular domain of Siglec-10 and a regulatory population of lymphocytes cyte activation gene-3 are highly and sta- by soluble Siglec-10-Fc.
    [Show full text]
  • USAN Naming Guidelines for Monoclonal Antibodies |
    Monoclonal Antibodies In October 2008, the International Nonproprietary Name (INN) Working Group Meeting on Nomenclature for Monoclonal Antibodies (mAb) met to review and streamline the monoclonal antibody nomenclature scheme. Based on the group's recommendations and further discussions, the INN Experts published changes to the monoclonal antibody nomenclature scheme. In 2011, the INN Experts published an updated "International Nonproprietary Names (INN) for Biological and Biotechnological Substances—A Review" (PDF) with revisions to the monoclonal antibody nomenclature scheme language. The USAN Council has modified its own scheme to facilitate international harmonization. This page outlines the updated scheme and supersedes previous schemes. It also explains policies regarding post-translational modifications and the use of 2-word names. The council has no plans to retroactively change names already coined. They believe that changing names of monoclonal antibodies would confuse physicians, other health care professionals and patients. Manufacturers should be aware that nomenclature practices are continually evolving. Consequently, further updates may occur any time the council believes changes are necessary. Changes to the monoclonal antibody nomenclature scheme, however, should be carefully considered and implemented only when necessary. Elements of a Name The suffix "-mab" is used for monoclonal antibodies, antibody fragments and radiolabeled antibodies. For polyclonal mixtures of antibodies, "-pab" is used. The -pab suffix applies to polyclonal pools of recombinant monoclonal antibodies, as opposed to polyclonal antibody preparations isolated from blood. It differentiates polyclonal antibodies from individual monoclonal antibodies named with -mab. Sequence of Stems and Infixes The order for combining the key elements of a monoclonal antibody name is as follows: 1.
    [Show full text]
  • Membrane Lipid Therapy: Modulation of the Cell Membrane Composition and Structure As a Molecular Base for Drug Discovery and New Disease Treatment
    Progress in Lipid Research 59 (2015) 38–53 Contents lists available at ScienceDirect Progress in Lipid Research journal homepage: www.elsevier.com/locate/plipres Review Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment Pablo V. Escribá a, Xavier Busquets a, Jin-ichi Inokuchi b, Gábor Balogh c, Zsolt Török c, Ibolya Horváth c, ⇑ ⇑ John L. Harwood d, , László Vígh c, a Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain b Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan c Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary d School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK article info abstract Article history: Nowadays we understand cell membranes not as a simple double lipid layer but as a collection of Received 28 January 2015 complex and dynamic protein–lipid structures and microdomains that serve as functional platforms Received in revised form 10 April 2015 for interacting signaling lipids and proteins. Membrane lipids and lipid structures participate directly Accepted 29 April 2015 as messengers or regulators of signal transduction. In addition, protein–lipid interactions participate in Available online 9 May 2015 the localization of signaling protein partners to specific membrane microdomains. Thus, lipid alterations Dedicated to the memory of our late change cell signaling that are associated with a variety of diseases including cancer, obesity, neurodegen- colleague and friend, Professor John E. erative disorders, cardiovascular pathologies, etc. This article reviews the newly emerging field of mem- Halver.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Supplementary Figure S1 Functional Characterisation of Snmp:GFP
    doi: 10.1038/nature06328 SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURE LEGENDS Figure S1 | Functional characterisation of SNMP fusion proteins. Dose-response curve for cVA in Or67d neurons of wild-type (Berlin), SNMP mutant (Or67d- GAL4/+;SNMP1/SNMP2), SNMP:GFP rescue (Or67d-GAL4/UAS- SNMP:GFP;SNMP1/SNMP2) and YFP(1):Or83b/SNMP:YFP(2) rescue (Or67d:GAL4,UAS-YFP(1):Or83b/UAS-SNMP:YFP(2);SNMP1,Or83b2/SNMP2,Or83b1 ) animals. Mean responses are plotted (± s.e.m; wild-type n=47, SNMP mutant n=46, SNMP:GFP rescue n=20; YFP(1):Or83b/SNMP:YFP(2) rescue n=22; ≤4 sensilla/animal, mixed genders). Wild-type and SNMP:GFP rescue responses to cVA are not significantly different (ANOVA; p>0.1175). YFP(1):Or83b/SNMP:YFP(2) rescue responses to cVA are highly significantly different from SNMP mutants and from wild- type (ANOVA; p<0.0001), indicating partial rescue. Figure S2 | Cell type-specific rescue of SNMP expression. a, Immunostaining for mCD8:GFP (anti-GFP, green) and LUSH (magenta) in LUSH-GAL4/UAS-mCD8:GFP animals reveals faithful recapitulation of endogenous expression by the LUSH-GAL4 driver. b, Two-colour RNA in situ hybridisation for SNMP (green) and Or67d (magenta) in antennal sections of wild-type, Or67d neuron SNMP rescue (Or67d-GAL4/UAS- SNMP;SNMP1/SNMP2) and support cell SNMP rescue (LUSH-GAL4/UAS- SNMP;SNMP1/SNMP2) animals. www.nature.com/nature 1 Benton et al., Figure S1 ) -1 wild-type 120 SNMP:GFP rescue 80 YFP(1):Or83b/SNMP:YFP(2) rescue 40 Corrected response (spikes s 0 SNMP-/- 0 0.1 1 10 100 cVA (%) www.nature.com/nature 2 Benton
    [Show full text]
  • Epirubicin Enhances TRAIL-Induced Apoptosis in Gastric Cancer Cells by Promoting Death Receptor Clustering in Lipid Rafts
    MOLECULAR MEDICINE REPORTS 4: 407-411, 2011 Epirubicin enhances TRAIL-induced apoptosis in gastric cancer cells by promoting death receptor clustering in lipid rafts LING XU, XIUJUAN QU, YING LUO, YE ZHANG, JING LIU, JINGLEI QU, LINGYUN ZHANG and YUNPENG LIU Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, P.R. China Received December 16, 2010; Accepted February 4, 2011 DOI: 10.3892/mmr.2011.439 Abstract. Gastric cancer cells are usually insensitive to tumor induce apoptosis in many cancer cells without causing signifi- necrosis factor-related apoptosis-inducing ligand (TRAIL). cant toxicity to normal cells. TRAIL triggers apoptosis upon In the present study, in MGC803 cells treated with 100 ng/ml engagement of two receptors named death receptor 4 (DR4) TRAIL for 24 h, the inhibition rate of cell proliferation was and death receptor 5 (DR5). In response to TRAIL, death 9.76±2.39% and the rate of cell apoptosis was only 4.37±1.45%. receptors recruit the Fas-associated death domain (FADD) Treatment with epirubicin (1.18 µg/ml, IC50 dose for 24 h) and and procaspase-8 and -10, hence forming the macromolecular TRAIL (100 ng/ml for 24 h) led to a marked increase in the complex, termed the death-inducing signaling complex (DISC). inhibition rate of cell proliferation and apoptosis compared to Within this complex, procaspase-8 and -10 are activated treatment with epirubicin or TRAIL alone (P<0.05). Moreover, and initiate the caspase cascade, leading to apoptosis (3,4). even more notable cleavage of caspase-3 and 8 was detected However, previous studies including our own have reported with the combination of epirubicin and TRAIL.
    [Show full text]
  • Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Yazan H
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2013 Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Yazan H. Akkam University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Biochemistry Commons, Medicinal and Pharmaceutical Chemistry Commons, and the Molecular Biology Commons Recommended Citation Akkam, Yazan H., "Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications" (2013). Theses and Dissertations. 908. http://scholarworks.uark.edu/etd/908 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology by Yazan H. Akkam Jordan University of Science and Technology Bachelor of Science in Pharmacy, 2001 Al-Balqa Applied University Master of Science in Biochemistry and Chemistry of Pharmaceuticals, 2005 August 2013 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Dr. David S. McNabb Dissertation Director Professor Roger E. Koeppe II Professor Gisela F. Erf Committee Member Committee Member Professor Ralph L. Henry Dr. Suresh K. Thallapuranam Committee Member Committee Member ABSTRACT Candida species are the fourth leading cause of nosocomial infection. The increased incidence of drug-resistant Candida species has emphasized the need for new antifungal drugs.
    [Show full text]
  • Looking for Therapeutic Antibodies in Next Generation Sequencing Repositories
    bioRxiv preprint doi: https://doi.org/10.1101/572958; this version posted March 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Title: Looking for Therapeutic Antibodies in Next Generation Sequencing Repositories. Authors: Konrad Krawczyk1*, Matthew Raybould2, Aleksandr Kovaltsuk2, Charlotte M. Deane2 1 NaturalAntibody, Hamburg, Germany 2 Oxford University Department of Statistics, Oxford, UK *Correspondence to [email protected] Abstract: Recently it has become possible to query the great diversity of natural antibody repertoires using Next Generation Sequencing (NGS). These methods are capable of producing millions of sequences in a single experiment. Here we compare Clinical Stage Therapeutic antibodies to the ~1b sequences from 60 independent sequencing studies in the Observed Antibody Space Database. Of the 242 post Phase I antibodies, we find 16 with sequence identity matches of 95% or better for both heavy and light chains. There are also 54 perfect matches to therapeutic CDR-H3 regions in the NGS outputs, suggesting a nontrivial amount of convergence between naturally observed sequences and those developed artificially. This has potential implications for both the discovery of antibody therapeutics and the legal protection of commercial antibodies. Introduction Antibodies are proteins in jawed vertebrates that recognize noxious molecules (antigens) for elimination. An organism expresses millions of diverse antibodies to increase the chances that some of them will be able to bind the foreign antigen, initiating the adaptive immune response.
    [Show full text]
  • IRON-REGULATORY FUNCTION of HEPCIDIN in the CHANNEL CATFISH and WESTERN CLAWED FROG Except Where Reference Is Made to the Work
    IRON-REGULATORY FUNCTION OF HEPCIDIN IN THE CHANNEL CATFISH AND WESTERN CLAWED FROG Except where reference is made to the work of others, the work described in this dissertation is my own or was done in collaboration with my advisory committee. This dissertation does not include proprietary or classified information. __________________________ Xueyou Hu Certificate of Approval: __________________________ __________________________ Jishu Shi, Co-Chair Edward E. Morrison, Co-Chair Assistant Professor Professor Anatomy, Physiology and Anatomy, Physiology and Pharmacology Pharmacology __________________________ __________________________ Robert J. Kemppainen Christine C. Dykstra Professor Associate Professor Anatomy, Physiology and Pathobiology Pharmacology __________________________ __________________________ Yingzi Cong Joe F. Pittman Assistant Professor Interim Dean Medicine Graduate School IRON-REGULATORY FUNCTION OF HEPCIDIN IN THE CHANNEL CATFISH AND WESTERN CLAWED FROG Xueyou Hu A Dissertation Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy Auburn, Alabama May 10, 2008 IRON-REGULATORY FUNCTION OF HEPCIDIN IN THE CHANNEL CATFISH AND WESTERN CLAWED FROG XUEYOU HU Permission is granted to Auburn University to make copies of this dissertation at its discretion, upon request of individuals or institutions at their expense. The author reserves all publication rights. ______________________________ Signature of Author ______________________________ Date
    [Show full text]
  • C19) United States 02) Patent Application Publication (10) Pub
    1111111111111111 IIIIII IIIII 111111111111111 111111111111111 IIIII IIIII IIIII 1111111111 11111111 US 20190241665Al c19) United States 02) Patent Application Publication (10) Pub. No.: US 2019/0241665 Al KREEGER et al. (43) Pub. Date: Aug. 8, 2019 (54) METHODS OF INHIBITING METASTASIS IN C07K 16/24 (2006.01) CANCER C12N 15/113 (2006.01) A61K 31/439 (2006.01) (71) Applicant: WISCONSIN ALUMNI RESEARCH (52) U.S. Cl. FOUNDATION, Madison, WI (US) CPC .......... C07K 1612854 (2013.01); A61P 35/04 (2018.01); C07K 16/24 (2013.01); Cl2N (72) Inventors: PAMELA KAY KREEGER, 2310/14 (2013.01); C12N 15/1138 (2013.01); MIDDLETON, WI (US); MOLLY A61K 31/439 (2013.01); C07K 2317/76 JANE CARROLL, MADISON, WI (2013.01); C07K 16/2866 (2013.01) (US); KAITLIN C. FOGG, FITCHBURG, WI (US) (57) ABSTRACT (21) Appl. No.: 16/256,065 As described herein, a method of inhibiting metastasis in (22) Filed: Jan. 24, 2019 cancer includes administering to a human subject diagnosed with a cancer of an organ of the peritoneal cavity a thera­ Related U.S. Application Data peutically effective amount of an inhibitor of CCR5 or P-selectin. Preferably the subject has a tumor positive for a (60) Provisional application No. 62/621,769, filed on Jan. ligand of P-selectin such as a CD24+ or PSGL-1 + tumor. 25, 2018. Analysis of samples from HGSOC patients confirmed increased MIP-1 fJ and P-selectin, suggesting that this novel Publication Classification multi-cellular mechanism can be targeted to slow or stop (51) Int. Cl. metastasis in cancers such as high-grade serous ovarian C07K 16/28 (2006.01) cancer, for example by using anti-CCR5 and P-selectin A61P 35/04 (2006.01) therapies developed for other indications.
    [Show full text]