Birefringence

Total Page:16

File Type:pdf, Size:1020Kb

Birefringence Birefringence Outline • Polarized Light (Linear & Circular) • Birefringent Materials • Quarter-Wave Plate & Half-Wave Plate Reading: Ch 8.5 in Kong and Shen 1 True / False 1. The plasma frequency ω p is the frequency above which a material becomes a plasma. 2. The magnitude of the E -field of this wave is 1 E =(ˆx +ˆy)ej(ωt−kz) 3. The wave above is polarized 45o with respect to the x-axis. 2 Microscopic Lorentz Oscillator Model k ω2 = spring o m ωo ω p 3 Sinusoidal Uniform Plane Waves Ey = A1cos(ωt − kz) EEyx==AA12coscos((ωtωt−−kzkz)) 4 ˜ j(ωt−kz) 45° Polarization Ex(z,t)=ˆxRe Eoe E ˜ j(ωt−kz) Ey(z,t)=ˆyRe Eoe Ey E E x yˆ Ey E Ex Ex E xˆ The complex Ey E amplitude, ˜ Ex E o ,is the E same for Ey both components. E Therefore Ex E Ex zˆ and y are always in E Ey phase. Ex Where is the magnetic field? E Ey 5 Superposition of Sinusoidal Uniform Plane Waves Can it only be at 45o ? 6 Arbitrary-Angle Linear Polarization E-field variation over time y (and space) Here, the y-component is in phase with the x-component, x but has different magnitude. 7 Arbitrary-Angle Linear Polarization Specifically: 0° linear (x) polarization: E y/Ex =0 90° linear (y) polarization: E y/Ex = ∞ 45° linear polarization: Ey/Ex =1 Arbitrary linear polarization: Ey/Ex = constant 8 Circular (or Helical) Polarization yˆ ˜ Ex(z,t)=ˆxEosin(ωt − kz) Ey ˜ E Ey(z,t)=ˆyEocos(ωt − kz) xˆ … or, more generally, Ex ˜ j(ωt−kz) Ex(z,t)=ˆxRe{−jEoe } ˜ j(ωt−kz) Ey(z,t)=ˆyRe{jEoe } The complex amplitude of the x- E zˆ component is -j times the complex amplitude of the y-component. The resulting E-field rotates counterclockwise around the Ex and Ey are always propagation-vector 90 (looking along z-axis). If projected on a constant z plane the E-field vector would rotate clockwise !!! 9 Right vs. Left Circular (or Helical) Polarization ˜ Ex(z,t)=−xˆEosin(ωt − kz) E-field variation ˜ Ey(z,t)=ˆyEocos(ωt − kz) over time (at z = 0) yˆ … or, more generally, ˜ j(ωt−kz Ex(z,t)=ˆxRe{+jEoe } xˆ ˜ j(ωt−kz) Ey(z,t)=ˆyRe{jEoe } Here, the complex amplitude of the x-component is +j times the complex amplitude of the y-component. The resulting E-field rotates clockwise around the So the components are always propagation-vector 90 (looking along z-axis). If projected on a constant z plane the E-field vector would rotate counterclockwise !!! 10 Unequal arbitrary-relative-phase components yield elliptical polarization Ex(z,t)=ˆxEoxcos(ωt − kz) E-field variation over time yˆ Ey(z,t)=ˆyEoycos(ωt − kz − θ) (and space) where xˆ … or, more generally, j(ωt−kz) Ex(z,t)=ˆxRe{Eoxe } j(ωt−kz−θ) Ey(z,t)=ˆyRe{Eoye } The resulting E-field can rotate clockwise or counter- clockwise around the k-vector … where are arbitrary (looking along k). complex amplitudes 11 Sinusoidal Uniform Plane Waves Left IEEE Definitions: Right 12 A linearly polarized wave can be represented as a sum of two circularly polarized waves 13 A linearly polarized wave can be represented as a sum of two circularly polarized waves ˜ E (z,t)=ˆxE˜ sin(ωt − kz) Ex(z,t)=−xˆEosin(ωt − kz) x o ˜ ˜ Ey(z,t)=ˆyEocos(ωt − kz) Ey(z,t)=ˆyEocos(ωt − kz) CIRCULAR LINEAR CIRCULAR 14 Polarizers for Linear and Circular Polarizations CASE 1: CASE 2: Linearly polarized light with magnitude E o oriented 45o Circularly polarized light with E with respect to the x-axis. magnitude o . S = E2/(2η) 2 in o Sin = Eo /η Wire grid polarizer 2 2 Sout = Eo /(2η) Sout = Eo /(4η) What is the average power at the input and output? 15 Todays Culture Moment Image is in the public domain. vision 16 Anisotropic Material The molecular "spring constant" can be different for different directions If , then the material has a single optics axis and is called uniaxial crystal 17 Microscopic Lorentz Oscillator Model In the transparent regime … yi xi xr yr 18 Uniaxial Crystal Optic axis Uniaxial crystals have one refractive index for light polarized along the optic axis (ne) Extraordinary and another for light polarized in polarizations either of the two directions perpendicular to it (no). Ordinary Light polarized along the optic axis polarizations is called the extraordinary ray, and light polarized perpendicular to it is called the ordinary ray. Ordinary… These polarization directions are the crystal principal axes. Extraordinary… 19 Birefringent Materials o-ray e-ray no ne Image by Arenamotanus http://www.flickr.com/photos/ arenamontanus/2756010517/ on flickr All transparent crystals with non-cubic lattice structure are birefringent. 20 Polarization Conversion Linear to Circular inside Polarization of output wave is determined by… 21 Quarter-Wave Plate Circularly polarizedyˆ output left circular output E xˆ 45o Ey λ/4 Ex fast axis linearly polarized input Example: If we are to make quarter-wave plate using calcite (no = 1.6584, ne = 1.4864), for incident light wavelength of = 590 nm, how thick would the plate be ? dcalcite QWP = (590nm/4) / (no-ne) = 858 nm 22 Half-Wave Plate The phase difference between the waves linearly polarized parallel and perpendicular to the optic axis is a half cycle Optic axis 45o LINEAR IN LINEAR OUT 23 yˆ Key Takeaways Ey EM Waves can be linearly, circularly, or E elliptically polarized. xˆ Ex A circularly polarized wave can be represented as a sum of two linearly polarized waves having π/ 2 phase shift. A linearly polarized wave can be represented as a sum of two circularly polarized waves. E Circular Polarization In the general case, waves are elliptically polarized. Waveplates can be made from birefringent materials: Quarter wave plate: λ/4=( no − ne)d (gives π/ 2 phase shift) Half wave plate: λ/2=( no − ne)d (gives π phase shift) 24 MIT OpenCourseWare http://ocw.mit.edu 6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms..
Recommended publications
  • Polarization Optics Polarized Light Propagation Partially Polarized Light
    The physics of polarization optics Polarized light propagation Partially polarized light Polarization Optics N. Fressengeas Laboratoire Mat´eriaux Optiques, Photonique et Syst`emes Unit´ede Recherche commune `al’Universit´ede Lorraine et `aSup´elec Download this document from http://arche.univ-lorraine.fr/ N. Fressengeas Polarization Optics, version 2.0, frame 1 The physics of polarization optics Polarized light propagation Partially polarized light Further reading [Hua94, GB94] A. Gerrard and J.M. Burch. Introduction to matrix methods in optics. Dover, 1994. S. Huard. Polarisation de la lumi`ere. Masson, 1994. N. Fressengeas Polarization Optics, version 2.0, frame 2 The physics of polarization optics Polarized light propagation Partially polarized light Course Outline 1 The physics of polarization optics Polarization states Jones Calculus Stokes parameters and the Poincare Sphere 2 Polarized light propagation Jones Matrices Examples Matrix, basis & eigen polarizations Jones Matrices Composition 3 Partially polarized light Formalisms used Propagation through optical devices N. Fressengeas Polarization Optics, version 2.0, frame 3 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere The vector nature of light Optical wave can be polarized, sound waves cannot The scalar monochromatic plane wave The electric field reads: A cos (ωt kz ϕ) − − A vector monochromatic plane wave Electric field is orthogonal to wave and Poynting vectors
    [Show full text]
  • Lab 8: Polarization of Light
    Lab 8: Polarization of Light 1 Introduction Refer to Appendix D for photos of the appara- tus Polarization is a fundamental property of light and a very important concept of physical optics. Not all sources of light are polarized; for instance, light from an ordinary light bulb is not polarized. In addition to unpolarized light, there is partially polarized light and totally polarized light. Light from a rainbow, reflected sunlight, and coherent laser light are examples of po- larized light. There are three di®erent types of po- larization states: linear, circular and elliptical. Each of these commonly encountered states is characterized Figure 1: (a)Oscillation of E vector, (b)An electromagnetic by a di®ering motion of the electric ¯eld vector with ¯eld. respect to the direction of propagation of the light wave. It is useful to be able to di®erentiate between 2 Background the di®erent types of polarization. Some common de- vices for measuring polarization are linear polarizers and retarders. Polaroid sunglasses are examples of po- Light is a transverse electromagnetic wave. Its prop- larizers. They block certain radiations such as glare agation can therefore be explained by recalling the from reflected sunlight. Polarizers are useful in ob- properties of transverse waves. Picture a transverse taining and analyzing linear polarization. Retarders wave as traced by a point that oscillates sinusoidally (also called wave plates) can alter the type of polar- in a plane, such that the direction of oscillation is ization and/or rotate its direction. They are used in perpendicular to the direction of propagation of the controlling and analyzing polarization states.
    [Show full text]
  • Polarization of EM Waves
    Light in different media A short review • Reflection of light: Angle of incidence = Angle of reflection • Refraction of light: Snell’s law Refraction of light • Total internal reflection For some critical angle light beam will be reflected: 1 n2 c sin n1 For some critical angle light beam will be reflected: Optical fibers Optical elements Mirrors i = p flat concave convex 1 1 1 p i f Summary • Real image can be projected on a screen • Virtual image exists only for observer • Plane mirror is a flat reflecting surface Plane Mirror: ip • Convex mirrors make objects smaller • Concave mirrors make objects larger 1 Spherical Mirror: fr 2 Geometrical Optics • “Geometrical” optics (rough approximation): light rays (“particles”) that travel in straight lines. • “Physical” Classical optics (good approximation): electromagnetic waves which have amplitude and phase that can change. • Quantum Optics (exact): Light is BOTH a particle (photon) and a wave: wave-particle duality. Refraction For y = 0 the same for all x, t Refraction Polarization Polarization By Reflection Different polarization of light get reflected and refracted with different amplitudes (“birefringence”). At one particular angle, the parallel polarization is NOT reflected at all! o This is the “Brewster angle” B, and B + r = 90 . (Absorption) o n1 sin n2 sin(90 ) n2 cos n2 tan Polarizing Sunglasses n1 Polarized Sunglasses B Linear polarization Ey Asin(2x / t) Vertically (y axis) polarized wave having an amplitude A, a wavelength of and an angular velocity (frequency * 2) of , propagating along the x axis. Linear polarization Vertical Ey Asin(2x / t) Horizontal Ez Asin(2x / t) Linear polarization • superposition of two waves that have the same amplitude and wavelength, • are polarized in two perpendicular planes and oscillate in the same phase.
    [Show full text]
  • Second Harmonic Generation in Nonlinear Optical Crystal
    Second Harmonic Generation in Nonlinear Optical Crystal Diana Jeong 1. Introduction In traditional electromagnetism textbooks, polarization in the dielectric material is linearly proportional to the applied electric field. However since in 1960, when the coherent high intensity light source became available, people realized that the linearity is only an approximation. Instead, the polarization can be expanded in terms of applied electric field. (Component - wise expansion) (1) (1) (2) (3) Pk = ε 0 (χ ik Ei + χ ijk Ei E j + χ ijkl Ei E j Ek +L) Other quantities like refractive index (n) can be expanded in terms of electric field as well. And the non linear terms like second (E^2) or third (E^3) order terms become important. In this project, the optical nonlinearity is present in both the source of the laser-mode-locked laser- and the sample. Second Harmonic Generation (SHG) is a coherent optical process of radiation of dipoles in the material, dependent on the second term of the expansion of polarization. The dipoles are oscillated with the applied electric field of frequency w, and it radiates electric field of 2w as well as 1w. So the near infrared input light comes out as near UV light. In centrosymmetric materials, SHG cannot be demonstrated, because of the inversion symmetries in polarization and electric field. The only odd terms survive, thus the second order harmonics are not present. SHG can be useful in imaging biological materials. For example, the collagen fibers and peripheral nerves are good SHG generating materials. Since the SHG is a coherent process it, the molecules, or the dipoles are not excited in terms of the energy levels.
    [Show full text]
  • Polarization (Waves)
    Polarization (waves) Polarization (also polarisation) is a property applying to transverse waves that specifies the geometrical orientation of the oscillations.[1][2][3][4][5] In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave.[4] A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic [6] waves such as light and radio waves, gravitational waves, and transverse Circular polarization on rubber sound waves (shear waves) in solids. thread, converted to linear polarization An electromagnetic wave such as light consists of a coupled oscillating electric field and magnetic field which are always perpendicular; by convention, the "polarization" of electromagnetic waves refers to the direction of the electric field. In linear polarization, the fields oscillate in a single direction. In circular or elliptical polarization, the fields rotate at a constant rate in a plane as the wave travels. The rotation can have two possible directions; if the fields rotate in a right hand sense with respect to the direction of wave travel, it is called right circular polarization, while if the fields rotate in a left hand sense, it is called left circular polarization.
    [Show full text]
  • Lecture 14: Polarization
    Matthew Schwartz Lecture 14: Polarization 1 Polarization vectors In the last lecture, we showed that Maxwell’s equations admit plane wave solutions ~ · − ~ · − E~ = E~ ei k x~ ωt , B~ = B~ ei k x~ ωt (1) 0 0 ~ ~ Here, E0 and B0 are called the polarization vectors for the electric and magnetic fields. These are complex 3 dimensional vectors. The wavevector ~k and angular frequency ω are real and in the vacuum are related by ω = c ~k . This relation implies that electromagnetic waves are disper- sionless with velocity c: the speed of light. In materials, like a prism, light can have dispersion. We will come to this later. In addition, we found that for plane waves 1 B~ = ~k × E~ (2) 0 ω 0 This equation implies that the magnetic field in a plane wave is completely determined by the electric field. In particular, it implies that their magnitudes are related by ~ ~ E0 = c B0 (3) and that ~ ~ ~ ~ ~ ~ k · E0 =0, k · B0 =0, E0 · B0 =0 (4) In other words, the polarization vector of the electric field, the polarization vector of the mag- netic field, and the direction ~k that the plane wave is propagating are all orthogonal. To see how much freedom there is left in the plane wave, it’s helpful to choose coordinates. We can always define the zˆ direction as where ~k points. When we put a hat on a vector, it means the unit vector pointing in that direction, that is zˆ=(0, 0, 1). Thus the electric field has the form iω z −t E~ E~ e c = 0 (5) ~ ~ which moves in the z direction at the speed of light.
    [Show full text]
  • Polarization of Light Demonstration This Demonstration Explains Transverse Waves and Some Surprising Properties of Polarizers
    Polarization of Light Demonstration This demonstration explains transverse waves and some surprising properties of polarizers. Number of Participants: Unlimited Audience: Middle (ages 11-13) and up Duration: 5-10 min Microbehunter Difficulty: Level 1 Materials Required: • 3 sheets of polarizing film – at least (20mm)2 • Long spring or Slinky Setup: 1. If necessary, prepare polarizing sheets by cutting a larger sheet into smaller pieces. While larger pieces of polarizing material are preferred, the demonstration works with smaller pieces. Presenter Brief: Light is a transverse wave because its two components, electric and magnetic fields, oscillate perpendicular to the direction of propagation. In general, a beam of light will consist of many photons traveling in the same direction but with arbitrary alignment of their electric and magnetic fields. Specifically, for an unpolarized light beam the electromagnetic components of each photon, while confined to a plane, are not aligned. If light is polarized, photons have aligned electromagnetic components and travel in the same direction. Polarization of Light Vocabulary: • Light – Electromagnetic radiation, which can be in the visible range. • Electromagnetic – A transverse wave consisting of oscillating electric and magnetic components. • Transverse wave – A wave consisting of oscillations perpendicular to the direction of propagation. • Polarized light – A beam of photons propagating with aligned oscillating components.Polarizer – A material which filters homogenous light along a singular axis and thus blocks arbitrary orientations and allows a specific orientation of oscillations. Physics & Explanation: Middle (ages 11-13) and general public: Light, or an electromagnetic wave, is a transverse wave with oscillating electric and magnetic components. Recall that in a transverse wave, the vibrations,” or oscillations, are perpendicular to the direction of propagation.
    [Show full text]
  • Lecture 26 – Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam
    Physics 42200 Waves & Oscillations Lecture 26 – Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam Almost all grades have been uploaded to http://chip.physics.purdue.edu/public/422/spring2013/ These grades have not been adjusted Exam questions and solutions are available on the Physics 42200 web page . Outline for the rest of the course • Polarization • Geometric Optics • Interference • Diffraction • Review Polarization by Partial Reflection • Continuity conditions for Maxwell’s Equations at the boundary between two materials • Different conditions for the components of or parallel or perpendicular to the surface. Polarization by Partial Reflection • Continuity of electric and magnetic fields were different depending on their orientation: – Perpendicular to surface = = – Parallel to surface = = perpendicular to − cos + cos − cos = cos + cos cos = • Solve for /: − = !" + !" • Solve for /: !" = !" + !" perpendicular to cos − cos cos = cos + cos cos = • Solve for /: − = !" + !" • Solve for /: !" = !" + !" Fresnel’s Equations • In most dielectric media, = and therefore # sin = = = = # sin • After some trigonometry… sin − tan − = − = sin + tan + ) , /, /01 2 ) 45/ 2 /01 2 * = - . + * = + * )+ /01 2+32* )+ /01 2+32* 45/ 2+62* For perpendicular and parallel to plane of incidence. Application of Fresnel’s Equations • Unpolarized light in air ( # = 1) is incident
    [Show full text]
  • Lecture 11: Introduction to Nonlinear Optics I
    Lecture 11: Introduction to nonlinear optics I. Petr Kužel Formulation of the nonlinear optics: nonlinear polarization Classification of the nonlinear phenomena • Propagation of weak optic signals in strong quasi-static fields (description using renormalized linear parameters) ! Linear electro-optic (Pockels) effect ! Quadratic electro-optic (Kerr) effect ! Linear magneto-optic (Faraday) effect ! Quadratic magneto-optic (Cotton-Mouton) effect • Propagation of strong optic signals (proper nonlinear effects) — next lecture Nonlinear optics Experimental effects like • Wavelength transformation • Induced birefringence in strong fields • Dependence of the refractive index on the field intensity etc. lead to the concept of the nonlinear optics The principle of superposition is no more valid The spectral components of the electromagnetic field interact with each other through the nonlinear interaction with the matter Nonlinear polarization Taylor expansion of the polarization in strong fields: = ε χ + χ(2) + χ(3) + Pi 0 ij E j ijk E j Ek ijkl E j Ek El ! ()= ε χ~ (− ′ ) (′ ) ′ + Pi t 0 ∫ ij t t E j t dt + χ(2) ()()()− ′ − ′′ ′ ′′ ′ ′′ + ∫∫ ijk t t ,t t E j t Ek t dt dt + χ(3) ()()()()− ′ − ′′ − ′′′ ′ ′′ ′′′ ′ ′′ + ∫∫∫ ijkl t t ,t t ,t t E j t Ek t El t dt dt + ! ()ω = ε χ ()ω ()ω + ω χ(2) (ω ω ω ) (ω ) (ω )+ Pi 0 ij E j ∫ d 1 ijk ; 1, 2 E j 1 Ek 2 %"$"""ω"=ω +"#ω """" 1 2 + ω ω χ(3) ()()()()ω ω ω ω ω ω ω + ∫∫d 1d 2 ijkl ; 1, 2 , 3 E j 1 Ek 2 El 3 ! %"$""""ω"="ω +ω"#+ω"""""" 1 2 3 Linear electro-optic effect (Pockels effect) Strong low-frequency
    [Show full text]
  • Glossary of Terms Used in Photochemistry, 3Rd Edition (IUPAC
    Pure Appl. Chem., Vol. 79, No. 3, pp. 293–465, 2007. doi:10.1351/pac200779030293 © 2007 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC AND BIOMOLECULAR CHEMISTRY DIVISION* SUBCOMMITTEE ON PHOTOCHEMISTRY GLOSSARY OF TERMS USED IN PHOTOCHEMISTRY 3rd EDITION (IUPAC Recommendations 2006) Prepared for publication by S. E. BRASLAVSKY‡ Max-Planck-Institut für Bioanorganische Chemie, Postfach 10 13 65, 45413 Mülheim an der Ruhr, Germany *Membership of the Organic and Biomolecular Chemistry Division Committee during the preparation of this re- port (2003–2006) was as follows: President: T. T. Tidwell (1998–2003), M. Isobe (2002–2005); Vice President: D. StC. Black (1996–2003), V. T. Ivanov (1996–2005); Secretary: G. M. Blackburn (2002–2005); Past President: T. Norin (1996–2003), T. T. Tidwell (1998–2005) (initial date indicates first time elected as Division member). The list of the other Division members can be found in <http://www.iupac.org/divisions/III/members.html>. Membership of the Subcommittee on Photochemistry (2003–2005) was as follows: S. E. Braslavsky (Germany, Chairperson), A. U. Acuña (Spain), T. D. Z. Atvars (Brazil), C. Bohne (Canada), R. Bonneau (France), A. M. Braun (Germany), A. Chibisov (Russia), K. Ghiggino (Australia), A. Kutateladze (USA), H. Lemmetyinen (Finland), M. Litter (Argentina), H. Miyasaka (Japan), M. Olivucci (Italy), D. Phillips (UK), R. O. Rahn (USA), E. San Román (Argentina), N. Serpone (Canada), M. Terazima (Japan). Contributors to the 3rd edition were: A. U. Acuña, W. Adam, F. Amat, D. Armesto, T. D. Z. Atvars, A. Bard, E. Bill, L. O. Björn, C. Bohne, J. Bolton, R. Bonneau, H.
    [Show full text]
  • Chapter 9 Refraction and Polarization of Light
    Chapter 9 Refraction and Polarization of Light Name: Lab Partner: Section: 9.1 Purpose The purpose of this experiment is to demonstrate several consequences of the fact that materials have di↵erent indexes of refraction for light. Refraction, total internal reflection and the polarization of light reflecting from a nonmetallic surface will be investigated 9.2 Introduction Light can travel through many transparent media such as water, glass and air. When this happens the speed of light is no longer c =3 108 m/s (the speed in vacuum), but is less. This reduction in the speed depends on the material.⇥ This change in speed and direction is called refraction and is governed by Snell’s Law of Refraction. n1sin✓1 = n2sin✓2 (9.1) The ratio of the speed of light in vacuum to that in the medium is called the index of refraction (n). The index of refraction is a number greater than or equal to one. The angles (✓1 and ✓2)aremeasuredwithrespecttothenormal(perpendicular)totheinterfacebetween the two media (See Figure 9.1). When light passes from a medium of higher index of refraction to a medium with a lower index of refraction, the light ray can be refracted at 900.Thisphenomenoniscalledtotal internal reflection.Forincidentanglesgreaterthan✓c,thereisnorefractedbeam.The transmission of light by fiber-optic cable uses this e↵ect. The critical angle of incidence where total internal reflection occurs is given by: n2 sin✓c = n1 >n2 (9.2) n1 If this angle and the index of refraction of one of the two media is known, the index of refraction of the other medium can be found.
    [Show full text]
  • Understanding Polarization
    Semrock Technical Note Series: Understanding Polarization The Standard in Optical Filters for Biotech & Analytical Instrumentation Understanding Polarization 1. Introduction Polarization is a fundamental property of light. While many optical applications are based on systems that are “blind” to polarization, a very large number are not. Some applications rely directly on polarization as a key measurement variable, such as those based on how much an object depolarizes or rotates a polarized probe beam. For other applications, variations due to polarization are a source of noise, and thus throughout the system light must maintain a fixed state of polarization – or remain completely depolarized – to eliminate these variations. And for applications based on interference of non-parallel light beams, polarization greatly impacts contrast. As a result, for a large number of applications control of polarization is just as critical as control of ray propagation, diffraction, or the spectrum of the light. Yet despite its importance, polarization is often considered a more esoteric property of light that is not so well understood. In this article our aim is to answer some basic questions about the polarization of light, including: what polarization is and how it is described, how it is controlled by optical components, and when it matters in optical systems. 2. A description of the polarization of light To understand the polarization of light, we must first recognize that light can be described as a classical wave. The most basic parameters that describe any wave are the amplitude and the wavelength. For example, the amplitude of a wave represents the longitudinal displacement of air molecules for a sound wave traveling through the air, or the transverse displacement of a string or water molecules for a wave on a guitar string or on the surface of a pond, respectively.
    [Show full text]