Lecture 11: Introduction to Nonlinear Optics I

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 11: Introduction to Nonlinear Optics I Lecture 11: Introduction to nonlinear optics I. Petr Kužel Formulation of the nonlinear optics: nonlinear polarization Classification of the nonlinear phenomena • Propagation of weak optic signals in strong quasi-static fields (description using renormalized linear parameters) ! Linear electro-optic (Pockels) effect ! Quadratic electro-optic (Kerr) effect ! Linear magneto-optic (Faraday) effect ! Quadratic magneto-optic (Cotton-Mouton) effect • Propagation of strong optic signals (proper nonlinear effects) — next lecture Nonlinear optics Experimental effects like • Wavelength transformation • Induced birefringence in strong fields • Dependence of the refractive index on the field intensity etc. lead to the concept of the nonlinear optics The principle of superposition is no more valid The spectral components of the electromagnetic field interact with each other through the nonlinear interaction with the matter Nonlinear polarization Taylor expansion of the polarization in strong fields: = ε χ + χ(2) + χ(3) + Pi 0 ij E j ijk E j Ek ijkl E j Ek El ! ()= ε χ~ (− ′ ) (′ ) ′ + Pi t 0 ∫ ij t t E j t dt + χ(2) ()()()− ′ − ′′ ′ ′′ ′ ′′ + ∫∫ ijk t t ,t t E j t Ek t dt dt + χ(3) ()()()()− ′ − ′′ − ′′′ ′ ′′ ′′′ ′ ′′ + ∫∫∫ ijkl t t ,t t ,t t E j t Ek t El t dt dt + ! ()ω = ε χ ()ω ()ω + ω χ(2) (ω ω ω ) (ω ) (ω )+ Pi 0 ij E j ∫ d 1 ijk ; 1, 2 E j 1 Ek 2 %"$"""ω"=ω +"#ω """" 1 2 + ω ω χ(3) ()()()()ω ω ω ω ω ω ω + ∫∫d 1d 2 ijkl ; 1, 2 , 3 E j 1 Ek 2 El 3 ! %"$""""ω"="ω +ω"#+ω"""""" 1 2 3 Linear electro-optic effect (Pockels effect) Strong low-frequency field Es (renormalization of optical constants due to second-order susceptibility) Propagation of a weak high-frequency optical field E in such a disturbed linearized medium = ε χ + χ(2) ( S + S ) Pi 0 ij E j ijk E j Ek Ek E j New effective permittivity tensor: ε = ε ()+ χ + χ(2) S = εL + χ(2) S ij 0 1 ij 2 ijk Ek ij 2 ijk Ek Wave equation (anisotropic media): ()⋅ − 2 + ω2µ ε⋅ = k k E k E 0 E 0 Pockels effect: continued Description using deformations of the indicatrix We define the reciprocal dielectric tensor: = ε (ε−1 ) Kij 0 ij Indicatrix in the system of the principal dielectric axes: 2 2 2 x + y + z = 2 2 2 1 nx ny nz Indicatrix in a general system of axes: = Kij xi x j 1 Now the external strong electric field is switched on… Indicatrix in electro-optics Reciprocal dielectric tensor is renormalized due to external field: ′ = + S Kij Kij rijk Ek rijk … Pockels electro-optic tensor ′ = Deformed indicatrix: Kij xi x j 1 ′ 2 + ′ 2 + ′ 2 + ′ + ′ + ′ = K11x K22 y K33z 2K12 xy 2K13xz 2K23 yz 1 • Length of principal axes is modified • Orientation of the ellipsoid is modified The Pockels tensor and the second order susceptibility tensor are related by the following equation: ε ε χ(2) = − ii jj r ijk ε ijk 2 0 Pockels tensor ε Intrinsic symmetry: related to the fact that ij is a hermitic tensor: = rijk rjik For symmetric tensors Voigt notation can be introduced: indices (ij) 11 22 33 23 or 32 13 or 31 12 or 21 contraction (l)123456 = A 6×3 matrix rlk is introduced, where l 1…6 is a contracted index, and k =1…3. r r r 11 12 13 r21 r22 r23 r r r r = 31 32 33 lk r r r 41 42 43 r51 r52 r53 r61 r62 r63 Pockels effect: cubic media In cubic non-centrosymmetric media (GaAs, InP, GaP, CdTe, ZnTe…): 0 0 0 0 0 0 0 0 0 = rlk = = r 0 0 r63 r52 r41 41 0 r41 0 0 0 r41 = For an applied electric field E (Ex, Ey, Ez): x2 y2 z2 + + + 2r E yz + 2r E xz + 2r E xy =1 n2 n2 n2 41 x 41 y 41 z Example: E//c x2 y2 z2 + + + 2r E xy =1 n2 n2 n2 41 Rotation by 45° in the xy plane will diagonalize the equation: 1 1 x = ()η + ξ η = ()x + y 2 2 1 1 y = ()η − ξ ξ = ()x − y 2 2 One gets: n 1 3 nξ = ≈ n + n r E − 2 2 41 1 n r41E n 1 3 nη = ≈ n − n r E + 2 2 41 1 n r41E = nz n Example: E//c, continued n 1 3 nξ = ≈ n + n r E − 2 2 41 1 n r41E n 1 3 nη = ≈ n − n r E + 2 2 41 1 n r41E = nz n Transverse geometry: Longitudinal geometry: (001) (110) (110) (110) n n − ∆n Optical n + ∆n Optical n + ∆n beam beam (110) (001) Example: E // (1,1,0) x2 y2 z2 + + + 2r E yz + 2r E xz =1 n2 n2 n2 41 41 1) Rotation by 45° in the xy plane (as previously); new variables ξ, η ξ2 η2 z2 + + + 2r E ηz =1 n2 n2 n2 41 2) Rotation by 45° in the ηz plane; new variables η’, z’ (110) 1 3 n ′ ≈ n + n r E z 2 41 1 3 nη′ ≈ n − n r E 2 41 (001) n + ∆n nξ = n n − ∆n Optical beam Electro-optic modulation quarter-wave polarizer plate analyzer π/4 π/4 δ 0 π , 0 /2 δ1 EO modulator It was shown previously 1 1 1+ δ I = ()1− cos(δ + δ ) = ()1+ sin δ ≈ 1 2 0 1 2 1 2 Electro-optic dephasing: π π 3 U δ = 2 3 Transverse setup: δ = n r L Longitudinal setup: 1 n r41 U 1 λ 41 d λ Quadratic electro-optic effect (Kerr effect) Kerr effect can be of a great importance in the media where the Pockels effect vanishes (centrosymmetric media): = ε χ + χ(3) ( S S + S S + S S ) Pi 0 ij E j ijkl E j Ek El Ek E j El El E j Ek ε NL = χ(3) S S ij 3 ijkl Ek El The same treatment can be used as for the linear Pockels effect; the following differences should be emphasized: • it is a 3rd order nonlinear effect (the electric field should be very strong) • it is a quadratic effect in E, so the induced birefringence is proportional ∆ ∼ S 2 to n (E ) • the effect depends on a 4th rank tensor, so the symmetry properties are different comparing to the linear EO effect Magneto-optic effects (Faraday, Cotton-Mouton) The polarization, and consequently, the permittivity can depend on the magnetic field: = ε χ + χ(2) + χ(3) + (2) + (3) Pi 0 ij E j ijk E j Ek ijkl E j Ek El hijk Bk E j hijkl Bl Bk E j ! Faraday Cotton-Mouton effect effect ε ()= (2) + (3) + ij B hijk Bk hijkl Bl Bk ! Intrinsic symmetry properties in the magnetic field (Onsager theorem): ε ()= ε (− )= ε∗ ()= ε∗ (− ) ij B ji B ji B ij B From this relation we find conditions for hijk and hijkl Faraday effect ε ()= (2) ij B hijk Bk ε ()= ε (− )= ε∗ ()= ε∗ (− ) ij B ji B ji B ij B These conditions are similar as for the spatial dispersion and the optical activity The tensor hijk is • purely imaginary • antisymmetric in first two indices Similarly as for the optical activity, we can define the effective permittivity tensor: ε0 xx ig12 ig13 ε = − ig ε0 ig 12 yy 23 − − ε0 ig13 ig23 zz Effect of a longitudinal field Cubic non-centrosymmetric medium Wave equation: 2 − 2 ∆ n0 n i B 0 Ex − ∆ 2 − 2 = i B n0 n 0 Ey 0 2 0 0 n0 Ez Eigenvalues Eigenvectors (effective refractive indices) (Polarization direction) ∆ B 1 1 n ≈ n ± I ,II 0 2n − i , i 0 0 0 • Cumulative character of the Faraday effect Effect of a transverse field Wave equation: 2 − 2 n0 n 0 0 Ex 0 n2 − n2 i∆ B E = 0 0 y − ∆ 2 0 i B n0 Ez Eigenvalues: = nI n0 ∆2 2 ≈ − B nII n0 4 2n0 Cotton-Mouton effect: very small correction to a linear birefringence.
Recommended publications
  • Pockels Cells (EO Q-Switches)
    Pockels Cells (EO Q-switches) The Electro-Optic Effect The linear electro-optic effect, also known as the Pockels effect, describes the variation of the refractive index of an optical medium under the influence of an external electrical field. In this case certain crystals become birefringent in the direction of the optical axis which is isotropic without an applied voltage. When linearly polarized light propagates along the direction of the optical axis of the crystal, its state of polarization remains unchanged as long as no voltage is applied. When a voltage is applied, the light exits the crystal in a state of polarization which is in general elliptical. In this way phase plates can be realized in analogy to conventional polarization optics. Phase plates introduce a phase shift between the ordinary and the extraordinary beam. Unlike conventional optics, the magnitude of the phase shift can be adjusted with an externally applied voltage and a λ/4 or λ/2 retardation can be achieved at a given wavelength. This presupposes that the plane of polarization of the incident light bisects the right angle between the axes which have been electrically induced. In the longitudinal Pockels effect the direction of the light beam is parallel to the direction of the electric field. In the transverse Pockels cell they are perpendicular to each other. The most common application of the Pockels cell is the switching of the quality factor of a laser cavity. Q-Switching Laser activity begins when the threshold condition is met: the optical amplification for one round trip in the laser resonator is greater than the losses (output coupling, diffraction, absorption, scattering).
    [Show full text]
  • Laser Modulation Solutions for Two-Photon Microscopy
    A Coherent White Paper Laser Modulation Solutions for Two-Photon Microscopy Since the seminal work in two-photon laser scanning fluorescence microscopy published in 1990 (Denk, et al., 1990), the technique has benefitted from step changes in laser technology. These improvements have furthered the penetration of the technique initially from a physics laboratory, to cell biology, disease studies and advanced neuroscience imaging. One box, tunable Ti:Sapphire lasers started this trend around 2001. Some years later, automatic dispersion control was added to the lasers to optimize the pulse duration at the sample plane of the microscope. As probes excitable at wavelengths longer than the upper limit of Ti:Sapphire lasers became more mature and efficient, after 2010 laser companies turned to Optical Parametric Oscillators to address this need for an augmented color palette, deeper imaging and less photodamage. In this article, we discuss the next phase in this evolution; the integration of fast power modulation in the laser system, and how this enables faster setup time, highest performance and low cost of ownership. Requirements for laser power control in two-photon microscopy. In its simplest form, continuous control of laser power can be achieved by addition of a phase retarding waveplate and polarizing analyser. By rotation of the waveplate, the transmission of the laser power through the analyser can typically be changed from 0.2% transmission to ~99%. By motorizing the waveplate this process can be automated to alter the power at the imaging plane in the microscope to equalize focused fluences at different depth frames, for example. Most modern laser scanning two-photon microscopes, however, require a faster modulation speed.
    [Show full text]
  • Magneto-Optical Metamaterials with Extraordinarily Strong Magneto-Optical Effect Xiaoguang Luo, Ming Zhou, Jingfeng Liu, Teng Qiu, and Zongfu Yu
    Magneto-optical metamaterials with extraordinarily strong magneto-optical effect Xiaoguang Luo, Ming Zhou, Jingfeng Liu, Teng Qiu, and Zongfu Yu Citation: Applied Physics Letters 108, 131104 (2016); doi: 10.1063/1.4945051 View online: http://dx.doi.org/10.1063/1.4945051 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/108/13?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Enhanced Faraday rotation in hybrid magneto-optical metamaterial structure of bismuth-substituted-iron-garnet with embedded-gold-wires J. Appl. Phys. 119, 103105 (2016); 10.1063/1.4943651 Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface Appl. Phys. Lett. 107, 121104 (2015); 10.1063/1.4931704 Plasmon resonance enhancement of magneto-optic effects in garnets J. Appl. Phys. 107, 09A925 (2010); 10.1063/1.3367981 The magneto-optical Barnett effect in metals (invited) J. Appl. Phys. 103, 07B118 (2008); 10.1063/1.2837667 Anisotropy of quadratic magneto-optic effects in reflection J. Appl. Phys. 91, 7293 (2002); 10.1063/1.1449436 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP: 128.104.78.155 On: Fri, 03 Jun 2016 18:26:37 APPLIED PHYSICS LETTERS 108, 131104 (2016) Magneto-optical metamaterials with extraordinarily strong magneto-optical effect Xiaoguang Luo,1,2 Ming Zhou,2 Jingfeng Liu,2,3 Teng Qiu,1 and Zongfu Yu 2,a) 1Department of Physics, Southeast University, Nanjing 211189, China 2Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Wisconsin 53706, USA 3College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China (Received 24 February 2016; accepted 15 March 2016; published online 29 March 2016) In optical frequencies, natural materials exhibit very weak magneto-optical effect.
    [Show full text]
  • Second Harmonic Generation in Nonlinear Optical Crystal
    Second Harmonic Generation in Nonlinear Optical Crystal Diana Jeong 1. Introduction In traditional electromagnetism textbooks, polarization in the dielectric material is linearly proportional to the applied electric field. However since in 1960, when the coherent high intensity light source became available, people realized that the linearity is only an approximation. Instead, the polarization can be expanded in terms of applied electric field. (Component - wise expansion) (1) (1) (2) (3) Pk = ε 0 (χ ik Ei + χ ijk Ei E j + χ ijkl Ei E j Ek +L) Other quantities like refractive index (n) can be expanded in terms of electric field as well. And the non linear terms like second (E^2) or third (E^3) order terms become important. In this project, the optical nonlinearity is present in both the source of the laser-mode-locked laser- and the sample. Second Harmonic Generation (SHG) is a coherent optical process of radiation of dipoles in the material, dependent on the second term of the expansion of polarization. The dipoles are oscillated with the applied electric field of frequency w, and it radiates electric field of 2w as well as 1w. So the near infrared input light comes out as near UV light. In centrosymmetric materials, SHG cannot be demonstrated, because of the inversion symmetries in polarization and electric field. The only odd terms survive, thus the second order harmonics are not present. SHG can be useful in imaging biological materials. For example, the collagen fibers and peripheral nerves are good SHG generating materials. Since the SHG is a coherent process it, the molecules, or the dipoles are not excited in terms of the energy levels.
    [Show full text]
  • Measurement of Quadratic Terahertz Optical Nonlinearities Using Second
    Measurement of quadratic Terahertz optical nonlinearities using second harmonic lock-in detection Shuai Lin,1 Shukai Yu,1 and Diyar Talbayev1, ∗ 1Department of Physics and Engineering Physics, Tulane University, 6400 Freret St., New Orleans, LA 70118, USA (Dated: October 16, 2018) Abstract We present a method to measure quadratic Terahertz optical nonlinearities in Terahertz time- domain spectroscopy. We use a rotating linear polarizer (a polarizing chopper) to modulate the amplitude of the incident THz pulse train. We use a phase-sensitive lock-in detection at the fundamental and the second harmonic of the modulation frequency to separate the materials’ responses that are linear and quadratic in Terahertz electric field. We demonstrate this method by measuring the quadratic Terahertz Kerr effect in the presence of the much stronger linear electro-optic effect in the (110) GaP crystal. We propose that the method can be used to detect Terahertz second harmonic generation in noncentrosymmetric media in time-domain spectroscopy, with broad potential applications in nonlinear Terahertz photonics and related technology. arXiv:1810.06427v1 [physics.app-ph] 26 Sep 2018 1 I. INTRODUCTION Nonlinear Terahertz (THz) optics has blossomed into an exciting and active area of research with the advent of table-top high-field THz sources1–5. Among a multitude of non- linear phenomena, we focus here on the nonlinearities that are quadratic in THz electric field ET . Such quadratic effects can be induced in the second and third orders via the non- linear polarizabilities χ(2)(ET )2 and χ(3)(ET )2Eω, where Eω is an optical field. The second order nonlinearity χ(2) can lead to second harmonic generation (or sum frequency mixing) in noncentrosymmetric crystals.
    [Show full text]
  • Lecture 14: Polarization
    Matthew Schwartz Lecture 14: Polarization 1 Polarization vectors In the last lecture, we showed that Maxwell’s equations admit plane wave solutions ~ · − ~ · − E~ = E~ ei k x~ ωt , B~ = B~ ei k x~ ωt (1) 0 0 ~ ~ Here, E0 and B0 are called the polarization vectors for the electric and magnetic fields. These are complex 3 dimensional vectors. The wavevector ~k and angular frequency ω are real and in the vacuum are related by ω = c ~k . This relation implies that electromagnetic waves are disper- sionless with velocity c: the speed of light. In materials, like a prism, light can have dispersion. We will come to this later. In addition, we found that for plane waves 1 B~ = ~k × E~ (2) 0 ω 0 This equation implies that the magnetic field in a plane wave is completely determined by the electric field. In particular, it implies that their magnitudes are related by ~ ~ E0 = c B0 (3) and that ~ ~ ~ ~ ~ ~ k · E0 =0, k · B0 =0, E0 · B0 =0 (4) In other words, the polarization vector of the electric field, the polarization vector of the mag- netic field, and the direction ~k that the plane wave is propagating are all orthogonal. To see how much freedom there is left in the plane wave, it’s helpful to choose coordinates. We can always define the zˆ direction as where ~k points. When we put a hat on a vector, it means the unit vector pointing in that direction, that is zˆ=(0, 0, 1). Thus the electric field has the form iω z −t E~ E~ e c = 0 (5) ~ ~ which moves in the z direction at the speed of light.
    [Show full text]
  • Nonlinear Optical Characterization of 2D Materials
    nanomaterials Review Nonlinear Optical Characterization of 2D Materials Linlin Zhou y, Huange Fu y, Ting Lv y, Chengbo Wang y, Hui Gao, Daqian Li, Leimin Deng and Wei Xiong * Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; [email protected] (L.Z.); [email protected] (H.F.); [email protected] (T.L.); [email protected] (C.W.); [email protected] (H.G.); [email protected] (D.L.); [email protected] (L.D.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 7 October 2020; Accepted: 30 October 2020; Published: 16 November 2020 Abstract: Characterizing the physical and chemical properties of two-dimensional (2D) materials is of great significance for performance analysis and functional device applications. As a powerful characterization method, nonlinear optics (NLO) spectroscopy has been widely used in the characterization of 2D materials. Here, we summarize the research progress of NLO in 2D materials characterization. First, we introduce the principles of NLO and common detection methods. Second, we introduce the recent research progress on the NLO characterization of several important properties of 2D materials, including the number of layers, crystal orientation, crystal phase, defects, chemical specificity, strain, chemical dynamics, and ultrafast dynamics of excitons and phonons, aiming to provide a comprehensive review on laser-based characterization for exploring 2D material properties. Finally, the future development trends, challenges of advanced equipment construction, and issues of signal modulation are discussed. In particular, we also discuss the machine learning and stimulated Raman scattering (SRS) technologies which are expected to provide promising opportunities for 2D material characterization.
    [Show full text]
  • Lecture 26 – Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam
    Physics 42200 Waves & Oscillations Lecture 26 – Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam Almost all grades have been uploaded to http://chip.physics.purdue.edu/public/422/spring2013/ These grades have not been adjusted Exam questions and solutions are available on the Physics 42200 web page . Outline for the rest of the course • Polarization • Geometric Optics • Interference • Diffraction • Review Polarization by Partial Reflection • Continuity conditions for Maxwell’s Equations at the boundary between two materials • Different conditions for the components of or parallel or perpendicular to the surface. Polarization by Partial Reflection • Continuity of electric and magnetic fields were different depending on their orientation: – Perpendicular to surface = = – Parallel to surface = = perpendicular to − cos + cos − cos = cos + cos cos = • Solve for /: − = !" + !" • Solve for /: !" = !" + !" perpendicular to cos − cos cos = cos + cos cos = • Solve for /: − = !" + !" • Solve for /: !" = !" + !" Fresnel’s Equations • In most dielectric media, = and therefore # sin = = = = # sin • After some trigonometry… sin − tan − = − = sin + tan + ) , /, /01 2 ) 45/ 2 /01 2 * = - . + * = + * )+ /01 2+32* )+ /01 2+32* 45/ 2+62* For perpendicular and parallel to plane of incidence. Application of Fresnel’s Equations • Unpolarized light in air ( # = 1) is incident
    [Show full text]
  • Practical Tips for Two-Photon Microscopy
    Appendix 1 Practical Tips for Two-Photon Microscopy Mark B. Cannell, Angus McMorland, and Christian Soeller INTRODUCTION blue and green diode lasers. To provide an alignment beam to which the external laser can be aligned, light from this reference As is clear from a number of the chapters in this volume, 2-photon laser needs to be bounced back through the microscope optical microscopy offers many advantages, especially for living-cell train and out through the external coupling port: studies of thick specimens such as brain slices and embryos. CAUTION: Before you switch on the reference laser in this However, these advantages must be balanced against the fact that configuration make sure that all PMTs are protected and/or commercial multiphoton instrumentation is much more costly than turned off. the equipment used for confocal or widefield/deconvolution. Given Place a front-surface mirror on the stage of the microscope and these two facts, it is not surprising that, to an extent much greater focus onto the reflective surface using an air objective for conve- than is true of confocal, many researchers have decided to add a nience (at sharp focus, you should be able to see scratches or other femtosecond (fs) pulsed near-IR laser to a scanner and a micro- mirror defects through the eyepieces). The idea of this method is scope to make their own system (Soeller and Cannell, 1996; Tsai to cause the reference laser beam to bounce back through the et al., 2002; Potter, 2005). Even those who purchase a commercial optical train and emerge from the other laser port.
    [Show full text]
  • Measurement of the Resonant Magneto-Optical Kerr Effect Using a Free Electron Laser
    applied sciences Review Measurement of the Resonant Magneto-Optical Kerr Effect Using a Free Electron Laser Shingo Yamamoto and Iwao Matsuda * Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-(0)4-7136-3402 Academic Editor: Kiyoshi Ueda Received: 1 June 2017; Accepted: 21 June 2017; Published: 27 June 2017 Abstract: We present a new experimental magneto-optical system that uses soft X-rays and describe its extension to time-resolved measurements using a free electron laser (FEL). In measurements of the magneto-optical Kerr effect (MOKE), we tune the photon energy to the material absorption edge and thus induce the resonance effect required for the resonant MOKE (RMOKE). The method has the characteristics of element specificity, large Kerr rotation angle values when compared with the conventional MOKE using visible light, feasibility for M-edge, as well as L-edge measurements for 3d transition metals, the use of the linearly-polarized light and the capability for tracing magnetization dynamics in the subpicosecond timescale by the use of the FEL. The time-resolved (TR)-RMOKE with polarization analysis using FEL is compared with various experimental techniques for tracing magnetization dynamics. The method described here is promising for use in femtomagnetism research and for the development of ultrafast spintronics. Keywords: magneto-optical Kerr effect (MOKE); free electron laser; ultrafast spin dynamics 1. Introduction Femtomagnetism, which refers to magnetization dynamics on a femtosecond timescale, has been attracting research attention for more than two decades because of its fundamental physics and its potential for use in the development of novel spintronic devices [1].
    [Show full text]
  • Understanding Polarization
    Semrock Technical Note Series: Understanding Polarization The Standard in Optical Filters for Biotech & Analytical Instrumentation Understanding Polarization 1. Introduction Polarization is a fundamental property of light. While many optical applications are based on systems that are “blind” to polarization, a very large number are not. Some applications rely directly on polarization as a key measurement variable, such as those based on how much an object depolarizes or rotates a polarized probe beam. For other applications, variations due to polarization are a source of noise, and thus throughout the system light must maintain a fixed state of polarization – or remain completely depolarized – to eliminate these variations. And for applications based on interference of non-parallel light beams, polarization greatly impacts contrast. As a result, for a large number of applications control of polarization is just as critical as control of ray propagation, diffraction, or the spectrum of the light. Yet despite its importance, polarization is often considered a more esoteric property of light that is not so well understood. In this article our aim is to answer some basic questions about the polarization of light, including: what polarization is and how it is described, how it is controlled by optical components, and when it matters in optical systems. 2. A description of the polarization of light To understand the polarization of light, we must first recognize that light can be described as a classical wave. The most basic parameters that describe any wave are the amplitude and the wavelength. For example, the amplitude of a wave represents the longitudinal displacement of air molecules for a sound wave traveling through the air, or the transverse displacement of a string or water molecules for a wave on a guitar string or on the surface of a pond, respectively.
    [Show full text]
  • Electro-Optics
    Fundamentals of Photonics Bahaa E. A. Saleh, Malvin Carl Teich Copyright © 1991 John Wiley & Sons, Inc. ISBNs: 0-471-83965-5 (Hardback); 0-471-2-1374-8 (Electronic) CHAPTER 18 ELECTRO-OPTICS 18.1 PRINCIPLES OF ELECTRO-OPTICS A. Pockels and Kerr Effects B. Electra-Optic Modulators and Switches C. Scanners D. Directional Couplers E. Spatial Light Modulators *18.2 ELECTRO-OPTICS OF ANISOTROPIC MEDIA A. Pockels and Kerr Effects B. Modulators 18.3 ELECTRO-OPTICS OF LIQUID CRYSTALS A. Wave Retarders and Modulators B. Spatial Light Modulators *18.4 PHOTOREFRACTIVE MATERIALS Friedrich Pockels (18651913) was first to John Kerr (182~1907) discovered the quad- describe the linear electro-optic effect in 1893. ratic electro-optic effect in 1875. 696 Certain materials change their optical properties when subjected to an electric field. This is caused by forces that distort the positions, orientations, or shapes of the molecules constituting the material. The electro-optic effect is the change in the refractive index resulting from the application of a dc or low-frequency electric field (Fig. 18.0-l). A field applied to an anisotropic electro-optic material modifies its refractive indices and thereby its effect on polarized light. The dependence of the refractive index on the applied electric field takes one of two forms: n The refractive index changes in proportion to the applied electric field, in which case the effect is known as the linear electro-optic effect or the Pockels effect. n The refractive index changes in proportion to the square of the applied electric field, in which case the effect is known as the quadratic electro-optic effect or the Kerr effect.
    [Show full text]