Polarized Light 1

Total Page:16

File Type:pdf, Size:1020Kb

Polarized Light 1 EE485 Introduction to Photonics Polarized Light 1. Matrix treatment of polarization 2. Reflection and refraction at dielectric interfaces (Fresnel equations) 3. Polarization phenomena and devices Reading: Pedrotti3, Chapter 14, Sec. 15.1-15.2, 15.4-15.6, 17.5, 23.1-23.5 Polarization of Light Polarization: Time trajectory of the end point of the electric field direction. Assume the light ray travels in +z-direction. At a particular instance, Ex ˆˆEExy y ikz() t x EEexx 0 ikz() ty EEeyy 0 iixxikz() t Ex[]ˆˆEe00xy y Ee e ikz() t E0e Lih Y. Lin 2 One Application: Creating 3-D Images Code left- and right-eye paths with orthogonal polarizations. K. Iizuka, “Welcome to the wonderful world of 3D,” OSA Optics and Photonics News, p. 41-47, Oct. 2006. Lih Y. Lin 3 Matrix Representation ― Jones Vectors Eeix E0x 0x E0 E iy 0 y Ee0 y Linearly polarized light y y 0 1 x E0 x E0 1 0 Ẽ and Ẽ must be in phase. y 0x 0y x cos E0 sin (Note: Jones vectors are normalized.) Lih Y. Lin 4 Jones Vector ― Circular Polarization Left circular polarization y x EEe it EA cos t At z = 0, compare xx0 with x it() EAsin tA ( cos( t / 2)) EEeyy 0 y 1 1 yxxy /2, 0, E00 EA Jones vector = 2 i y Right circular polarization 1 1 x Jones vector = 2 i Lih Y. Lin 5 Jones Vector ― Elliptical Polarization Special cases: Counter-clockwise rotation 1 A Jones vector = AB22 iB Clockwise rotation 1 A Jones vector = AB22 iB General case: Eeix A 0x A B22C E0 i y bei B iC Ee0 y Jones vector = 1 A A ABC222 B iC 2cosEE00xy tan 2 22 EE00xy Lih Y. Lin 6 Superposition of Waves Superposition of waves → Summation of Jones vectors Exercises Superposition of left- and right-circularly polarized light: 11 2 ii 0 → Linearly polarized light of twice the amplitude Quiz: Does it have to be horizontally polarized? Superposition of vertically- and horizontally-polarized light in phase: 011 101 → Linearly polarized light at 45º inclination. Lih Y. Lin 7 Jones Matrix ― Linear Polarizer M ab Jones Polarization Jones matrix M vector J Jout MJ in cd in device Linear polarizer Vertical transmission axis (TA) x For all Jones vector y ab x000 ab cd y y cd 01 Horizontal transmission axis 10 Jones matrix = 00 TA inclined at 45º to the x-axis In general, a linear polarizer with TA at ab11 ab 1 0 and angle : cd11 cd 10 cos2 sin cos ab 1 11 M 2 cd 2 11 sin cos sin Lih Y. Lin 8 Jones Matrix ― Phase Retarder (Wave Plate) iixxx() Ee00xx Ee What we want: iiy ()yy Ee00yy Ee ix iixxx() e 0 Ee00xx Ee What can do it: i y iiyyy() 0 e Ee00yy Ee eix 0 Phase retarder M i 0 e y QWP, SA is y-axis ei /4 010 Mei /4 i/4 0 e 0 i i/4 10 QWP, SA is x-axis Me 0 i FA: Fast axis 10 SA: Slow axis i /2 HWP, SA is y-axis Me = 90º: Quarter-wave plate (QWP) 01 Same = 180º: Half-wave plate (HWP) i/2 10 HWP, SA is x-axis Me 01 Lih Y. Lin 9 Jones Matrix ― Polarization Rotator abcos cos( ) cdsin sin( ) Polarization rotator of angle cos sin M sin cos Coordinate transformation For Jones vectors, JRJ'() cos sin R() sin cos For Jones Matrices, TRTR'()() TR ()'() TR Lih Y. Lin 10 Special Actions of Phase Retarders 101 101 01i 011 1 1 i 1 10 1 10 1 0 ii 01 i 1 1 1 i Experiment: Given two linear polarizers, one QWP and one HWP, find a way to distinguish the QWP from the HWP. Lih Y. Lin 11 Summary of Jones Matrices Cascaded polarization devices Jin M1 M2 Mn Jout JMMMJMJout n 21 in in MM n MM21 Lih Y. Lin 12 Reflection and Refraction at a Dielectric Interface Transverse electric (TE) polarization Transverse magnetic (TM) polarization Boundary conditions: Tangential components of E and B are continuous. EE rt E BBrt B BBcosrrtt cos B cos EEcos rrtt cos E cos c EvBB n Lih Y. Lin 13 Fresnel Equations Define relative refractive index nnn 21/ TE wave E cosn22 sin Reflection coefficient r r E cosn22 sin E 2cos Transmission coefficient t t E cosn22 sin or tr1 TM wave E nn222cos sin Reflection coefficient r r E nn222cos sin E 2cosn Transmission coefficient t t E nn222cos sin or ntr 1 For both cases, rt22 1 ! Lih Y. Lin 14 Power Reflectance and Transmittance Consider the cross-sections IAiirrtt(cos) IA (cos) IA (cos) IEHnE|||| ||2 22n2 cost 2 ||||EEir || E t n1 cosi 2 cos 2 1 rnt || t cosi 2 PI E 2 R rr r r Reflectance PIii E i Energy conservation cos 2 Tn t || t Transmittance Power Pirt PP cosi P P RTr , t PPii 1 RT Lih Y. Lin 15 Characteristics of Reflection and Transmission nnn 21/1.50 Transmission: No phase change. Reflection: Possible phase change, possible going through “zero” transition. Let’s focus on reflection … Lih Y. Lin 16 External and Internal Reflections Lih Y. Lin Phase Changes on Reflection Lih Y. Lin 18 Example: Fresnel Rhomb n Incident light: Linearly polarized at 45⁰ to 1 the plane of incidence n2 What is the polarization of the output light? nnn 12/1/1.5 Lih Y. Lin 19 Total Internal Reflection Fluorescence (TIRF) Microscopy (www.olympusmicro.com) Application: Near-field excitation and detection of cells/molecules Principle: Evanescent wave in frustrated total internal reflection dP sin 2 21 n2 Lih Y. Lin 20 Dichroism: Polarization by Selective Absorption Example: Polaroid H-sheet containing aligned hydrocarbon molecules. Lih Y. Lin 21 Polarization by Selective Reflection Brewster window Recall the phenomenon of Brewster angle. (perfect window for TM light) p Brewster-angle polarizer Lih Y. Lin 22 Birefringence Refractive index depends on polarization directions, due to asymmetry of the molecular structure with respect to light propagation direction. Lih Y. Lin 23 Optical Activity Rotate the polarization direction of linearly-polarized light by circular birefringence. Refractive indices for left- and right-circular polarized are nL and nR, respectively. Decompose the linear-polarized light into left- and right-circular polarized lights. cos11ii 1 1 ee sin 22ii After the material, Specific rotation or Rotatory power (rotation angle per unit 11iiii11 i cos eeLR ee e0 length): 22ii sin ()nnLR 1 (rad/length) () 0 2 LR 0 1 dn()LR n () LR 2 0 Lih Y. Lin 24 Example: Optical Activity in Quartz Determine the thickness required, in mm, to achieve -45º rotation at 762 nm. d(1.53920 1.53914) 4 762 106 d 3.175 (mm) Reversibility of optical activity Lih Y. Lin 25 Liquid Crystal Plane of polarization rotates in alignment with the molecular twist. z Application: Optical switch and Liquid crystal display (LCD) Lih Y. Lin 26.
Recommended publications
  • Polarization of Light: Malus' Law, the Fresnel Equations, and Optical Activity
    Polarization of light: Malus' law, the Fresnel equations, and optical activity. PHYS 3330: Experiments in Optics Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 (Dated: Revised August 2012) In this lab you will (1) test Malus' law for the transmission of light through crossed polarizers; (2) test the Fresnel equations describing the reflection of polarized light from optical interfaces, and (3) using polarimetry to determine the unknown concentration of a sucrose and water solution. I. POLARIZATION III. PROCEDURE You will need to complete some background reading 1. Position the fixed \V" polarizer after mirror \M" before your first meeting for this lab. Please carefully to establish a vertical polarization axis for the laser study the following sections of the \Newport Projects in light. Optics" document (found in the \Reference Materials" 2. Carefully adjust the position of the photodiode so section of the course website): 0.5 \Polarization" Also the laser beam falls entirely within the central dark read chapter 6 of your text \Physics of Light and Optics," square. by Peatross and Ware. Your pre-lab quiz cover concepts presented in these materials AND in the body of this 3. Plug the photodiode into the bench top voltmeter write-up. Don't worry about memorizing equations { the and observe the voltage { it should be below 200 quiz should be elementary IF you read these materials mV; if not, you may need to attenuate the light by carefully. Please note that \taking a quick look at" these [anticipating the validity off Malus' law!] inserting materials 5 minutes before lab begins will likely NOT be the polarizer on a rotatable arm \R" upstream of adequate to do well on the quiz.
    [Show full text]
  • Lab 8: Polarization of Light
    Lab 8: Polarization of Light 1 Introduction Refer to Appendix D for photos of the appara- tus Polarization is a fundamental property of light and a very important concept of physical optics. Not all sources of light are polarized; for instance, light from an ordinary light bulb is not polarized. In addition to unpolarized light, there is partially polarized light and totally polarized light. Light from a rainbow, reflected sunlight, and coherent laser light are examples of po- larized light. There are three di®erent types of po- larization states: linear, circular and elliptical. Each of these commonly encountered states is characterized Figure 1: (a)Oscillation of E vector, (b)An electromagnetic by a di®ering motion of the electric ¯eld vector with ¯eld. respect to the direction of propagation of the light wave. It is useful to be able to di®erentiate between 2 Background the di®erent types of polarization. Some common de- vices for measuring polarization are linear polarizers and retarders. Polaroid sunglasses are examples of po- Light is a transverse electromagnetic wave. Its prop- larizers. They block certain radiations such as glare agation can therefore be explained by recalling the from reflected sunlight. Polarizers are useful in ob- properties of transverse waves. Picture a transverse taining and analyzing linear polarization. Retarders wave as traced by a point that oscillates sinusoidally (also called wave plates) can alter the type of polar- in a plane, such that the direction of oscillation is ization and/or rotate its direction. They are used in perpendicular to the direction of propagation of the controlling and analyzing polarization states.
    [Show full text]
  • Fresnel Rhombs As Achromatic Phase Shifters for Infrared Nulling Interferometry: First Experimental Results
    Fresnel Rhombs as Achromatic Phase Shifters for Infrared Nulling Interferometry: First experimental results Hanot c.a, Mawet D.a, Loicq J.b, Vandormael D.b, Plesseria J.Y.b, Surdej J.a, Habraken s.a,b alnstitut d'Astrophysique et de Geophysique, University of Liege, 17 allee du 6 Aout, B-4000, Sart Tilman, Belgium; bCentre Spatial de Liege, Avenue du Pre-Aily, B-4031, Liege-Angleur, Belgium ABSTRACT One of the most critical units of nulling interferometers is the Achromatic Phase Shifter. The concept we propose here is based on optimized Fresnel rhombs, using the total internal reflection phenomenon, modulated or not. The total internal reflection induces a phase shift between the polarization components of the incident light. We present the principles, the current status of the prototype manufacturing and testing operations, as well as preliminary experiments on a ZnSe Fresnel rhomb in the visible that have led to a first error source assessment study. Thanks to these first experimental results using a simple polarimeter arrangement, we have identified the bulk scattering as being the main error source. Fortunately, we have experimentally verified that the scattering can be mitigated using spatial filters and does not decrease the phase shifting capabilities of the ZnSe Fresnel rhomb. Keywords: Fresnel Rhomb, Achromatic Phase Shifters, nulling interferometry, subwavelength gratings, Zinc Selenide, bulk scattering 1. INTRODUCTION The detection of extrasolar planets and later on the presence of life on them is one of the most interesting and ambitious astrophysical projects for the next decades. Up to now, despite our technological progresses, most exoplanets have been detected using indirect methods.
    [Show full text]
  • Static and Dynamic Effects of Chirality in Dielectric Media
    Static and dynamic effects of chirality in dielectric media R. S. Lakes Department of Engineering Physics, Department of Materials Science, University of Wisconsin, 1500 Engineering Drive, Madison, WI 53706-1687 [email protected] January 31, 2017 adapted from R. S. Lakes, Modern Physics Letters B, 30 (24) 1650319 (9 pages) (2016). Abstract Chiral dielectrics are considered from the perspective of continuum representations of spatial heterogeneity. Static effects in isotropic chiral dielectrics are predicted, provided the electric field has nonzero third spatial derivatives. The effects are compared with static chiral phenomena in Cosserat elastic materials which obey generalized continuum constitutive equations. Dynamic monopole - like magnetic induction is predicted in chiral dielectric media. keywords: chirality, dielectric, Cosserat 1 Introduction Chirality is well known in electromagnetics 1; it gives rise to optical activity in which left or right handed cir- cularly polarized waves propagate at different velocities. Known effects are dynamic only; there is considered to be no static effect 2. The constitutive equations for a directionally isotropic chiral material are 3, 4. @H D = kE − g (1) @t @E B = µH + g (2) @t in which E is electric field, D is electric displacement, B is magnetic field, H is magnetic induction, k is the dielectric permittivity, µ is magnetic permeability and g is a measure of the chirality. Optical rotation of polarized light of wavelength λ by an angle Φ (in radians per meter) is given by Φ = (2π/λ)2cg with c as the speed of light. The quantity g embodies the length scale of the chiral structure because cg has dimensions of length.
    [Show full text]
  • Principles of Retarders
    Polarizers PRINCIPLES OF RETARDERS etarders are used in applications where control or Ranalysis of polarization states is required. Our retarder products include innovative polymer and liquid crystal materials. Crystalline materials such as quartz and Retarders magnesium fluoride are also available upon request. Please call for a custom quote. A retarder (or waveplate) is an optical device that resolves a light wave into two orthogonal linear polarization components and produces a phase shift between them. The resulting light wave is generally of a different polarization form. Ideally, retarders do not polarize, nor do they induce an intensity change in the Crystals Liquid light beam, they simply change its polarization form. state. The transmitted light leaves the retarder elliptically All standard catalog Meadowlark Optics’ retarders are polarized. made from birefringent, uniaxial materials having two Retardance (in waves) is given by: different refractive indices – the extraordinary index ne = ␤tր␭ and the ordinary index no. Light traveling through a retarder has a velocity v where: dependent upon its polarization direction given by ␤ = birefringence (ne - no) Spatial Light ␭ Modulators v = c/n = wavelength of incident light (in nanometers) t = thickness of birefringent element where c is the speed of light in a vacuum and n is the (in nanometers) refractive index parallel to that polarization direction. Retardance can also be expressed in units of length, the By definition, ne > no for a positive uniaxial material. distance that one polarization component is delayed For a positive uniaxial material, the extraordinary axis relative to the other. Retardance is then represented by: is referred to as the slow axis, while the ordinary axis is ␦Ј ␦␭ ␤ referred to as the fast axis.
    [Show full text]
  • Second Harmonic Generation in Nonlinear Optical Crystal
    Second Harmonic Generation in Nonlinear Optical Crystal Diana Jeong 1. Introduction In traditional electromagnetism textbooks, polarization in the dielectric material is linearly proportional to the applied electric field. However since in 1960, when the coherent high intensity light source became available, people realized that the linearity is only an approximation. Instead, the polarization can be expanded in terms of applied electric field. (Component - wise expansion) (1) (1) (2) (3) Pk = ε 0 (χ ik Ei + χ ijk Ei E j + χ ijkl Ei E j Ek +L) Other quantities like refractive index (n) can be expanded in terms of electric field as well. And the non linear terms like second (E^2) or third (E^3) order terms become important. In this project, the optical nonlinearity is present in both the source of the laser-mode-locked laser- and the sample. Second Harmonic Generation (SHG) is a coherent optical process of radiation of dipoles in the material, dependent on the second term of the expansion of polarization. The dipoles are oscillated with the applied electric field of frequency w, and it radiates electric field of 2w as well as 1w. So the near infrared input light comes out as near UV light. In centrosymmetric materials, SHG cannot be demonstrated, because of the inversion symmetries in polarization and electric field. The only odd terms survive, thus the second order harmonics are not present. SHG can be useful in imaging biological materials. For example, the collagen fibers and peripheral nerves are good SHG generating materials. Since the SHG is a coherent process it, the molecules, or the dipoles are not excited in terms of the energy levels.
    [Show full text]
  • Lecture 14: Polarization
    Matthew Schwartz Lecture 14: Polarization 1 Polarization vectors In the last lecture, we showed that Maxwell’s equations admit plane wave solutions ~ · − ~ · − E~ = E~ ei k x~ ωt , B~ = B~ ei k x~ ωt (1) 0 0 ~ ~ Here, E0 and B0 are called the polarization vectors for the electric and magnetic fields. These are complex 3 dimensional vectors. The wavevector ~k and angular frequency ω are real and in the vacuum are related by ω = c ~k . This relation implies that electromagnetic waves are disper- sionless with velocity c: the speed of light. In materials, like a prism, light can have dispersion. We will come to this later. In addition, we found that for plane waves 1 B~ = ~k × E~ (2) 0 ω 0 This equation implies that the magnetic field in a plane wave is completely determined by the electric field. In particular, it implies that their magnitudes are related by ~ ~ E0 = c B0 (3) and that ~ ~ ~ ~ ~ ~ k · E0 =0, k · B0 =0, E0 · B0 =0 (4) In other words, the polarization vector of the electric field, the polarization vector of the mag- netic field, and the direction ~k that the plane wave is propagating are all orthogonal. To see how much freedom there is left in the plane wave, it’s helpful to choose coordinates. We can always define the zˆ direction as where ~k points. When we put a hat on a vector, it means the unit vector pointing in that direction, that is zˆ=(0, 0, 1). Thus the electric field has the form iω z −t E~ E~ e c = 0 (5) ~ ~ which moves in the z direction at the speed of light.
    [Show full text]
  • Circular Polarization and Nonreciprocal Propagation in Magnetic Media Circular Polarization and Nonreciprocal Propagation in Magnetic Media Gerald F
    • DIONNE, ALLEN, Haddad, ROSS, AND LaX Circular Polarization and Nonreciprocal Propagation in Magnetic Media Circular Polarization and Nonreciprocal Propagation in Magnetic Media Gerald F. Dionne, Gary A. Allen, Pamela R. Haddad, Caroline A. Ross, and Benjamin Lax n The polarization of electromagnetic signals is an important feature in the design of modern radar and telecommunications. Standard electromagnetic theory readily shows that a linearly polarized plane wave propagating in free space consists of two equal but counter-rotating components of circular polarization. In magnetized media, these circular modes can be arranged to produce the nonreciprocal propagation effects that are the basic properties of isolator and circulator devices. Independent phase control of right-hand (+) and left-hand (–) circular waves is accomplished by splitting their propagation velocities through differences in the e±m± parameter. A phenomenological analysis of the permeability m and permittivity e in dispersive media serves to introduce the corresponding magnetic- and electric-dipole mechanisms of interaction length with the propagating signal. As an example of permeability dispersion, a Lincoln Laboratory quasi-optical Faraday- rotation isolator circulator at 35 GHz (l ~ 1 cm) with a garnet-ferrite rotator element is described. At infrared wavelengths (l = 1.55 mm), where fiber-optic laser sources also require protection by passive isolation of the Faraday-rotation principle, e rather than m provides the dispersion, and the frequency is limited to the quantum energies of the electric-dipole atomic transitions peculiar to the molecular structure of the magnetic garnet. For optimum performance, bismuth additions to the garnet chemical formula are usually necessary. Spectroscopic and molecular theory models developed at Lincoln Laboratory to explain the bismuth effects are reviewed.
    [Show full text]
  • Lecture 26 – Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam
    Physics 42200 Waves & Oscillations Lecture 26 – Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam Almost all grades have been uploaded to http://chip.physics.purdue.edu/public/422/spring2013/ These grades have not been adjusted Exam questions and solutions are available on the Physics 42200 web page . Outline for the rest of the course • Polarization • Geometric Optics • Interference • Diffraction • Review Polarization by Partial Reflection • Continuity conditions for Maxwell’s Equations at the boundary between two materials • Different conditions for the components of or parallel or perpendicular to the surface. Polarization by Partial Reflection • Continuity of electric and magnetic fields were different depending on their orientation: – Perpendicular to surface = = – Parallel to surface = = perpendicular to − cos + cos − cos = cos + cos cos = • Solve for /: − = !" + !" • Solve for /: !" = !" + !" perpendicular to cos − cos cos = cos + cos cos = • Solve for /: − = !" + !" • Solve for /: !" = !" + !" Fresnel’s Equations • In most dielectric media, = and therefore # sin = = = = # sin • After some trigonometry… sin − tan − = − = sin + tan + ) , /, /01 2 ) 45/ 2 /01 2 * = - . + * = + * )+ /01 2+32* )+ /01 2+32* 45/ 2+62* For perpendicular and parallel to plane of incidence. Application of Fresnel’s Equations • Unpolarized light in air ( # = 1) is incident
    [Show full text]
  • Lecture 11: Introduction to Nonlinear Optics I
    Lecture 11: Introduction to nonlinear optics I. Petr Kužel Formulation of the nonlinear optics: nonlinear polarization Classification of the nonlinear phenomena • Propagation of weak optic signals in strong quasi-static fields (description using renormalized linear parameters) ! Linear electro-optic (Pockels) effect ! Quadratic electro-optic (Kerr) effect ! Linear magneto-optic (Faraday) effect ! Quadratic magneto-optic (Cotton-Mouton) effect • Propagation of strong optic signals (proper nonlinear effects) — next lecture Nonlinear optics Experimental effects like • Wavelength transformation • Induced birefringence in strong fields • Dependence of the refractive index on the field intensity etc. lead to the concept of the nonlinear optics The principle of superposition is no more valid The spectral components of the electromagnetic field interact with each other through the nonlinear interaction with the matter Nonlinear polarization Taylor expansion of the polarization in strong fields: = ε χ + χ(2) + χ(3) + Pi 0 ij E j ijk E j Ek ijkl E j Ek El ! ()= ε χ~ (− ′ ) (′ ) ′ + Pi t 0 ∫ ij t t E j t dt + χ(2) ()()()− ′ − ′′ ′ ′′ ′ ′′ + ∫∫ ijk t t ,t t E j t Ek t dt dt + χ(3) ()()()()− ′ − ′′ − ′′′ ′ ′′ ′′′ ′ ′′ + ∫∫∫ ijkl t t ,t t ,t t E j t Ek t El t dt dt + ! ()ω = ε χ ()ω ()ω + ω χ(2) (ω ω ω ) (ω ) (ω )+ Pi 0 ij E j ∫ d 1 ijk ; 1, 2 E j 1 Ek 2 %"$"""ω"=ω +"#ω """" 1 2 + ω ω χ(3) ()()()()ω ω ω ω ω ω ω + ∫∫d 1d 2 ijkl ; 1, 2 , 3 E j 1 Ek 2 El 3 ! %"$""""ω"="ω +ω"#+ω"""""" 1 2 3 Linear electro-optic effect (Pockels effect) Strong low-frequency
    [Show full text]
  • Understanding Polarization
    Semrock Technical Note Series: Understanding Polarization The Standard in Optical Filters for Biotech & Analytical Instrumentation Understanding Polarization 1. Introduction Polarization is a fundamental property of light. While many optical applications are based on systems that are “blind” to polarization, a very large number are not. Some applications rely directly on polarization as a key measurement variable, such as those based on how much an object depolarizes or rotates a polarized probe beam. For other applications, variations due to polarization are a source of noise, and thus throughout the system light must maintain a fixed state of polarization – or remain completely depolarized – to eliminate these variations. And for applications based on interference of non-parallel light beams, polarization greatly impacts contrast. As a result, for a large number of applications control of polarization is just as critical as control of ray propagation, diffraction, or the spectrum of the light. Yet despite its importance, polarization is often considered a more esoteric property of light that is not so well understood. In this article our aim is to answer some basic questions about the polarization of light, including: what polarization is and how it is described, how it is controlled by optical components, and when it matters in optical systems. 2. A description of the polarization of light To understand the polarization of light, we must first recognize that light can be described as a classical wave. The most basic parameters that describe any wave are the amplitude and the wavelength. For example, the amplitude of a wave represents the longitudinal displacement of air molecules for a sound wave traveling through the air, or the transverse displacement of a string or water molecules for a wave on a guitar string or on the surface of a pond, respectively.
    [Show full text]
  • III Engineering Faculty Master Thesis
    III Engineering Faculty Master of science in Telecommunication Engineering Master Thesis PMD IMPAIRMENTS IN OPTICAL FIBER TRANSMISSION AT 10 GBPS AND 40 GBPS Student: Alessandro Pilichi Spanish coordinator: Gabriel Junyent Italian coordinator: Roberto Gaudino Turin, 9 November 2010 Barcelona, 24 November 2010 A mio padre, mia madre e mia sorella per avermi sempre sostenuto, aiutato e voluto bene ii ii Abstract Abstract The continuous need for greater bandwidth and capacity to support existing and emerging technologies, such as fiber-to-the-home (FTTH) and Internet Protocol Television(IPTV), drive optical-communication systems to higher and higher data rates per wavelength channel, from 10 to 40 Gbps and above. Degrading effects that tended to cause non catastrophic events at lower bit rates have become critical concerns for high-performance networks. Among them, polarization-mode dispersion (PMD) is perhaps the largest concern and, therefore, has garnered a great amount of attention. The PMD arises in an optical fiber from asymmetries in the fiber core that induce a small amount of birefringence that randomly varies along the length of the fiber. This birefringence causes the power in each optical pulse to split between the two polarization modes of the fiber and travel at different speeds, creating a differential group delay (DGD) between the two modes that can result in pulse spreading and intersymbol interference. PMD becomes a unique and challenging hurdle for high-performance systems mainly due to its dynamic and random nature. The polarization state is generally unknown and wanders with time. In general, PMD effects are wavelength (channel) dependent and can vary over a time scale of milliseconds.
    [Show full text]