Uromastyx Dispar Heyden, 1827, and U. Ocellata Lichtenstein, 1823 (Sauria: Agamidae) Elagba H

Total Page:16

File Type:pdf, Size:1020Kb

Uromastyx Dispar Heyden, 1827, and U. Ocellata Lichtenstein, 1823 (Sauria: Agamidae) Elagba H This article was downloaded by: [197.208.167.192] On: 10 March 2013, At: 13:42 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Zoology in the Middle East Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tzme20 Notes on a sympatric population of two species of spiny-tailed lizards in Sudan: Uromastyx dispar Heyden, 1827, and U. ocellata Lichtenstein, 1823 (Sauria: Agamidae) Elagba H. A. Mohammed a & Dawi M. Hammad b a Natural History Museum, Faculty of Science, University of Khartoum, P. O. Box 321, Khartoum, Sudan b Zoology Department, Faculty of Science, University of Khartoum, P.O. Box 321, Khartoum, Sudan Version of record first published: 28 Feb 2013. To cite this article: Elagba H. A. Mohammed & Dawi M. Hammad (2008): Notes on a sympatric population of two species of spiny-tailed lizards in Sudan: Uromastyx dispar Heyden, 1827, and U. ocellata Lichtenstein, 1823 (Sauria: Agamidae), Zoology in the Middle East, 44:1, 51-56 To link to this article: http://dx.doi.org/10.1080/09397140.2008.10638288 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms- and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Downloaded by [197.208.167.192] at 13:42 10 March 2013 Notes on a sympatric population of two species of spiny-tailed lizards in Sudan: Uromastyx dispar Heyden, 1827, and U. ocellata Lichtenstein, 1823 (Sauria: Agamidae) by Elagba H. A. Mohammed and Dawi M. Hammad Abstract: A series of 27 Uromastyx was collected at Abu Hammad, Nile State, northern Sudan, consisting of two distinct, sympatric species: three U. dispar Heyden, 1827 and 24 U. ocellata Lichtenstein, 1823. The morphological analysis of these specimens reveals some data exceeding the previously known range of variability in these two species, including the maximum length. Key words. Uromastyx dispar, Uromastyx ocellata, morphology, cluster analysis, Sudan. Introduction Two species of Uromastyx are known from Sudan: Uromastyx dispar Heyden, 1827, and U. ocellata Lichtenstein, 1823. In the most recent revision of the genus (WILMS 1998, WILMS & BÖHME 2000, 2001), the latter species is treated as monotypic, because these authors con- sider both U. ornata Heyden, 1827 and U. macfadyeni Parker, 1932, known from southeast- ern Egypt, Sudan, Eritrea, Djibouti and northwesternmost Somalia, to represent distinct species. In contrast, U. dispar, originally described as U. acanthinurus dispar, is considered to represent a polytypic species occurring in the southern Saharan range, with three subspe- cies: U. d. dispar from Sudan and Tchad, U. dispar maliensis from southern Algeria and Mali, and U. dispar flavifasciata from the Western Sahara, westernmost Algeria, and Mauri- tania. The nomenclatural histories of both species, reflecting earlier, differing taxonomic concepts, can be found in the synonymy/chresonymy lists given in WILMS & BÖHME (2001). Whereas U. ocellata is widespread and regionally abundant, and is well represented in interna- tional natural history museums including samples from Sudan, the nominotypic form of U. dispar Downloaded by [197.208.167.192] at 13:42 10 March 2013 is much rarer in collections. Most specimens originate from Tchad; from Sudan, only three specimens, including the lectotype, were previously known, originating from Wadi Halfa, south- east of El Debba and Ambukol respectively (see WILMS & BÖHME 2001). The three specimens from Abu Hammad described in this paper double the number of Sudanese voucher specimens of this taxon. Material and methods Twenty-seven specimens of Uromastyx were taken from the living collection of the Sudan Natu- ral History Museum. All specimens were previously obtained from Abu Hammad in the Nile State in the north of the Sudan. Eighteen characters were measured for each specimen: total length (TL), standard length (SL), head length (HL), snout length (SNL), snout-vent length (SNVL), tail length (TaL), eye-ear length (EEL), head width (HW), mouth width (MW), Zoology in the Middle East 44, 2008: 51–56. ISSN 0939-7140 © Kasparek Verlag, Heidelberg 52 Zoology in the Middle East 44, 2008 Table 1. Descriptive statistics of nineteen morphological characters for 3 specimens of Uromastyx dispar and 24 specimens of U. ocellata from northern Sudan. Character N Mean Maximum Minimum 3 380.7 399.0 362.3 Total length (TL) 24 244.7 321.9 202.5 3 224.3 244.4 204.2 Standard length (SL) 24 133.3 152.4 114.2 3 44.7 50.8 38.6 Head length (HL) 24 27.4 31.3 23.4 3 12.7 19.0 6. 4 Snout length (SNL) 24 10.5 14.6 6.3 3 241.3 250 233 Snout-vent length (SNVL) 24 146 176 104 3 183 185 180 Tail length (TaL) 24 156.3 180 144 3 19.7 22.9 16.5 Eye-to-ear length (EEL) 24 12.8 15.2 9.8 3 45 47 43 Head width (HW) 24 28.5 33.4 21.0 3 36 40 29 Mouth width (MW) 24 21.9 26.3 17.6 3 8.7 10.2 7.2 Eye diameter (ED) 24 6.1 8.0 4.2 3 24.3 25.9 22.8 Inter-orbital distance (IOD) 24 16.3 19.5 13 3 9 10 8 Inter-nasal distance (IND) 24 6.6 8.0 5.3 3 40.3 44.8 35.8 Inter-audial distance (IAD) 24 23.8 27.7 19.9 3 89.7 94.2 85.2 Body depth (BD) 24 49.8 63.1 36.5 3 27.7 30.9 24.5 Peduncle width (PW) 24 18.5 23.1 13.9 3 35.3 37.9 32.8 Tail width (TaiW) 24 22 26.8 15.0 3 25 30 20 Pores number (PNO) 24 28 40 25 3 20 23 18 Downloaded by [197.208.167.192] at 13:42 10 March 2013 Whorls numbers (WNO) 24 24 29 17 3 396.9 450.0 346.6 Body weight (BW) 24 145.6 235.0 185.5 eye diameter (ED), inter-orbital distance (IOD), inter-nasal distance (IND), inter-audial distance (IAD), body depth (BD), peduncle width (PW), and tail width (TaW). The number of pre-anal and femoral pores (PNO) and the number of whorls on the tail (WNO) were also recorded. Sex was determined after dissection. Total and standard length were measured by a ruler-board. A fine dial caliper was used to measure the other parameters. All measurements were taken to the nearest millimetre. Cluster analysis was used to investigate the homogeneity of the examined specimens and to see whether they belong to one single species, subspecies or races of a single species, according to Reptilia 53 Fig. 1. Dendrogram based on morphological differences using average linkage (within and between groups) method, for 27 specimens of Uromastyx. CLIFFORD & STEPHENSON (1975). Cluster based on matrix of distances for 19 morphological Downloaded by [197.208.167.192] at 13:42 10 March 2013 characters (including body weight) and complete linkage within and between groups was used to produce hierarchical clusters of the specimens in a distance dendrogram. The statistical package (SPSS/ PC 2000, version 10) was used for the evaluation of the data. Results and discussion Cluster analysis separated the specimens studied into two separate groups (Fig. 1): one group comprised three specimens, and the other 24 specimens. The latter was further divided into two sub-clusters: one included four, that separated further into one and three specimens; the other sub-cluster divided further into two divisions, one including (1 + 6) and the other (3 + 9) specimens. The three specimens in the first dichotomy have a light beige skin without dots or stripes on the back, compared to the individuals of the other dichotomy. 54 Zoology in the Middle East 44, 2008 Fig. 2. Uromastyx dispar dispar. The test for equality of means for the 19 characters (Table 1) of the two major groups (3 + 24) showed a significant difference (p<0.05) in 16 characters. The sub-clusters (19 + 5) differed in 14 characters, and the specimens in the subdivision (12 + 7) differed in nine char- acters. The specimens in the subdivision (9 + 3) differed in 9 out of the 19 characters. The colour pattern plus the small light dots throughout the back of the lizards separates two distinct taxa, probably species, of the genus Uromastyx. The presence of two rows of scales between every two whorls on the lower side of the tail of the three specimens in the first group is another diagnostic feature (Fig. 3). The analysis of 19 morphological characters has revealed a pattern of shape variation be- tween the examined specimens. Cluster analysis suggested the presence of two distinct spe- Downloaded by [197.208.167.192] at 13:42 10 March 2013 cies that share some characters. The high diversity observed within the study population suggests the possibility of subspecies. But since all specimens were collected from the same area, it could be that some interaction took place between the genotype of the specimens with their local environment to produce different morphs of the lizard.
Recommended publications
  • B.Sc. II YEAR CHORDATA
    B.Sc. II YEAR CHORDATA CHORDATA 16SCCZO3 Dr. R. JENNI & Dr. R. DHANAPAL DEPARTMENT OF ZOOLOGY M. R. GOVT. ARTS COLLEGE MANNARGUDI CONTENTS CHORDATA COURSE CODE: 16SCCZO3 Block and Unit title Block I (Primitive chordates) 1 Origin of chordates: Introduction and charterers of chordates. Classification of chordates up to order level. 2 Hemichordates: General characters and classification up to order level. Study of Balanoglossus and its affinities. 3 Urochordata: General characters and classification up to order level. Study of Herdmania and its affinities. 4 Cephalochordates: General characters and classification up to order level. Study of Branchiostoma (Amphioxus) and its affinities. 5 Cyclostomata (Agnatha) General characters and classification up to order level. Study of Petromyzon and its affinities. Block II (Lower chordates) 6 Fishes: General characters and classification up to order level. Types of scales and fins of fishes, Scoliodon as type study, migration and parental care in fishes. 7 Amphibians: General characters and classification up to order level, Rana tigrina as type study, parental care, neoteny and paedogenesis. 8 Reptilia: General characters and classification up to order level, extinct reptiles. Uromastix as type study. Identification of poisonous and non-poisonous snakes and biting mechanism of snakes. 9 Aves: General characters and classification up to order level. Study of Columba (Pigeon) and Characters of Archaeopteryx. Flight adaptations & bird migration. 10 Mammalia: General characters and classification up
    [Show full text]
  • Biomechanical Assessment of Evolutionary Changes in the Lepidosaurian Skull
    Biomechanical assessment of evolutionary changes in the lepidosaurian skull Mehran Moazena,1, Neil Curtisa, Paul O’Higginsb, Susan E. Evansc, and Michael J. Fagana aDepartment of Engineering, University of Hull, Hull HU6 7RX, United Kingdom; bThe Hull York Medical School, University of York, York YO10 5DD, United Kingdom; and cResearch Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom Edited by R. McNeill Alexander, University of Leeds, Leeds, United Kingdom, and accepted by the Editorial Board March 24, 2009 (received for review December 23, 2008) The lepidosaurian skull has long been of interest to functional mor- a synovial joint with the pterygoid, the base resting in a pit (fossa phologists and evolutionary biologists. Patterns of bone loss and columellae) on the dorsolateral pterygoid surface. Thus, the gain, particularly in relation to bars and fenestrae, have led to a question at issue in relation to the lepidosaurian lower temporal variety of hypotheses concerning skull use and kinesis. Of these, one bar is not the functional advantage of its loss (13), but rather of of the most enduring relates to the absence of the lower temporal bar its gain in some rhynchocephalians and, very rarely, in lizards in squamates and the acquisition of streptostyly. We performed a (12, 14). This, in turn, raises questions as to the selective series of computer modeling studies on the skull of Uromastyx advantages of the different lepidosaurian skull morphologies. hardwickii, an akinetic herbivorous lizard. Multibody dynamic anal- Morphological changes in the lepidosaurian skull have been ysis (MDA) was conducted to predict the forces acting on the skull, the subject of theoretical and experimental studies (6, 8, 9, and the results were transferred to a finite element analysis (FEA) to 15–19) that aimed to understand the underlying selective crite- estimate the pattern of stress distribution.
    [Show full text]
  • Report on Species/Country Combinations Selected for Review by the Animals Committee Following Cop16 CITES Project No
    AC29 Doc. 13.2 Annex 1 UNEP-WCMC technical report Report on species/country combinations selected for review by the Animals Committee following CoP16 CITES Project No. A-498 AC29 Doc. 13.2 Annex 1 Report on species/country combinations selected for review by the Animals Committee following CoP16 Prepared for CITES Secretariat Published May 2017 Citation UNEP-WCMC. 2017. Report on species/country combinations selected for review by the Animals Committee following CoP16. UNEP-WCMC, Cambridge. Acknowledgements We would like to thank the many experts who provided valuable data and opinions in the compilation of this report. Copyright CITES Secretariat, 2017 The UN Environment World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment centre of UN Environment, the world’s foremost intergovernmental environmental organisation. The Centre has been in operation for over 30 years, combining scientific research with practical policy advice. This publication may be reproduced for educational or non-profit purposes without special permission, provided acknowledgement to the source is made. Reuse of any figures is subject to permission from the original rights holders. No use of this publication may be made for resale or any other commercial purpose without permission in writing from UN Environment. Applications for permission, with a statement of purpose and extent of reproduction, should be sent to the Director, UNEP-WCMC, 219 Huntingdon Road, Cambridge, CB3 0DL, UK. The contents of this report do not necessarily reflect the views or policies of UN Environment, contributory organisations or editors. The designations employed and the presentations of material in this report do not imply the expression of any opinion whatsoever on the part of UN Environment or contributory organisations, editors or publishers concerning the legal status of any country, territory, city area or its authorities, or concerning the delimitation of its frontiers or boundaries or the designation of its name, frontiers or boundaries.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Uromastyx by Catherine Love, DVM Updated 2021
    Uromastyx By Catherine Love, DVM Updated 2021 Natural History Uromastyx, also known as spiny-tailed or dabb lizards, are a genus of herbivorous, diurnal lizards found in northern Africa, the Middle East, and northwest India. This genus of lizard is in the agamid family, the same family as bearded dragons and frilled lizards. There are 13 recognized uromastyx species, but not all are commonly kept in captivity in the United States. U. aegyptia (Egyptian), U. ornatus (ornate), U. geyri (saharan), U. nigriventris (Moroccan), U. dispar (Mali), and U. ocellata (ocellated) are some of the most commonly kept. Uros dig burrows or spend time in rocky crevices to protect themselves from the elements in their desert habitats. These lizards naturally inhabit rocky terrain in very arid climates and are often found basking in direct sunlight. Characteristics and Behavior Uros tend to be quite docile and tolerant of handling, with some owners even claiming their lizard seeks out interaction. These lizards don’t tend to bite, but can be skittish if time is not taken to tame them. Ornate uromastyx have been noted to be bolder, while Egyptian and Moroccan uromastyx may be more shy. As with other members of the agamid family, uromastyx do not possess tail autotomy (they can’t drop their tails). Uros are heat loving, mid-day basking lizards that thrive in arid environments. Uros have a gland near their nose that excretes salt, which may cause a white build-up near their nostrils (keepers affectionately refer to this build-up as “snalt”). They are fairly hardy and handleable lizards that make good pets for intermediate keepers.
    [Show full text]
  • Gross Trade in Appendix II FAUNA (Direct Trade Only), 1999-2010 (For
    AC25 Inf. 5 (1) Gross trade in Appendix II FAUNA (direct trade only), 1999‐2010 (for selection process) N.B. Data from 2009 and 2010 are incomplete. Data extracted 1 April 2011 Phylum Class TaxOrder Family Taxon Term Unit 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Total CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia BOD 0 00001000102 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia BON 0 00080000008 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia HOR 0 00000110406 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia LIV 0 00060000006 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia SKI 1 11311000008 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia SKP 0 00000010001 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia SKU 2 052101000011 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia TRO 15 42 49 43 46 46 27 27 14 37 26 372 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Antilope cervicapra TRO 0 00000020002 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae BOD 0 00100001002 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae HOP 0 00200000002 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae HOR 0 0010100120216 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae LIV 0 0 5 14 0 0 0 30 0 0 0 49 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae MEA KIL 0 5 27.22 0 0 272.16 1000 00001304.38 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae MEA 0 00000000101 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae
    [Show full text]
  • Uromastyx Ocellata Lichtenstein, 1823
    AC22 Doc. 10.2 Annex 6e Uromastyx ocellata Lichtenstein, 1823 FAMILY: Agamidae COMMON NAMES: Eyed Dabb Lizard, Ocellated Mastigure, Ocellated Uromastyx, Eyed Spiny-tailed Lizard, Smooth-eared (English); Fouette-queue Ocellé (French); Lagarto de Cola Espinosa Ocelado (Spanish) GLOBAL CONSERVATION STATUS: Currently being assessed by IUCN Global Reptile Assessment. SIGNIFICANT TRADE REVIEW FOR: Djibouti, Egypt, Eritrea, Ethiopia, Somalia, Sudan Range States selected for review Range Exports* Urgent, Comments States (1994-2003) possible or least concern Djibouti 0 Least concern No trade reported Egypt 4 528 Least concern Export of species banned since 1992. No exports recorded since 1995. Eritrea 0 Least concern No trade reported Ethiopia 477 Least concern Ethiopia’s CITES Authorities confirm its presence. Trade levels low. Export quotas in place based on population surveys. Somalia 0 Least concern No trade reported Sudan 11,702 Least concern Main exporter; low levels of trade (<3000 yr-1). No systematic population monitoring in place to determine non-detriment. SUMMARY Uromastyx ocellata, commonly known in the pet trade as the Ocellated Spiny-tailed Lizard, is recorded from Djibouti, Egypt, Eritrea, Somalia and Sudan. Ethiopia’s CITES Scientific Authority also report that the species is found in that country. It is found in wadis in rocky mountainous desert with acacia trees. U. ocellata is reportedly fairly common in some range States, although regarded as declining in some areas. If it occurs at population densities comparable to those of other Uromastyx species, its population is likely to number at minimum several hundred thousand individuals. Reported exports of U. ocellata during the period 1994-2003 were mainly from Sudan (11,702) and Egypt (4,528) with Ethiopia also exporting specimens.
    [Show full text]
  • Review of the Taxonomy of the Spiny-Tailed Lizards of Arabia (Reptilia: Agamidae: Leiolepidinae: Uromastyx)
    FAUNA OF ARABIA 23: 435–468 Date of publication: 15.07.2007 Review of the taxonomy of the spiny-tailed lizards of Arabia (Reptilia: Agamidae: Leiolepidinae: Uromastyx) Thomas M. Wilms and Wolfgang Böhme A b s t r a c t : Currently six species of the genus Uromastyx (Reptilia: Agamidae: Leiolepidinae), representing three phylogenetic lineages, are known to occur in Arabia: Uromastyx aegyptia, U. benti, U. leptieni, U. ornata, U. thomasi and U. yemenensis. The present paper gives an overview of the taxonomy of these lizards and presents new data on the morphology and ecology of Uro- mastyx leptieni. ������� ������ ��� � ����� ����� ������ ������� ������ (Leiolepidinae: Uromastyx :��������� :�������) ���� ��������� ����� ����� (Leiolepidinae :��������� :�������) Uromastyx ���� �� ����� � ������� ������ ��� � ������ ���� :���� .U. yemenensis � U. benti, U. leptieni, U. ornata, U. thomasi, Uromastyx aegyptia ���� ������ ����� � � ����� .Uromastyx leptieni ����� ������� ������ ����� ����� ����� ����� ������ ��� ������ ������ ����� ���� INTRODUCTION Spiny-tailed agamas are small to medium-sized, ground- or rock-dwelling lizards. Most species reach a maximum length of 25-50 cm, and only species of the Uromastyx aegyptia group can reach a total length of up to 70 cm or more. The animals have a bulky, depressed body and strong, short limbs. The tail is covered by spiny scales, arranged in distinct whorls. The tympanum is visible. None of the species has a nuchal or dorsal crest or a gular pouch or fan. Only a transverse fold at the throat is present (gular fold). Body scales are small and mostly homogenous, but some species have enlarged tubercular scales on the body and/or limbs. The main diagnostic character of the genus is the highly specialised tooth-like bony structure replacing the incisor teeth in the upper jaw in adults. This transformation of the premaxillary bone to a tooth-like structure is an autapomorphy of the genus Uromastyx, convergent in Sphenodon, which has also a convergently acrodont dentition.
    [Show full text]
  • The New Mode of Thought of Vertebrates' Evolution
    etics & E en vo g lu t lo i y o h n a P r f y Journal of Phylogenetics & Kupriyanova and Ryskov, J Phylogen Evolution Biol 2014, 2:2 o B l i a o n l r o DOI: 10.4172/2329-9002.1000129 u g o y J Evolutionary Biology ISSN: 2329-9002 Short Communication Open Access The New Mode of Thought of Vertebrates’ Evolution Kupriyanova NS* and Ryskov AP The Institute of Gene Biology RAS, 34/5, Vavilov Str. Moscow, Russia Abstract Molecular phylogeny of the reptiles does not accept the basal split of squamates into Iguania and Scleroglossa that is in conflict with morphological evidence. The classical phylogeny of living reptiles places turtles at the base of the tree. Analyses of mitochondrial DNA and nuclear genes join crocodilians with turtles and places squamates at the base of the tree. Alignment of the reptiles’ ITS2s with the ITS2 of chordates has shown a high extent of their similarity in ancient conservative regions with Cephalochordate Branchiostoma floridae, and a less extent of similarity with two Tunicata, Saussurea tunicate, and Rinodina tunicate. We have performed also an alignment of ITS2 segments between the two break points coming into play in 5.8S rRNA maturation of Branchiostoma floridaein pairs with orthologs from different vertebrates where it was possible. A similarity for most taxons fluctuates between about 50 and 70%. This molecular analysis coupled with analysis of phylogenetic trees constructed on a basis of manual alignment, allows us to hypothesize that primitive chordates being the nearest relatives of simplest vertebrates represent the real base of the vertebrate phylogenetic tree.
    [Show full text]
  • Amphibians and Reptiles of the Mediterranean Basin
    Chapter 9 Amphibians and Reptiles of the Mediterranean Basin Kerim Çiçek and Oğzukan Cumhuriyet Kerim Çiçek and Oğzukan Cumhuriyet Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.70357 Abstract The Mediterranean basin is one of the most geologically, biologically, and culturally complex region and the only case of a large sea surrounded by three continents. The chapter is focused on a diversity of Mediterranean amphibians and reptiles, discussing major threats to the species and its conservation status. There are 117 amphibians, of which 80 (68%) are endemic and 398 reptiles, of which 216 (54%) are endemic distributed throughout the Basin. While the species diversity increases in the north and west for amphibians, the reptile diversity increases from north to south and from west to east direction. Amphibians are almost twice as threatened (29%) as reptiles (14%). Habitat loss and degradation, pollution, invasive/alien species, unsustainable use, and persecution are major threats to the species. The important conservation actions should be directed to sustainable management measures and legal protection of endangered species and their habitats, all for the future of Mediterranean biodiversity. Keywords: amphibians, conservation, Mediterranean basin, reptiles, threatened species 1. Introduction The Mediterranean basin is one of the most geologically, biologically, and culturally complex region and the only case of a large sea surrounded by Europe, Asia and Africa. The Basin was shaped by the collision of the northward-moving African-Arabian continental plate with the Eurasian continental plate which occurred on a wide range of scales and time in the course of the past 250 mya [1].
    [Show full text]
  • Study of Halal and Haram Reptil (Dhab "Uromastyx Aegyptia
    Study of Halal and Haram Reptil (Dhab "Uromastyx aegyptia", Biawak "Varanus salvator", Klarap "Draco volans") in Interconnection-Integration Perspective in Animal Systematics Practicum Sutriyono Integrated Laboratory of Science and Technology State Islamic University Sunan Kalijaga Yogyakarta - Indonesia Correspondency email: [email protected] Abstract Indonesia as a country with the largest Muslim population in the world, halal and haram being important and interesting issues, and will have more value if being related to science and religion. The research aimed to study halal and haram of reptiles by tracing manuscripts of Islam and science, combining, analyzing, and drawing conclusions with species Uromastyx aegyptia (Desert lizard), Varanus salvator (Javan lizard), and Draco volan (Klarap). The results showed that Dhab (Uromastyx aegyptia) (Desert lizard) is halal, based on the hadith narrated by Muslim no. 3608, hadith narrated by Al-Bukhari no. 1538, 1539. Uromastyx aegyptia are herbivorous animals although sometimes they eat insects. Javanese lizards (Varanus salvator) in Arabic called waral, wild and fanged animals is haram for including carnivores, based on hadith narrated by Muslim no. 1932, 1933, 1934, hadith narrated by Al-Bukhari no. 5530. Klarap (Draco volans)/cleret gombel/gliding lizard is possibly halal because no law against it. Draco volans is an insectivorous, not a wild or fanged animal, but it can be haram if disgusting. Draco volans has the same category taxon as Uromastyx aegyptia at the family taxon. Keywords: Halal-haram, Reptile, Interconnection, Integration, Animal Systematics. Introduction Indonesia as a country with the largest Muslim population in the world, halal and haram are an important and interesting issues and will have more value if being related to science and religion.
    [Show full text]
  • Evolutionary History of Spiny- Tailed Lizards (Agamidae: Uromastyx) From
    Received: 6 July 2017 | Accepted: 4 November 2017 DOI: 10.1111/zsc.12266 ORIGINAL ARTICLE Evolutionary history of spiny- tailed lizards (Agamidae: Uromastyx) from the Saharo- Arabian region Karin Tamar1 | Margarita Metallinou1† | Thomas Wilms2 | Andreas Schmitz3 | Pierre-André Crochet4 | Philippe Geniez5 | Salvador Carranza1 1Institute of Evolutionary Biology (CSIC- Universitat Pompeu Fabra), Barcelona, The subfamily Uromastycinae within the Agamidae is comprised of 18 species: three Spain within the genus Saara and 15 within Uromastyx. Uromastyx is distributed in the 2Allwetterzoo Münster, Münster, Germany desert areas of North Africa and across the Arabian Peninsula towards Iran. The 3Department of Herpetology & systematics of this genus has been previously revised, although incomplete taxo- Ichthyology, Natural History Museum of nomic sampling or weakly supported topologies resulted in inconclusive relation- Geneva (MHNG), Geneva, Switzerland ships. Biogeographic assessments of Uromastycinae mostly agree on the direction of 4CNRS-UMR 5175, Centre d’Écologie Fonctionnelle et Évolutive (CEFE), dispersal from Asia to Africa, although the timeframe of the cladogenesis events has Montpellier, France never been fully explored. In this study, we analysed 129 Uromastyx specimens from 5 EPHE, CNRS, UM, SupAgro, IRD, across the entire distribution range of the genus. We included all but one of the rec- INRA, UMR 5175 Centre d’Écologie Fonctionnelle et Évolutive (CEFE), PSL ognized taxa of the genus and sequenced them for three mitochondrial and three Research University, Montpellier, France nuclear markers. This enabled us to obtain a comprehensive multilocus time- calibrated phylogeny of the genus, using the concatenated data and species trees. We Correspondence Karin Tamar, Institute of Evolutionary also applied coalescent- based species delimitation methods, phylogenetic network Biology (CSIC-Universitat Pompeu Fabra), analyses and model- testing approaches to biogeographic inferences.
    [Show full text]