On the Phylogeny and Taxonomy of the Genus Uromastyx Merrem, 1820 (Reptilia: Squamata: Agamidae: Uromastycinae) – Resurrection of the Genus Saara Gray, 1845

Total Page:16

File Type:pdf, Size:1020Kb

On the Phylogeny and Taxonomy of the Genus Uromastyx Merrem, 1820 (Reptilia: Squamata: Agamidae: Uromastycinae) – Resurrection of the Genus Saara Gray, 1845 Bonner zoologische Beiträge Band 56 (2007) Heft 1/2 Seiten 55–99 Bonn, März 2009 On the Phylogeny and Taxonomy of the Genus Uromastyx Merrem, 1820 (Reptilia: Squamata: Agamidae: Uromastycinae) – Resurrection of the Genus Saara Gray, 1845 Thomas M. WILMS1),4), WOLFGANG BÖHME2), Philipp WAGNER2), Nicolà LUTZMANN2) & Andreas SCHMITZ3) 1)Zoologischer Garten Frankfurt, Bernhard-Grzimek-Allee 1, D-60316 Frankfurt am Main, Germany; E-Mail: [email protected]; 2)Zoologisches Forschungsmuseum A. Koenig, Adenauerallee 160, D- 53113 Bonn, Germany; 3)Muséum d’Histoire naturelle, C. P. 6434, CH-1211 Genève 6, Switzerland; 4)Corresponding author Abstract. We assessed the taxonomic relationships within the genus Uromastyx Merrem, 1820 using morphologi- cal and genetic methods, resulting in the resurrection of the genus Saara Gray, 1845 for Saara hardwickii, S. as- mussi and S. loricata and in changes of the taxonomic rank of Uromastyx nigriventris, U. aegyptia leptieni and U. shobraki. A synopsis of all taxa considered to be valid is provided, including differential diagnosis, description and data on their respective distribution. A key for the species of Saara and Uromastyx is presented. Keywords. Reptilia; Sauria; Agamidae; Uromastycinae; Uromastyx; Saara; Saara hardwickii; Saara asmussi new comb.; Saara loricata new comb.; Uromastyx aegyptia leptieni new status; Uromastyx nigriventris new status; Uromastyx sho- braki new status; Phylogeny; Taxonomy; Morphology. 1. INTRODUCTION Within the Palearctic genus Uromastyx Merrem, 1820 a (KNAPP 2004, WILMS 2007a). But the consumption of total of 17 species are considered to be valid by WILMS spiny-tailed lizards in their countries of origin may be con- & SCHMITZ (2007) and WILMS & BÖHME (2007). Some of siderably higher due to the fact, that Uromastyx are heav- the species respective subspecies belonging to that genus ily hunted for food and for the production of souvenirs and have been described quite recently (e. g. Uromastyx dis- traditional medicine (WILMS 2007a). par maliensis Joger & Lambert, 1996; Uromastyx occi- dentalis Mateo et al., 1998; Uromastyx leptieni Wilms & The main aim of the present paper is to evaluate the phy- Böhme, 2000; Uromastyx alfredschmidti Wilms & Böhme, logenetic relationships within the taxa of the genus Uro- 2001; Uromastyx y. yemenensis Wilms & Schmitz, 2007, mastyx and to establish a hypothesis of the taxonomy of and Uromastyx y. shobraki Wilms & Schmitz, 2007) re- this group, based on a synthesis of morphological and ge- flecting a continuing scientific interest in the phylogeny netic characters. and taxonomy of these animals. Taxonomic History Uromastyx spp. are medium sized to large lizards inhab- iting the old world desert belt from North Africa to north The taxonomic history of the lizards currently assigned western India. All species are either ground dwellers or to the genus Uromastyx dates back to the second half of saxicolous, with some species climbing occasionally on the 18th century [description of Lacerta aegyptia trees. Uromastyx are predominantly herbivorous, feeding FORSSKÅL, 1775; for more detailed information on the his- on the scarce vegetation in their desert environment. Eco- tory of this taxon see WILMS & BÖHME 2000 a. For a dis- logically these animals are largely limited by the availabil- cussion on the spelling of PEHR FORSSKÅL’s family name ity of food and by the availability of appropriate thermal see FRIIS & THULIN (1984)]. refuges. The genus name Uromastyx was coined by MERREM in his Uromastyx spp. are currently listed on Appendix II of work ‘Versuch eines Systems der Amphibien – Tentamen CITES. Internationally more than 367 000 specimens have Systematis Amphibiorum’ (MERREM 1820). Of the seven been traded legally in the pet trade between 1977 and 2005 species included in this first synopsis of the genus only 56 Thomas M. WILMS et al.: On the Phylogeny and Taxonomy of the Genus Uromastyx Merrem, 1820 one is belonging to Uromastyx as it is currently defined tional Museum, Museum of Natural History Prague [Uromastyx spinipes (Daudin, 1802) = Uromastyx aegyp- (NMP6V); Naturmuseum und Forschungsinstitut Senck- tia (Forsskål, 1775)]. enberg, Frankfurt a. M. (SMF); Zoologisches Forschungsmuseum A. Koenig, Bonn (ZFMK); Zoologi- Between 1822 and 1885 a total of five new genera (Mas- sches Museum der Universität Hamburg (ZMH); Muse- tigura Fleming, 1822; Centrocercus Fitzinger, 1843; Saara um für Naturkunde, Humbold-Universität, Berlin (ZMB) Gray, 1845; Centrotrachelus Strauch, 1863; Aporoscelis and Zoologische Staatssammlung München (ZSM). For Boulenger, 1885) were erected for different members of a list of examined specimens see Appendix II. the genus Uromastyx of which only Aporoscelis and Cen- trotrachelus were considerably in use (e. g. ANDERSON For each specimen 25 external characters (16 meristic, 6 1894, 1896, 1901; BLANFORD 1874, 1881; VON BEDRIA- metric, 3 qualitative) have been routinely recorded: snout- GA 1879; MURRAY 1884; SCORTECCI 1933; NINNI 1933; vent length (SVL), length of tail (TL), head width between PARKER 1942; HAAS & WERNER 1969). Aporoscelis was the anterior margins of the ear openings (HW), head length used in the rank of a subgenus by JOGER (1987). The name from the tip of the snout to the anterior margin of the ear Centrocercus Fitzinger, 1843 is preoccupied by Centro- opening on the left side (HL), width of tail between the cercus Swainson, 1832 (Aves, Phasianidae) and is there- 4th and 5th whorl (TW), maximum tail width at the 5th fore not available. The main taxonomic problem within whorl (TWmax), number of tail whorls (W), number of Uromastyx was the proper delimitation of taxon bound- scales beneath the 4th toe on the left side (SD), number of aries on the specific and subspecific level, which led in gular scales (from mental to a line between the anterior the past to considerable confusion on the identity of di- margins of the ear openings (G)), number of scales around verse taxa (for more detailed information see WILMS & mid-body (MBS), number of scales between gular- and BÖHME 2000 a, 2000 b, 2001). inguinal fold (V; ventrals), number of scales around the 5th whorl (SW), number of preanofemoral pores (PP; left Beside studies based on external morphology (e. g. and right), number of enlarged scales at the anterior mar- MERTENS 1962; MOODY 1987; WILMS & BÖHME 2000 a, gin of the ear opening (LS; left and right), number of 2000 b; WILMS & BÖHME 2001; WILMS & SCHMITZ 2007) scales between suboculars and supralabials (SO; left and and immunology (JOGER 1987), some recent papers also right), number of scales from the mid of the lower end of adress this issue by employing molecular genetic meth- the ear opening to the mental scale (HS; left and right), ods (AMER & KUMAZAWA 2005; WILMS & SCHMITZ 2007; number of scales from the upper to the lower end of the HARRIS et al. 2007). Nevertheless some aspects of the tax- left ear opening (ES; approximately three scale rows be- onomy of these highly specialized desert lizards still re- fore the anterior margin of the ear opening), number of main unclear. scales from the upper end of the left ear opening to the first enlarged subocular scale (PES), presence or absence On the basis of external morphology and immunological of enlarged tubercular scales at the flanks (TF; absent = distances it is well established, that several species groups 0 / present = 1), enlarged tubercular scales at the dorsum within Uromastyx are recognizable, but the relationships (TD; absent = 0 / present = 1 / arranged in rows = 2), in- and species compositions of these groups are still under tercalary scales between the whorls present or absent (IS; debate (JOGER 1986; MOODY 1987; WILMS 2001; AMER absent = 0 / 1–2 unkeeled present = 1 / 2–6 keeled pres- & KUMAZAWA 2005; WILMS & SCHMITZ 2007). ent = 2). Measurements were taken to the nearest 0.5 mm using a calliper. 2. MATERIAL AND METHODS To obtain morphological outgroup data from the closest relatives of Uromastyx several vouchers of the genus Morphological sampling and analysis Leiolepis from the collection of the ZFMK were exam- ined. 621 specimens of the genus Uromastyx, including the type material of the relevant taxa have been examined. The Statistical analyses of morphological data specimens are deposited in the following collections (In- stitutional abbreviations in parenthesis): The Natural His- The Excel 2000 and SPSS (10.0) statistical packages were tory Museum, London (BMNH); Naturhistorisches Mu- used to run the analyses. Hierachical Cluster analysis and seum Wien (NMW); Museo Zoologico de „La Specola“, Principal Component Analysis (PCA) have been selected Firenze (MZUF); Muséum d’Histoire Naturelle, Genève to evaluate the morphological data and to explore the phe- (MHNG); Muséum National d’Histoire Naturelle, Paris netic relationships between the taxa examined. (MNHN); Museum für Tierkunde, Dresden (MTKD); Na- Bonner zoologische Beiträge 56 (2007) 57 Phylogenetic analysis of morphological data To get a better resolution within two identified clades of very closely related taxa (compare below), 12S rRNA da- Phylogenetic analysis was carried out on the basis of twen- ta for representatives of those clades were added and sep- ty-five external characters (16 meristic, 6 metric, 3 qual- arate trees were produced. Therefore, in these cases we itative). To assign a polarity to these characters (plesiomor- amplified a section of the mitochondrial 12S ribosomal phy vs. apomorphy), ingroup and outgroup comparisons RNA gene using the primers 12SA-L (light chain; 5’ - were applied (WATROUS & WHEELER 1981; MADDISON et AAA CTG GGA TTA GAT ACC CCA CTA T - 3’) and al. 1984). Species of the genus Leiolepis were used as out- 12SB-H (heavy chain; 5’ - GAG GGT GAC GGG CGG group, because this genus forms the morphologically and TGT GT - 3’) of KOCHER et al. (1989). Cycling procedure genetically proposed sister clade to Uromastyx (PETERS was again identical as described in SCHMITZ et al. (2005). 1971; BÖHME 1988; SCHMITZ et al. 2001; AMER & KU- MAZAWA 2005). Within the genus Leiolepis seven taxa are PCR products were purified using Qiaquick purification distinguished: L.
Recommended publications
  • B.Sc. II YEAR CHORDATA
    B.Sc. II YEAR CHORDATA CHORDATA 16SCCZO3 Dr. R. JENNI & Dr. R. DHANAPAL DEPARTMENT OF ZOOLOGY M. R. GOVT. ARTS COLLEGE MANNARGUDI CONTENTS CHORDATA COURSE CODE: 16SCCZO3 Block and Unit title Block I (Primitive chordates) 1 Origin of chordates: Introduction and charterers of chordates. Classification of chordates up to order level. 2 Hemichordates: General characters and classification up to order level. Study of Balanoglossus and its affinities. 3 Urochordata: General characters and classification up to order level. Study of Herdmania and its affinities. 4 Cephalochordates: General characters and classification up to order level. Study of Branchiostoma (Amphioxus) and its affinities. 5 Cyclostomata (Agnatha) General characters and classification up to order level. Study of Petromyzon and its affinities. Block II (Lower chordates) 6 Fishes: General characters and classification up to order level. Types of scales and fins of fishes, Scoliodon as type study, migration and parental care in fishes. 7 Amphibians: General characters and classification up to order level, Rana tigrina as type study, parental care, neoteny and paedogenesis. 8 Reptilia: General characters and classification up to order level, extinct reptiles. Uromastix as type study. Identification of poisonous and non-poisonous snakes and biting mechanism of snakes. 9 Aves: General characters and classification up to order level. Study of Columba (Pigeon) and Characters of Archaeopteryx. Flight adaptations & bird migration. 10 Mammalia: General characters and classification up
    [Show full text]
  • Spring 2017 Issue
    ISSN:2381-0637 FINE FOCUS AN INTERNATIONAL MICROBIOLOGY JOURNAL FOR UNDERGRADUATE RESEARCH 2 • FINE FOCUS, VOL. 3 (1) MISSION We publish original research by undergraduate students in microbiology. This includes works in all microbiological specialties and microbiology education. SCOPE We are an international journal dedicated to showcasing undergraduate research in all fields of microbiology. Fine Focus is managed entirely by undergraduate students from production to print but utilizes an External Editorial Board of experts for double-blind peer review of manuscripts. CONTACT INFORMATION Call: +1-765-285-8820 Email: [email protected] Facebook: Fine Focus Journal Twitter: @focusjournal Online: finefocus.org Copyright 2017, Fine Focus. All rights reserved. CONTENTS • 3 TABLE OF CONTENTS PERSPECTIVE 5 Objective Lens John L. McKillip, Ph.D. 9 Cutting wedge: bacterial community diversity and structure associated with the cheese rind and curd of seven natural rind cheeses Lei Wei, Rebecca J. Rubinstein, Kathleen M. Hanlon, Heidi Wade, Celeste N. Peterson, and Vanja Klepac-Ceraj 35 Characterization of prodiginine compounds produced by a Vibrio species isolated from salt flat sediment along the Florida Gulf Coast Stephanie Morgan, Matthew J. Thomas, Katherine M. Walstrom, Eric C. Warrick, Brittany J Gasper 49 Metal Susceptibility of a Hetero-Vancomycin-Intermediate Methicillin-Resistant Staphylococcus aureus Isolate Colleen Quigley and Reena Lamichhane-Khadka PERSPECTIVE 69 Become a Spokesperson for Science Ronda L. Hamm, Dow Agro Sciences LLC RESOURCES 78 Fine Focus team and Editorial Board members 80 Call for papers PERSPECTIVE OBJECTIVE LENS “ JOHN L. MCKILLIP, PH.D. MANAGING EDITOR, FINE FOCUS ASSOCIATE PROFESSOR OF BIOLOGY, BALL STATE UNIVERSITY Copyright 2017, Fine Focus.
    [Show full text]
  • Biomechanical Assessment of Evolutionary Changes in the Lepidosaurian Skull
    Biomechanical assessment of evolutionary changes in the lepidosaurian skull Mehran Moazena,1, Neil Curtisa, Paul O’Higginsb, Susan E. Evansc, and Michael J. Fagana aDepartment of Engineering, University of Hull, Hull HU6 7RX, United Kingdom; bThe Hull York Medical School, University of York, York YO10 5DD, United Kingdom; and cResearch Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom Edited by R. McNeill Alexander, University of Leeds, Leeds, United Kingdom, and accepted by the Editorial Board March 24, 2009 (received for review December 23, 2008) The lepidosaurian skull has long been of interest to functional mor- a synovial joint with the pterygoid, the base resting in a pit (fossa phologists and evolutionary biologists. Patterns of bone loss and columellae) on the dorsolateral pterygoid surface. Thus, the gain, particularly in relation to bars and fenestrae, have led to a question at issue in relation to the lepidosaurian lower temporal variety of hypotheses concerning skull use and kinesis. Of these, one bar is not the functional advantage of its loss (13), but rather of of the most enduring relates to the absence of the lower temporal bar its gain in some rhynchocephalians and, very rarely, in lizards in squamates and the acquisition of streptostyly. We performed a (12, 14). This, in turn, raises questions as to the selective series of computer modeling studies on the skull of Uromastyx advantages of the different lepidosaurian skull morphologies. hardwickii, an akinetic herbivorous lizard. Multibody dynamic anal- Morphological changes in the lepidosaurian skull have been ysis (MDA) was conducted to predict the forces acting on the skull, the subject of theoretical and experimental studies (6, 8, 9, and the results were transferred to a finite element analysis (FEA) to 15–19) that aimed to understand the underlying selective crite- estimate the pattern of stress distribution.
    [Show full text]
  • An Overview and Checklist of the Native and Alien Herpetofauna of the United Arab Emirates
    Herpetological Conservation and Biology 5(3):529–536. Herpetological Conservation and Biology Symposium at the 6th World Congress of Herpetology. AN OVERVIEW AND CHECKLIST OF THE NATIVE AND ALIEN HERPETOFAUNA OF THE UNITED ARAB EMIRATES 1 1 2 PRITPAL S. SOORAE , MYYAS AL QUARQAZ , AND ANDREW S. GARDNER 1Environment Agency-ABU DHABI, P.O. Box 45553, Abu Dhabi, United Arab Emirates, e-mail: [email protected] 2Natural Science and Public Health, College of Arts and Sciences, Zayed University, P.O. Box 4783, Abu Dhabi, United Arab Emirates Abstract.—This paper provides an updated checklist of the United Arab Emirates (UAE) native and alien herpetofauna. The UAE, while largely a desert country with a hyper-arid climate, also has a range of more mesic habitats such as islands, mountains, and wadis. As such it has a diverse native herpetofauna of at least 72 species as follows: two amphibian species (Bufonidae), five marine turtle species (Cheloniidae [four] and Dermochelyidae [one]), 42 lizard species (Agamidae [six], Gekkonidae [19], Lacertidae [10], Scincidae [six], and Varanidae [one]), a single amphisbaenian, and 22 snake species (Leptotyphlopidae [one], Boidae [one], Colubridae [seven], Hydrophiidae [nine], and Viperidae [four]). Additionally, we recorded at least eight alien species, although only the Brahminy Blind Snake (Ramphotyplops braminus) appears to have become naturalized. We also list legislation and international conventions pertinent to the herpetofauna. Key Words.— amphibians; checklist; invasive; reptiles; United Arab Emirates INTRODUCTION (Arnold 1984, 1986; Balletto et al. 1985; Gasperetti 1988; Leviton et al. 1992; Gasperetti et al. 1993; Egan The United Arab Emirates (UAE) is a federation of 2007).
    [Show full text]
  • Report on Species/Country Combinations Selected for Review by the Animals Committee Following Cop16 CITES Project No
    AC29 Doc. 13.2 Annex 1 UNEP-WCMC technical report Report on species/country combinations selected for review by the Animals Committee following CoP16 CITES Project No. A-498 AC29 Doc. 13.2 Annex 1 Report on species/country combinations selected for review by the Animals Committee following CoP16 Prepared for CITES Secretariat Published May 2017 Citation UNEP-WCMC. 2017. Report on species/country combinations selected for review by the Animals Committee following CoP16. UNEP-WCMC, Cambridge. Acknowledgements We would like to thank the many experts who provided valuable data and opinions in the compilation of this report. Copyright CITES Secretariat, 2017 The UN Environment World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment centre of UN Environment, the world’s foremost intergovernmental environmental organisation. The Centre has been in operation for over 30 years, combining scientific research with practical policy advice. This publication may be reproduced for educational or non-profit purposes without special permission, provided acknowledgement to the source is made. Reuse of any figures is subject to permission from the original rights holders. No use of this publication may be made for resale or any other commercial purpose without permission in writing from UN Environment. Applications for permission, with a statement of purpose and extent of reproduction, should be sent to the Director, UNEP-WCMC, 219 Huntingdon Road, Cambridge, CB3 0DL, UK. The contents of this report do not necessarily reflect the views or policies of UN Environment, contributory organisations or editors. The designations employed and the presentations of material in this report do not imply the expression of any opinion whatsoever on the part of UN Environment or contributory organisations, editors or publishers concerning the legal status of any country, territory, city area or its authorities, or concerning the delimitation of its frontiers or boundaries or the designation of its name, frontiers or boundaries.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Trade in Live Reptiles, Its Impact on Wild Populations, and the Role of the European Market
    BIOC-06813; No of Pages 17 Biological Conservation xxx (2016) xxx–xxx Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/bioc Review Trade in live reptiles, its impact on wild populations, and the role of the European market Mark Auliya a,⁎,SandraAltherrb, Daniel Ariano-Sanchez c, Ernst H. Baard d,CarlBrownd,RafeM.Browne, Juan-Carlos Cantu f,GabrieleGentileg, Paul Gildenhuys d, Evert Henningheim h, Jürgen Hintzmann i, Kahoru Kanari j, Milivoje Krvavac k, Marieke Lettink l, Jörg Lippert m, Luca Luiselli n,o, Göran Nilson p, Truong Quang Nguyen q, Vincent Nijman r, James F. Parham s, Stesha A. Pasachnik t,MiguelPedronou, Anna Rauhaus v,DannyRuedaCórdovaw, Maria-Elena Sanchez x,UlrichScheppy, Mona van Schingen z,v, Norbert Schneeweiss aa, Gabriel H. Segniagbeto ab, Ruchira Somaweera ac, Emerson Y. Sy ad,OguzTürkozanae, Sabine Vinke af, Thomas Vinke af,RajuVyasag, Stuart Williamson ah,1,ThomasZieglerai,aj a Department Conservation Biology, Helmholtz Centre for Environmental Conservation (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany b Pro Wildlife, Kidlerstrasse 2, 81371 Munich, Germany c Departamento de Biología, Universidad del Valle de, Guatemala d Western Cape Nature Conservation Board, South Africa e Department of Ecology and Evolutionary Biology,University of Kansas Biodiversity Institute, 1345 Jayhawk Blvd, Lawrence, KS 66045, USA f Bosques de Cerezos 112, C.P. 11700 México D.F., Mexico g Dipartimento di Biologia, Universitá Tor Vergata, Roma, Italy h Amsterdam, The Netherlands
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Gross Trade in Appendix II FAUNA (Direct Trade Only), 1999-2010 (For
    AC25 Inf. 5 (1) Gross trade in Appendix II FAUNA (direct trade only), 1999‐2010 (for selection process) N.B. Data from 2009 and 2010 are incomplete. Data extracted 1 April 2011 Phylum Class TaxOrder Family Taxon Term Unit 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Total CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia BOD 0 00001000102 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia BON 0 00080000008 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia HOR 0 00000110406 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia LIV 0 00060000006 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia SKI 1 11311000008 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia SKP 0 00000010001 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia SKU 2 052101000011 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia TRO 15 42 49 43 46 46 27 27 14 37 26 372 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Antilope cervicapra TRO 0 00000020002 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae BOD 0 00100001002 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae HOP 0 00200000002 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae HOR 0 0010100120216 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae LIV 0 0 5 14 0 0 0 30 0 0 0 49 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae MEA KIL 0 5 27.22 0 0 272.16 1000 00001304.38 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae MEA 0 00000000101 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae
    [Show full text]
  • Review of the Taxonomy of the Spiny-Tailed Lizards of Arabia (Reptilia: Agamidae: Leiolepidinae: Uromastyx)
    FAUNA OF ARABIA 23: 435–468 Date of publication: 15.07.2007 Review of the taxonomy of the spiny-tailed lizards of Arabia (Reptilia: Agamidae: Leiolepidinae: Uromastyx) Thomas M. Wilms and Wolfgang Böhme A b s t r a c t : Currently six species of the genus Uromastyx (Reptilia: Agamidae: Leiolepidinae), representing three phylogenetic lineages, are known to occur in Arabia: Uromastyx aegyptia, U. benti, U. leptieni, U. ornata, U. thomasi and U. yemenensis. The present paper gives an overview of the taxonomy of these lizards and presents new data on the morphology and ecology of Uro- mastyx leptieni. ������� ������ ��� � ����� ����� ������ ������� ������ (Leiolepidinae: Uromastyx :��������� :�������) ���� ��������� ����� ����� (Leiolepidinae :��������� :�������) Uromastyx ���� �� ����� � ������� ������ ��� � ������ ���� :���� .U. yemenensis � U. benti, U. leptieni, U. ornata, U. thomasi, Uromastyx aegyptia ���� ������ ����� � � ����� .Uromastyx leptieni ����� ������� ������ ����� ����� ����� ����� ������ ��� ������ ������ ����� ���� INTRODUCTION Spiny-tailed agamas are small to medium-sized, ground- or rock-dwelling lizards. Most species reach a maximum length of 25-50 cm, and only species of the Uromastyx aegyptia group can reach a total length of up to 70 cm or more. The animals have a bulky, depressed body and strong, short limbs. The tail is covered by spiny scales, arranged in distinct whorls. The tympanum is visible. None of the species has a nuchal or dorsal crest or a gular pouch or fan. Only a transverse fold at the throat is present (gular fold). Body scales are small and mostly homogenous, but some species have enlarged tubercular scales on the body and/or limbs. The main diagnostic character of the genus is the highly specialised tooth-like bony structure replacing the incisor teeth in the upper jaw in adults. This transformation of the premaxillary bone to a tooth-like structure is an autapomorphy of the genus Uromastyx, convergent in Sphenodon, which has also a convergently acrodont dentition.
    [Show full text]
  • The Land of Raptors Monthly Newsletter Monthly
    Year 3/Issue 03/November–December 2017 The World After 5 th Extinction Wildlife Corridor Designing for Conservation in India Using Computational Aspects: A Preliminary Interaction Model (Part – I) Asiatic Lion… Human-Lion Interaction in Kathiawar Featuring Asian Biodiversity Asian Featuring Why Tigers become Man Eaters Your God is not Green of Ethereal Bikaner: The Land of Raptors Monthly Newsletter Monthly Cover Photo : Tanmoy Das Year 3/Issue 03/November–December 2017 “The mouse says: I dig a hole without a hoe; the snake says: climb a tree without arms.” ~ Ancient African Hearsay Copper Headed Trinket; Photography by Sauvik Basu Year 3/Issue 03/November–December 2017 The Holocene is the geological epoch that began after the Content : Pleistocene at approximately 11,700 years BP and continues to the present. As Earth warmed after the Ice Age, the human Cover Story population increased and early man began to change the planet Ethereal Bikaner: The Land of forever. For Exploring Nature, our newsletter Holocene is our Raptors by Sandipan Ghosh platform to convey our concerns on human threat to 3|Page biodiversity. We will use our newsletter as a media to highlight the current local and global issues which could impact Editorial biodiversity of Mother Nature and promote awareness of Illegal Wildlife Trade… biodiversity in alignment with our group’s mission of promoting 10|Page awareness of different aspects of Mother Nature among people. Experts’ Voice In this newsletter our readers will get information and periodic Wildlife Corridor Designing for updates on. Conservation in India usin Computational Aspects, A Preliminary Recent significant discussions on biodiversity, going on Interaction Model (Part–I) by Saurabh across the world.
    [Show full text]
  • Amphibians and Reptiles of the Mediterranean Basin
    Chapter 9 Amphibians and Reptiles of the Mediterranean Basin Kerim Çiçek and Oğzukan Cumhuriyet Kerim Çiçek and Oğzukan Cumhuriyet Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.70357 Abstract The Mediterranean basin is one of the most geologically, biologically, and culturally complex region and the only case of a large sea surrounded by three continents. The chapter is focused on a diversity of Mediterranean amphibians and reptiles, discussing major threats to the species and its conservation status. There are 117 amphibians, of which 80 (68%) are endemic and 398 reptiles, of which 216 (54%) are endemic distributed throughout the Basin. While the species diversity increases in the north and west for amphibians, the reptile diversity increases from north to south and from west to east direction. Amphibians are almost twice as threatened (29%) as reptiles (14%). Habitat loss and degradation, pollution, invasive/alien species, unsustainable use, and persecution are major threats to the species. The important conservation actions should be directed to sustainable management measures and legal protection of endangered species and their habitats, all for the future of Mediterranean biodiversity. Keywords: amphibians, conservation, Mediterranean basin, reptiles, threatened species 1. Introduction The Mediterranean basin is one of the most geologically, biologically, and culturally complex region and the only case of a large sea surrounded by Europe, Asia and Africa. The Basin was shaped by the collision of the northward-moving African-Arabian continental plate with the Eurasian continental plate which occurred on a wide range of scales and time in the course of the past 250 mya [1].
    [Show full text]