ESCMID Online Lecture Library © by Author

Total Page:16

File Type:pdf, Size:1020Kb

ESCMID Online Lecture Library © by Author APPROACHES FOR DEFINING SAFE AND EFFECTIVE REGIMENS FOR CHILDREN IN THE CONTEXT OF AMR Professor Mike Sharland,© by St George’s author University of London ESCMID/ASM Conference on Drug Development to Meet the Challenge of ESCMID OnlineAntimicrobial Lecture Resistance Library 21 ‐ 23 September 2016, Vienna, Austria 2016 GARPEC PPS Neonate Neonate: Antimicrobial Prescribing (90% DU) Gentamicin 12,2 Ceftizoxime 12,0 Meropenem 9,2 Ampicillin 8,5 Amoxicillin and enzyme inhibitor 6,6 Amikacin 6,4 Fluconazole 4,7 Latamoxef 3,8 Benzylpenicillin 3,8 Nystatin 3,5 Nevirapine 3,5 Vancomycin 2,6© by author Cefotaxime 2,6 Cefazolin 2,1 Mezlocillin 2,1 Piperacillin andESCMID enzyme inhibitor Online1,9 Lecture Library Other 1,9 Metronidazole 1,6 Flucloxacillin 1,6 0 2 4 6 8 10 12 14 Percentage (%) GARPEC 2016 PPS - Child Children: Antimicrobial Prescribing (90% DU) Ceftriaxone 7,0 Meropenem 6,9 Vancomycin 5,1 Vidarabine 4,5 Sulfamethoxazole and trimethoprim 4,2 Azithromycin 4,0 Amoxicillin and enzyme inhibitor 3,8 Amikacin 3,5 Cefepime 3,0 Latamoxef 2,8 Cefotaxime 2,7 Abacavir 2,6 Piperacillin and enzyme inhibitor 2,4 Metronidazole 2,3 Fluconazole 2,1 Clindamycin 2,1 Mezlocillin 2,0 Oseltamivir 1,9 Cefuroxime 1,9 Amoxicillin 1,8 Nystatin 1,7 Ciprofloxacin 1,6 Gentamicin 1,5 Isoniazid 1,4 Other 1,4 Ganciclovir 1,4 Rifampicin 1,3 Linezolid 1,2 © by author Oxacillin 1,2 Ampicillin 1,2 Pyrazinamide 1,1 Erythromycin 1,1 Trimethoprim 1,0 Cefazolin 0,9 Flucloxacillin 0,9 ESCMIDEthambutol Online Lecture Library 0,8 Cefoperazone, combinations 0,8 Ceftriaxone, combinations 0,8 Cefalexin 0,7 Amphotericin B 0,6 Sulfadiazine 0,6 Cefalotin 0,6 012345678 Percentage (%) Background • There is no global consensus on the conduct of clinical trials (CTs)in children with specific clinical infection syndromes (CIS). There is no comprehensive regulatory guidance on the design of antibiotic (AB) CTs in neonates and children (EMA IDWP/FDA CTTI). • CTsofABefficacyreportedorcurrentlyon‐going in paediatrics are now very few compared to adults. • January 2016 ‐ 64 neonatal and pediatric AB open trials registered on ClinTrialsgov (2013 – over 4000 open adult trials) – only 12 recruiting neonates – 2 preterms (26% global population under 15..) • Half of trials pharma but© focussed by author on SSTI (13) and cIAI (10) – areas of moderate clinical need. Other half strategic/academic of “varying” quality. • ESCMIDCurrent approach Online is not Lecture an optimal Library model for families/pharma/pediatricians – anyone… KEY COMPONENTS OF EFFICACY ASSESSMENT IN PAEDIATRIC ANTIBIOTIC CTs © by author ESCMID Online Lecture Library HARMONISATION IN STUDY DESIGN AND OUTCOMES IN PAEDIATRIC ANTIBIOTIC CTs: SR –LID 2016 WIDER AIM: To assess the degree of harmonization in CTs addressing efficacy of antibacterial agents in children and neonates SPECIFIC OBJECTIVES: To systematically review the extent to which antibiotic trials of efficacy in children from 2000‐2015© by author apply consistent definitions for patient selection and endpoints ESCMIDuse the Onlinestandardised inclusion/exclusion Lecture criteriaLibraryand endpoints for the major CIS as defined by the FDA and EMA for adults Folgori L et al, Lancet Infect Dis 2016 RESULTS Basic characteristics of included studies CONSORT N° of Enrolled Pharma led Ongoing Including CIS* items reported studies pts studies trials neonates (%)** CAP 24 19,985 74 5 1 0 VAP/HAP 4 116 61 3 0 2 UTI 19 3,948 61 5 1 0 IAI 14 1,706 65 3 4 1 Sepsis 18 1,829 65 2 3 16 SSTI 7 1,489 73 4 1 1 Totals (%) 86*** 29,073 66 22 (26) 10 (12) 20 (23) *Clinical Infection Syndrome; **expressed as mean of included studies; ***82 single studies Setting of included studies © by author ESCMID Online Lecture Library Proportion of the key study design criteria used in paediatric trials compared to the adult EMA/FDA guidance CAP (24 studies) n studies that used the n studies that did not use FDA EMA criteria (%) the criteria (%) Inclusion criteria Clinical findings 23 (96) 1 (4) Haematological tests 3 (12) 21 (88) Biochemical tests 2 (8) 22 (92) Microbiology 1 (4) 23 (96) Imaging 10 (42) 14 (58) Exclusion criteria Clinical findings 19 (79) 5 (21) Haematological tests 2 (8) 22 (92) Biochemical tests 5 (21) 19 (79) Microbiology 12 (50) 12 (50) Imaging 4 (17) 20 (83) Underlying conditions 21 (88) 3 (12) History of recent infection © by author10 (42) 14 (58) History of recent AB** 10 (42) 14 (58) Allergy to study drugs 16 (67) 8 (33) Endpoints Clinical improvement 16 (67) 8 (33) ESCMIDTreatment failure/Changed Online AB Lecture13 (54) Library11 (46) Microbiological efficacy 4 (17) 20 (83) Mortality 7 (29) 17 (71) SAE*** 6 (25) 18 (75) Comorbidities/sequelae 7 (29) 17 (71) Process outcome 4 (17) 20 (83) RESULTS • QUALITY ASSESSMENT: ‐ the studies reported on a mean of 66% (range 30‐97%) of CONSORT items, with a slight difference between the various CIS • INCLUSION CRITERIA: ‐ Primary diagnosis based on very variable combinations of clinical signs and laboratory tests ‐ Clinical findings used as inclusion criteria in 88% of CTs, followed by haematological and/or biochemical (42%) and microbiological tests (27%) • EXCLUSION CRITERIA: ‐ Chronic/underlying conditions and a history of a recent infection/antibiotic use were considered exclusion criteria in 69 (84%) and 42 (51%) included trials respectively • PRIMARY AND SECONDARY ENDPOINTS© by author ‐ Clear primary endpoint not defined properly in 39 (48%) included trials ‐ Clinical efficacy the most commonly used outcome (66%) whereas microbiological efficacy ESCMIDand death were assessed Online in 33% and 18% Lectureof the studies. Library ‐ Wide variation identified for timing of evaluating the endpoints TIMING FOR EVALUATION OF CLINICAL ENDPOINTS © by author ESCMID Online Lecture Library DISCUSSION • Several limitations of current pediatric AB research from CTs impede translation into clinical practice • Poor adherence of identified publications to CONSORT guidelines on trial reporting • The variation found in defining study outcomes, test‐of‐cure (TOC) endpoints and clinical resolution ‐ Underlines the need for establishment of a standardized approach to evaluate the efficacy of an antibiotic in paediatrics © by author • There is a need for a new framework that is both relevant to regulatory trials to support the licensing process for new AB and strategic trials of the optimal use of ESCMIDolder AB Online Lecture Library KEY COMPONENTS OF SAFETY ASSESSMENT IN PAEDIATRIC ANTIBIOTIC CTs © by author ESCMID Online Lecture Library SR of SAFETY To summarise the key components of safety assessment in paediatric AB CTs in relation to study design, population, safety definition, AB class‐related AEs To discuss a way forward for possible harmonisation of study design© by and conductingauthor for future paediatric antibiotic CTs ESCMID Online Lecture Library SEARCH STRATEGY and SELECTION CRITERIA • The following databases have been systematically searched using a strategy combining MeSH and free text terms for safety AND antibiotics in children and neonates : ‐ Medline ‐ Cochrane ‐ Clinicaltrials.gov • Search limited to CT published or registered after 2000 • Considered eligible for inclusion studies reporting : 1. inclusion and exclusion criteria 2. primary and secondary endpoints, one of which is Safety 3. study design: RCT • Excluded studies reporting data on 1. prophylaxis 2. topical/inhalational © by author 3. Febrile Neutropenia/Cystic Fibrosis 4. other study design • ESCMIDAge range 0 ‐ 18 years Online Lecture Library • Studies presenting data from both adults and children included only if age‐related data could be identified PRELIMINARY RESULTS STUDY SELECTION: • Our search identified 3,006 papers (Medline and Cochrane) and 1,010 CTs (clinicaltrials.gov) • 62 papers and 65 CTs fulfilled our inclusion and exclusion criteria and have been included in the analysis PRELIMINARY DATA EXTRACTED FROM 62 PUBLISHED PAPERS SELECTED SPONSOR n (%): • Industry: 23 (37%) • No‐profit: 39 (63%) n (%) of CTs PER ANTIBIOTIC CLASS: n (%) of ENROLLED PATIENTS PER ANTIBIOTIC CLASS © by author ESCMID Online Lecture Library PRELIMINARY RESULTS MONO vs COMBINED ANTIBIOTIC REGIMENS n (%): • Monotherapy 120 (90,9) • Combination 12 (9,1) Patients with Serious Adverse Event and Drug‐related Adverse Events by antibiotic class, n (%): © by author ESCMID Online Lecture Library AE’s by class and system ADVERSE EVENT BY SYSTEM, n (%): © by author ESCMID Online Lecture Library SAFETY ASSESSMENT • Overall pediatric AE/SAE rates are low, class predictable and extremely rarely were safety issues specific to the pediatric population • Safety evaluation very poorly described and reported in CTs • Sample size for safety studies for similar drugs vary considerably; both open label and blinded studies reported • Detectable level of SAE/AE© by unclear author from study design • Potential for optimal study design based on safety extrapolation fromESCMID adult trials Online Lecture Library AMR –Data from ECDC HAI PPS – children and neonates (all 29 EU/EEA Member States ) LID submitted 2016 • Data obtained from 17,273 children • Highest HAI prevalence in larger hospitals and in PICU/NICU • Independent risk factors for HAI: ‒ medical devices ‐ CVC ‒ young age (particularly neonates) ‒ prolonged length of stay © by author • Substantially different ESCMID Online Lecture patternLibraryof HAIs in children compared to adults ‐ BSI 33rd Annual Meeting of the ESPID, Leipzig 2015 © by author ESCMID Online Lecture Library Kent A, Expert Rev Anti Infect Ther 2014 Strategic
Recommended publications
  • Comparative Effects of Cefpirome (Hr 810) and Other Cephalosporins on Experimentally Induced Pneumonia in Mice
    VOL. XXXIX NO. 7 THE JOURNAL OF ANTIBIOTICS 971 COMPARATIVE EFFECTS OF CEFPIROME (HR 810) AND OTHER CEPHALOSPORINS ON EXPERIMENTALLY INDUCED PNEUMONIA IN MICE N. KLESEL, D. ISERT, M. LIMBERT, G. SEIBERT, I. WINKLER and E. SCHRINNER Hoechst Aktiengesellschaft, Dept. of Chemotherapy, 6230 Frankfurt a. M. 80, FRG (Received for publication March 24, 1986) The chemotherapeutic efficacy of cefpirome (HR 810), a new polar aminothiazolyl- cephalosporin and that of ceftazidime, cefotaxime, cefoperazone, latamoxef and cefodizime were examined against experimental pneumonia caused by Klebsiella pneammlliae DT-S in mice. When compared in terms of MIC values against the infecting organism and the phar- macokinetic pattern, cefpirome showed equal activity and a similar pharmacokinetic behavior to ceftazidime and cefotaxime in mice. Trials to assess the bactericidial activity in vhro, however, showed that cefpirome displayed a more marked bactericidal effect in pneumonic mice than the other cephalosporins tested. Only cefodizime, a cephalosporin with extremely high and prolonged blood and tissue levels in experimental animals exerted chemotherapeutic effects similar to cefpirome. After cefpirome or cefodizime medication (50 mg/kg), the viable counts in the lungs of experimental animals fell steadily to 1/10,000 of the pretreatment level and, in contrast to the reference compounds, no regrowth of the challenge organisms could be observed with both drugs. Moreover, with ED.-,,,,sranging from 1.1 to 59.1 mg/kg in treatment studies, cefpirome as well as cefodizime were two to ten times more effective than ceftazidime and cefotaxime, whereas cefoperazone and latamoxef were considerably less effective. Cefpirome (3-((2,3-cyclopenteno-I-pyridium)methyl)-7-(2-syn-methoximino-2-(2-aminothiazol-4- yl)acetamido)ceph-3-em-4-carboxylate, HR 810) is a new semi-synthetic parenteral cephalosporin antibiotic with a broad spectrum of antibacterial activity in vitro and in rivo.
    [Show full text]
  • Synermox 500 Mg/125 Mg Tablets
    New Zealand Data Sheet 1. PRODUCT NAME Synermox 500 mg/125 mg Tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Synermox 500 mg/125 mg Tablets: Each film‐coated tablet contains amoxicillin trihydrate equivalent to 500 mg amoxicillin, with potassium clavulanate equivalent to 125 mg clavulanic acid. Excipient(s) with known effect For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Synermox 500 mg/125 mg Tablets: White to off‐white, oval shaped film‐coated tablets, debossed with “RX713” on one side and plain on the other. 4. CLINICAL PARTICULARS 4.1. Therapeutic indications Synermox is indicated in adults and children (see sections 4.2, 4.4 and 5.1) for short term treatment of common bacterial infections such as: Upper Respiratory Tract Infections (including ENT) e.g. Tonsillitis, sinusitis, otitis media. Lower Respiratory Tract Infection e.g. acute exacerbations of chronic bronchitis, lobar and broncho‐pneumonia. Genito‐urinary Tract Infections e.g. Cystitis, urethritis, pyelonephritis, female genital infections. Skin and Soft Tissue Infections. Bone and Joint Infections e.g. Osteomyelitis. Other Infections e.g. septic abortion, puerperal sepsis, intra‐abdominal sepsis, septicaemia, peritonitis, post‐surgical infections. Synermox is indicated for prophylaxis against infection which may be associated with major surgical procedures such as those involving: Gastro‐intestinal tract Pelvic cavity 1 | Page Head and neck Cardiac Renal Joint replacement Biliary tract surgery Infections caused by amoxicillin susceptible organisms are amenable to Synermox treatment due to its amoxicillin content. Mixed infections caused by amoxicillin susceptible organisms in conjunction with Synermox‐susceptible beta‐lactamase‐producing organisms may therefore be treated by Synermox.
    [Show full text]
  • WO 2010/025328 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 4 March 2010 (04.03.2010) WO 2010/025328 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US2009/055306 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 28 August 2009 (28.08.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/092,497 28 August 2008 (28.08.2008) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): FOR¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, EST LABORATORIES HOLDINGS LIMITED [IE/ ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, —]; 18 Parliament Street, Milner House, Hamilton, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, Bermuda HM12 (BM).
    [Show full text]
  • Clinical Ineffectiveness of Latamoxef for Stenotrophomonas Maltophilia Infection
    Infection and Drug Resistance Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Clinical ineffectiveness of latamoxef for Stenotrophomonas maltophilia infection Hideharu Hagiya1 Objectives: Stenotrophomonas maltophilia shows wide-spectrum resistance to antimicrobials Ken Tasaka2 and causes various infections in immunocompromised or critically ill patients with high mortality. Toshiaki Sendo2 In this era of antibiotics resistance, a revival of old antibiotics is now featured. We examined the Fumio Otsuka1 clinical usefulness of latamoxef (LMOX) for the treatment of S. maltophilia infection. Patients and methods: The observational study was retrospectively performed at Okayama 1Department of General Medicine, Okayama University Graduate University Hospital (Okayama, Japan) from January 2011 to December 2013. LMOX was School of Medicine, Dentistry and administered to 12 patients with S. maltophilia infection, with eleven of those patients being 2 Pharmaceutical Sciences, Department admitted to the intensive care unit. of Pharmacy, Okayama University Hospital, Okayama, Japan Results: Underlying conditions of the patients included postoperation, hematological trans- plantation, hepatic transplantation, and burn. Major infectious foci were surgical site infection (six cases), respiratory infection (four cases), blood stream infection (three cases), and burn site infection (one case). The doses of LMOX administered ranged from 1 g/d to 3 g/d for ten adult patients and from 40 mg/kg/d to 80 mg/kg/d for two pediatric patients. Microbiologic failure was seen in five (41.7%) of 12 cases, and 30-day and hospital mortality rates were 25% and 50%, respectively. Minimum inhibitory concentrations of LMOX were higher in the deceased group (4–64 µg/mL) than in the surviving group (1–4 µg/mL).
    [Show full text]
  • Antibacterial Properties of Imipenem with Special Reference to the Activity
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library Journal of Antimicrobial Chemotherapy (1986) 18, Suppl. E, 27-33 Antibacterial properties of imipenem with special reference to the activity against methicillin-resistant staphylococci, cefotaxime-resistant Enterobacteriaceae and Pseudomonas aeruginosa U. Vurma-Rapp, F. H. Kayser and L. Barberis-Maino Institute of Medical Microbiology, University of Zurich, CH-8028 Zurich P.O. Box, Switzerland Imipenem was examined with standardized agar dilution procedures against a wide range of bacteria. Geometric mean MICs against the genera Escherichia, Klebsiella, Enterobacter, Citrobacter and Serratia were 0,1-0,4 mg/I, and Proteus and Providencia spp. were inhibited by 0·25-4 mg/I. Acinetobacter calcoaceticus var. anitratum strains were inhibited by concentrations ranging from 0,12-0,5 mg/I. Methicillin-susceptible staphylococci were highly susceptible to the drug (MICs: ~0'03 mg/I) and enterococci were inhibited by 0'25-16 mg/I. Most of the multi­ resistant JK corynebacteria were resistant to imipenem. Imipenem was more active than any other fj-Iactam against methicillin-resistant staphylococci; this was also demonstrated in a population analysis. Imipenem-resistant minorities in populations, however, were also observed. Cefotaxime-resistant and -intermediate Enterobacter and Citrobacter strains were inhibited by concentrations of O' 5 mg/I or less. No third-generation cephalosporin nor any other fj-Iactam showed similarly high activity against these groups of organisms. Among 20 ceftazidime-resistant and 20 ceftazidime-susceptible isolates of Pseudomonas aeruginosa, no strain was resistant and only five ceftazidime-resistant strains were intermediately susceptible (MIC, 8 mg/I) to imipenem.
    [Show full text]
  • And Latamoxef Resistance in Pmactamase- Derepressed Pseudomonas Aeruginosa
    Journal of Antimicrobial Chemotherapy (1987) 20, 7-13 'Covalent trapping' and latamoxef resistance in pMactamase- derepressed Pseudomonas aeruginosa D. M. Lfvennore Downloaded from https://academic.oup.com/jac/article/20/1/7/773707 by guest on 27 September 2021 Department of Medical Microbiology, London Hospital Medical College, Turner Street, London El 2AD, UK Three Pseudomonas aeruginosa strains which constitutively produced chromosomal (Id, or Sabath and Abraham) /Mactamase in large amounts were resistant to latamoxef (moxalactam) MICs, 128-256 mg/1). Their 0-lactamase-basal mutants, which produced 1200-18,000-fold less enzyme, were latamoxef-sensitive (MICs, 4-16 mg/1), suggesting that the enzyme caused the resistance of the parent organisms. Latamoxef was a feeble substrate of the enzyme (kM <0-5/min) but reacted to form a stable complex that lacked catalytic activity against benzylpenicillin. The complex was isolated by gel filtration and was shown to be stable to isoelcctric focusing, suggesting a covalent link between the enzyme and latamoxef. During incubation the complex underwent a slow breakdown, regenerating active enzyme. This breakdown obeyed first-order kinetics, and the half-life of the inactivated form was 19±lmin at 37°C. Binding of antibiotic molecules in this complex may contribute to the latamoxef-resistance observed in the /Mactamase-dereprcsscd strains. This 'covalent trapping' should be distinguished from the 'non-covalent trapping' proposed elsewhere as a general mechanism of /J-lactamase-mediated resistance to reversibly-bound weak-substrate /Mactams. Introduction Debate continues on the mechanism whereby production of large amounts of Class I /Mactamases can protect Gram-negative bacteria against newer /J-lactam antibiotics.
    [Show full text]
  • Most Strains of Bacteroides Fragilis Constitutively Produce a Small
    1302 THE JOURNAL OF ANTIBIOTICS OCT. 1990 R-PLASMID MEDIATED TRANSFER OF jS-LACTAM RESISTANCE IN BACTEROIDES FRAGILIS Kazukiyo Yamaoka, Kunitomo Watanabe, Yoshinori Muto, Naoki Katoh, Kazue Ueno and Francis P. Tally1 Institute of Anaerobic Bacteriology, School of Medicine, Gifu Univesity, Gifu 500, Japan * Infectious Diseases &Molecular Biology Research, American Cyanamid Company, Medical Research Division, Lederle Laboratories, Pearl River, N.Y. 10965, U.S.A. (Received for publication February 16, 1990) Wedescribed plasmid mediated transfer of resistance to /Mactam antibiotics between Bacteroides fragilis strains. Ampicillin-resistance was transferred from B. fragilis strain GAI- 101 50 to a B. fragilis strain JC-101 with a frequency of 10~6/input donor by a filter mating technique. A commonplasmid band, named pBFKWl,was found in both the donor and the transconjugants. The plasmid was purified by an ethidium bromide-CsClultracentrifugation. The molecular size of the plasmid pBFKWlwhich seemed to encode the /Mactamresistance and /Mactamase production was estimated ca. 40kb by the analysis of endonuclease digest. Substrate profile of the enzymes derived from the donor and a transconjugant wereof cephalosporinase character. Most strains of Bacteroides fragilis constitutively produce a small amount of /Mactamase, and show moderateresistance to most/Mactamantibiotics except for the cephamycinssuch as cefoxitin and the carbapenems such as imipenem. Somestrains of B. fragilis isolated from clinical materials produce large amounts of /Mactamase and therefore were resistant to /Mactamantibiotics.1* It has been hypothesized that resistance of B. fragilis to /Mactam antibiotics is encoded by an extrachromosomal gene. Recently, several investigators have reported that resistance to /Mactam and production of /Mactamase in B.
    [Show full text]
  • Penicillin Causes Non-Allergic Anaphylaxis by Activating
    www.nature.com/scientificreports OPEN Penicillin causes non‑allergic anaphylaxis by activating the contact system Yuan Gao1, Yixin Han1, Xiaoyu Zhang1, Qiaoling Fei1, Ruijuan Qi1, Rui Hou1, Runlan Cai1, Cheng Peng2* & Yun Qi1* Immediate hypersensitivity reaction (IHR) can be divided into allergic‑ and non‑allergic‑mediated, while “anaphylaxis” is reserved for severe IHR. Clinically, true penicillin allergy is rare and most reported penicillin allergy is “spurious”. Penicillin‑initiated anaphylaxis is possible to occur in skin test- and specifc IgE-negative patients. The contact system is a plasma protease cascade initiated by activation of factor XII (FXII). Many agents with negative ion surface can activate FXII to drive contact system. Our data showed that penicillin signifcantly induced hypothermia in propranolol- or pertussis toxin‑pretreated mice. It also caused a rapid and reversible drop in rat blood pressure, which did not overlap with IgE-mediated hypotension. These efects could be countered by a bradykinin-B2 receptor antagonist icatibant, and consistently, penicillin indeed increased rat plasma bradykinin. Moreover, penicillin not only directly activated contact system FXii‑dependently, but also promoted bradykinin release in plasma incubated‑human umbilical vein endothelial cells. In fact, besides penicillin, other beta‑lactams also activated the contact system in vitro. Since the autoactivation of FXII can be afected by multiple-factors, plasma from diferent healthy individuals showed vastly diferent amidolytic activity in response to penicillin, suggesting the necessity of determining the potency of penicillin to induce individual plasma FXII activation. These results clarify that penicillin‑initiated non-allergic anaphylaxis is attributed to contact system activation, which might bring more efective diagnosis options for predicting penicillin‑induced fatal risk and avoiding costly and inappropriate treatment clinically.
    [Show full text]
  • WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
    WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Beta-Lactamases of Type Culture Strains of the Bacteroides Fragilis Group and of Strains That Hydrolyse Cefoxitin, Latamoxef and Imipenem
    J. Med. Microbiol. -Vol. 21 (1986), 49-57 0 1986 The Pathological Society of Great Britain and Ireland Beta-lactamases of type culture strains of the Bacteroides fragilis group and of strains that hydrolyse cefoxitin, latamoxef and imipenem A. ELEY and D. GREENWOOD Department of Microbiology and Public Health Laboratory, University Hospital, Queen's Medical Centre, Nottingham NG7 2UH Summary. Susceptibilities to P-lactam antibiotics and P-lactamase content of two groups of Bacteroides strains were compared. Type cultures produced low levels of p- lactamase and were susceptible to cefoxitin, latamoxef, imipenem and the combination of benzylpenicillin and clavulanic acid. Other Bacteroides strains that produced higher levels of P-lactamase were generally less susceptible to these antibiotics; this resistance was more closely related to enzyme type than to the amount of enzyme present. The P-lactamases produced by the test strains fell into three broad groups on the basis of antibiotic degradation and inhibitor profiles: (i) those that inactivated benzylpenicillin, but not cefoxitin, latamoxef or imipenem, and were susceptible to inhibition by P-lactamase inhibitors; (ii) those that hydrolysed benzylpenicillin, cefoxitin and latamoxef, but not imipenem, and which were less susceptible to inhibition by P-lactamase inhibitors; (iii) an enzyme that inactivated all the antibiotics and was not inhibited by p-lactamase inhibitors. Introduction tin, latamoxef and imipenem. The P-lactamases of these strains have been characterised with respect to Production of P-lactamase is the major factor the kinetics of antibiotic breakdown and the pattern involved in the resistance of many bacteria to p- of inhibition by various enzyme inhibitors.
    [Show full text]
  • Antimicrobial Composition
    Europa,schesP_ MM M II M MM 1 1 M Ml MM M Ml J European Patent Office .ha no © Publication number: 0 384 41 OBI Office europeen, desJ brevets © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 17.05.95 © Int. CI.6: A61 K 31/545, A61 K 31/43, //(A61K31/545,31:43) © Application number: 90103266.4 @ Date of filing: 20.02.90 The file contains technical information submitted after the application was filed and not included in this specification © Antimicrobial composition. ® Priority: 21.02.89 JP 41286/89 9-1, Kamimutsuna 3-chome 14.04.89 JP 94460/89 Okazaki-shi, Aichi (JP) @ Date of publication of application: Inventor: Sanada, Mlnoru, c/o BANYU PHARM. 29.08.90 Bulletin 90/35 CO., LTD. OKAZAKI RES. LABORATORY, © Publication of the grant of the patent: 9-1, Kamimutsuna 3-chome 17.05.95 Bulletin 95/20 Okazaki-shi, Aichi (JP) © Designated Contracting States: Inventor: Nakagawa, Susumu, c/o BANYU CH DE FR GB IT LI NL PHARM. CO., LTD. OKAZAKI RES. LABORATORY, © References cited: 9-1, Kamimutsuna 3-chome EP-A- 0 248 361 Okazaki-shi, Aichi (JP) UNLISTED DRUGS, vol. 37, no. 2, February Inventor: Tanaka, Nobuo, c/o BANYU PHARM. 1985, Chatham, New Jersey, US; "Zienam CO., LTD. 250". 2-3, Nihonbashi Honcho 2-chome Chuo-ku, © Proprietor: BANYU PHARMACEUTICAL CO., Tokyo (JP) LTD. Inventor: Inoue, Matsuhisa 2-3, Nihonbashi Honcho 2-chome 3076-3, Oaza-Tokisawa 00 Chuo-ku, Tokyo (JP) Fujlmi-mura, Seta-gun, @ Inventor: Matsuda, Kouji, c/o BANYU PHARM. Gunma (JP) CO., LTD.
    [Show full text]
  • Revision of Precautions
    Published by Translated by Ministry of Health, Labour and Welfare Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. Revision of Precautions Cefmenoxime hydrochloride Ceftibuten hydrate Cefaclor Cefazolin sodium Cefazolin sodium hydrate Cefalexin Cefalotin sodium Cefixime hydrate Cefepime dihydrochloride hydrate Cefozopran hydrochloride Cefotiam hydrochloride Cefoperazone sodium/sulbactam sodium Cefcapene pivoxil hydrochloride hydrate Cefditoren pivoxil Pharmaceuticals and Medical Devices Agency 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013 Japan E-mail: [email protected] Published by Translated by Ministry of Health, Labour and Welfare Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. Cefdinir Ceftazidime hydrate Ceftizoxime sodium Cefteram pivoxil Ceftriaxone sodium hydrate Cefpirome sulfate Cefpodoxime proxetil Cefminox sodium hydrate Cefmetazole sodium Cefroxadine hydrate Flomoxef sodium Latamoxef sodium March 28, 2019 Non-proprietary name Cefmenoxime hydrochloride, ceftibuten hydrate, cefaclor, cefazolin sodium, cefazolin sodium hydrate, cephalexin, cefalotin sodium, cefixime hydrate, cefepime dihydrochloride hydrate, cefozopran hydrochloride, cefotiam hydrochloride, cefoperazone Pharmaceuticals and Medical Devices Agency 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013 Japan E-mail: [email protected] Published by Translated by Ministry of Health, Labour and Welfare Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail.
    [Show full text]