Comparative Efficacy of Cefotiam, Cefmenoxime, and Ceftriaxone In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Effects of Cefpirome (Hr 810) and Other Cephalosporins on Experimentally Induced Pneumonia in Mice
VOL. XXXIX NO. 7 THE JOURNAL OF ANTIBIOTICS 971 COMPARATIVE EFFECTS OF CEFPIROME (HR 810) AND OTHER CEPHALOSPORINS ON EXPERIMENTALLY INDUCED PNEUMONIA IN MICE N. KLESEL, D. ISERT, M. LIMBERT, G. SEIBERT, I. WINKLER and E. SCHRINNER Hoechst Aktiengesellschaft, Dept. of Chemotherapy, 6230 Frankfurt a. M. 80, FRG (Received for publication March 24, 1986) The chemotherapeutic efficacy of cefpirome (HR 810), a new polar aminothiazolyl- cephalosporin and that of ceftazidime, cefotaxime, cefoperazone, latamoxef and cefodizime were examined against experimental pneumonia caused by Klebsiella pneammlliae DT-S in mice. When compared in terms of MIC values against the infecting organism and the phar- macokinetic pattern, cefpirome showed equal activity and a similar pharmacokinetic behavior to ceftazidime and cefotaxime in mice. Trials to assess the bactericidial activity in vhro, however, showed that cefpirome displayed a more marked bactericidal effect in pneumonic mice than the other cephalosporins tested. Only cefodizime, a cephalosporin with extremely high and prolonged blood and tissue levels in experimental animals exerted chemotherapeutic effects similar to cefpirome. After cefpirome or cefodizime medication (50 mg/kg), the viable counts in the lungs of experimental animals fell steadily to 1/10,000 of the pretreatment level and, in contrast to the reference compounds, no regrowth of the challenge organisms could be observed with both drugs. Moreover, with ED.-,,,,sranging from 1.1 to 59.1 mg/kg in treatment studies, cefpirome as well as cefodizime were two to ten times more effective than ceftazidime and cefotaxime, whereas cefoperazone and latamoxef were considerably less effective. Cefpirome (3-((2,3-cyclopenteno-I-pyridium)methyl)-7-(2-syn-methoximino-2-(2-aminothiazol-4- yl)acetamido)ceph-3-em-4-carboxylate, HR 810) is a new semi-synthetic parenteral cephalosporin antibiotic with a broad spectrum of antibacterial activity in vitro and in rivo. -
Synermox 500 Mg/125 Mg Tablets
New Zealand Data Sheet 1. PRODUCT NAME Synermox 500 mg/125 mg Tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Synermox 500 mg/125 mg Tablets: Each film‐coated tablet contains amoxicillin trihydrate equivalent to 500 mg amoxicillin, with potassium clavulanate equivalent to 125 mg clavulanic acid. Excipient(s) with known effect For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Synermox 500 mg/125 mg Tablets: White to off‐white, oval shaped film‐coated tablets, debossed with “RX713” on one side and plain on the other. 4. CLINICAL PARTICULARS 4.1. Therapeutic indications Synermox is indicated in adults and children (see sections 4.2, 4.4 and 5.1) for short term treatment of common bacterial infections such as: Upper Respiratory Tract Infections (including ENT) e.g. Tonsillitis, sinusitis, otitis media. Lower Respiratory Tract Infection e.g. acute exacerbations of chronic bronchitis, lobar and broncho‐pneumonia. Genito‐urinary Tract Infections e.g. Cystitis, urethritis, pyelonephritis, female genital infections. Skin and Soft Tissue Infections. Bone and Joint Infections e.g. Osteomyelitis. Other Infections e.g. septic abortion, puerperal sepsis, intra‐abdominal sepsis, septicaemia, peritonitis, post‐surgical infections. Synermox is indicated for prophylaxis against infection which may be associated with major surgical procedures such as those involving: Gastro‐intestinal tract Pelvic cavity 1 | Page Head and neck Cardiac Renal Joint replacement Biliary tract surgery Infections caused by amoxicillin susceptible organisms are amenable to Synermox treatment due to its amoxicillin content. Mixed infections caused by amoxicillin susceptible organisms in conjunction with Synermox‐susceptible beta‐lactamase‐producing organisms may therefore be treated by Synermox. -
Consideration of Antibacterial Medicines As Part Of
Consideration of antibacterial medicines as part of the revisions to 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) Section 6.2 Antibacterials including Access, Watch and Reserve Lists of antibiotics This summary has been prepared by the Health Technologies and Pharmaceuticals (HTP) programme at the WHO Regional Office for Europe. It is intended to communicate changes to the 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) to national counterparts involved in the evidence-based selection of medicines for inclusion in national essential medicines lists (NEMLs), lists of medicines for inclusion in reimbursement programs, and medicine formularies for use in primary, secondary and tertiary care. This document does not replace the full report of the WHO Expert Committee on Selection and Use of Essential Medicines (see The selection and use of essential medicines: report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2019 (including the 21st WHO Model List of Essential Medicines and the 7th WHO Model List of Essential Medicines for Children). Geneva: World Health Organization; 2019 (WHO Technical Report Series, No. 1021). Licence: CC BY-NC-SA 3.0 IGO: https://apps.who.int/iris/bitstream/handle/10665/330668/9789241210300-eng.pdf?ua=1) and Corrigenda (March 2020) – TRS1021 (https://www.who.int/medicines/publications/essentialmedicines/TRS1021_corrigenda_March2020. pdf?ua=1). Executive summary of the report: https://apps.who.int/iris/bitstream/handle/10665/325773/WHO- MVP-EMP-IAU-2019.05-eng.pdf?ua=1. -
WO 2010/025328 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 4 March 2010 (04.03.2010) WO 2010/025328 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US2009/055306 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 28 August 2009 (28.08.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/092,497 28 August 2008 (28.08.2008) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): FOR¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, EST LABORATORIES HOLDINGS LIMITED [IE/ ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, —]; 18 Parliament Street, Milner House, Hamilton, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, Bermuda HM12 (BM). -
Computational Antibiotics Book
Andrew V DeLong, Jared C Harris, Brittany S Larcart, Chandler B Massey, Chelsie D Northcutt, Somuayiro N Nwokike, Oscar A Otieno, Harsh M Patel, Mehulkumar P Patel, Pratik Pravin Patel, Eugene I Rowell, Brandon M Rush, Marc-Edwin G Saint-Louis, Amy M Vardeman, Felicia N Woods, Giso Abadi, Thomas J. Manning Computational Antibiotics Valdosta State University is located in South Georgia. Computational Antibiotics Index • Computational Details and Website Access (p. 8) • Acknowledgements (p. 9) • Dedications (p. 11) • Antibiotic Historical Introduction (p. 13) Introduction to Antibiotic groups • Penicillin’s (p. 21) • Carbapenems (p. 22) • Oxazolidines (p. 23) • Rifamycin (p. 24) • Lincosamides (p. 25) • Quinolones (p. 26) • Polypeptides antibiotics (p. 27) • Glycopeptide Antibiotics (p. 28) • Sulfonamides (p. 29) • Lipoglycopeptides (p. 30) • First Generation Cephalosporins (p. 31) • Cephalosporin Third Generation (p. 32) • Fourth-Generation Cephalosporins (p. 33) • Fifth Generation Cephalosporin’s (p. 34) • Tetracycline antibiotics (p. 35) Computational Antibiotics Antibiotics Covered (in alphabetical order) Amikacin (p. 36) Cefempidone (p. 98) Ceftizoxime (p. 159) Amoxicillin (p. 38) Cefepime (p. 100) Ceftobiprole (p. 161) Ampicillin (p. 40) Cefetamet (p. 102) Ceftoxide (p. 163) Arsphenamine (p. 42) Cefetrizole (p. 104) Ceftriaxone (p. 165) Azithromycin (p.44) Cefivitril (p. 106) Cefuracetime (p. 167) Aziocillin (p. 46) Cefixime (p. 108) Cefuroxime (p. 169) Aztreonam (p.48) Cefmatilen ( p. 110) Cefuzonam (p. 171) Bacampicillin (p. 50) Cefmetazole (p. 112) Cefalexin (p. 173) Bacitracin (p. 52) Cefodizime (p. 114) Chloramphenicol (p.175) Balofloxacin (p. 54) Cefonicid (p. 116) Cilastatin (p. 177) Carbenicillin (p. 56) Cefoperazone (p. 118) Ciprofloxacin (p. 179) Cefacetrile (p. 58) Cefoselis (p. 120) Clarithromycin (p. 181) Cefaclor (p. -
Clinical Ineffectiveness of Latamoxef for Stenotrophomonas Maltophilia Infection
Infection and Drug Resistance Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Clinical ineffectiveness of latamoxef for Stenotrophomonas maltophilia infection Hideharu Hagiya1 Objectives: Stenotrophomonas maltophilia shows wide-spectrum resistance to antimicrobials Ken Tasaka2 and causes various infections in immunocompromised or critically ill patients with high mortality. Toshiaki Sendo2 In this era of antibiotics resistance, a revival of old antibiotics is now featured. We examined the Fumio Otsuka1 clinical usefulness of latamoxef (LMOX) for the treatment of S. maltophilia infection. Patients and methods: The observational study was retrospectively performed at Okayama 1Department of General Medicine, Okayama University Graduate University Hospital (Okayama, Japan) from January 2011 to December 2013. LMOX was School of Medicine, Dentistry and administered to 12 patients with S. maltophilia infection, with eleven of those patients being 2 Pharmaceutical Sciences, Department admitted to the intensive care unit. of Pharmacy, Okayama University Hospital, Okayama, Japan Results: Underlying conditions of the patients included postoperation, hematological trans- plantation, hepatic transplantation, and burn. Major infectious foci were surgical site infection (six cases), respiratory infection (four cases), blood stream infection (three cases), and burn site infection (one case). The doses of LMOX administered ranged from 1 g/d to 3 g/d for ten adult patients and from 40 mg/kg/d to 80 mg/kg/d for two pediatric patients. Microbiologic failure was seen in five (41.7%) of 12 cases, and 30-day and hospital mortality rates were 25% and 50%, respectively. Minimum inhibitory concentrations of LMOX were higher in the deceased group (4–64 µg/mL) than in the surviving group (1–4 µg/mL). -
ESCMID Online Lecture Library © by Author
APPROACHES FOR DEFINING SAFE AND EFFECTIVE REGIMENS FOR CHILDREN IN THE CONTEXT OF AMR Professor Mike Sharland,© by St George’s author University of London ESCMID/ASM Conference on Drug Development to Meet the Challenge of ESCMID OnlineAntimicrobial Lecture Resistance Library 21 ‐ 23 September 2016, Vienna, Austria 2016 GARPEC PPS Neonate Neonate: Antimicrobial Prescribing (90% DU) Gentamicin 12,2 Ceftizoxime 12,0 Meropenem 9,2 Ampicillin 8,5 Amoxicillin and enzyme inhibitor 6,6 Amikacin 6,4 Fluconazole 4,7 Latamoxef 3,8 Benzylpenicillin 3,8 Nystatin 3,5 Nevirapine 3,5 Vancomycin 2,6© by author Cefotaxime 2,6 Cefazolin 2,1 Mezlocillin 2,1 Piperacillin andESCMID enzyme inhibitor Online1,9 Lecture Library Other 1,9 Metronidazole 1,6 Flucloxacillin 1,6 0 2 4 6 8 10 12 14 Percentage (%) GARPEC 2016 PPS - Child Children: Antimicrobial Prescribing (90% DU) Ceftriaxone 7,0 Meropenem 6,9 Vancomycin 5,1 Vidarabine 4,5 Sulfamethoxazole and trimethoprim 4,2 Azithromycin 4,0 Amoxicillin and enzyme inhibitor 3,8 Amikacin 3,5 Cefepime 3,0 Latamoxef 2,8 Cefotaxime 2,7 Abacavir 2,6 Piperacillin and enzyme inhibitor 2,4 Metronidazole 2,3 Fluconazole 2,1 Clindamycin 2,1 Mezlocillin 2,0 Oseltamivir 1,9 Cefuroxime 1,9 Amoxicillin 1,8 Nystatin 1,7 Ciprofloxacin 1,6 Gentamicin 1,5 Isoniazid 1,4 Other 1,4 Ganciclovir 1,4 Rifampicin 1,3 Linezolid 1,2 © by author Oxacillin 1,2 Ampicillin 1,2 Pyrazinamide 1,1 Erythromycin 1,1 Trimethoprim 1,0 Cefazolin 0,9 Flucloxacillin 0,9 ESCMIDEthambutol Online Lecture Library 0,8 Cefoperazone, combinations 0,8 Ceftriaxone, combinations 0,8 Cefalexin 0,7 Amphotericin B 0,6 Sulfadiazine 0,6 Cefalotin 0,6 012345678 Percentage (%) Background • There is no global consensus on the conduct of clinical trials (CTs)in children with specific clinical infection syndromes (CIS). -
A Thesis Entitled an Oral Dosage Form of Ceftriaxone Sodium Using Enteric
A Thesis entitled An oral dosage form of ceftriaxone sodium using enteric coated sustained release calcium alginate beads by Darshan Lalwani Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Pharmaceutical Sciences with Industrial Pharmacy Option _________________________________________ Jerry Nesamony, Ph.D., Committee Chair _________________________________________ Sai Hanuman Sagar Boddu, Ph.D, Committee Member _________________________________________ Youssef Sari, Ph.D., Committee Member _________________________________________ Patricia R. Komuniecki, PhD, Dean College of Graduate Studies The University of Toledo May 2015 Copyright 2015, Darshan Narendra Lalwani This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of An oral dosage form of ceftriaxone sodium using enteric coated sustained release calcium alginate beads by Darshan Lalwani Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Pharmaceutical Sciences with Industrial Pharmacy option The University of Toledo May 2015 Purpose: Ceftriaxone (CTZ) is a broad spectrum semisynthetic, third generation cephalosporin antibiotic. It is an acid labile drug belonging to class III of biopharmaceutical classification system (BCS). It can be solvated quickly but suffers from the drawback of poor oral bioavailability owing to its limited permeability through -
Antibacterial Properties of Imipenem with Special Reference to the Activity
CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library Journal of Antimicrobial Chemotherapy (1986) 18, Suppl. E, 27-33 Antibacterial properties of imipenem with special reference to the activity against methicillin-resistant staphylococci, cefotaxime-resistant Enterobacteriaceae and Pseudomonas aeruginosa U. Vurma-Rapp, F. H. Kayser and L. Barberis-Maino Institute of Medical Microbiology, University of Zurich, CH-8028 Zurich P.O. Box, Switzerland Imipenem was examined with standardized agar dilution procedures against a wide range of bacteria. Geometric mean MICs against the genera Escherichia, Klebsiella, Enterobacter, Citrobacter and Serratia were 0,1-0,4 mg/I, and Proteus and Providencia spp. were inhibited by 0·25-4 mg/I. Acinetobacter calcoaceticus var. anitratum strains were inhibited by concentrations ranging from 0,12-0,5 mg/I. Methicillin-susceptible staphylococci were highly susceptible to the drug (MICs: ~0'03 mg/I) and enterococci were inhibited by 0'25-16 mg/I. Most of the multi resistant JK corynebacteria were resistant to imipenem. Imipenem was more active than any other fj-Iactam against methicillin-resistant staphylococci; this was also demonstrated in a population analysis. Imipenem-resistant minorities in populations, however, were also observed. Cefotaxime-resistant and -intermediate Enterobacter and Citrobacter strains were inhibited by concentrations of O' 5 mg/I or less. No third-generation cephalosporin nor any other fj-Iactam showed similarly high activity against these groups of organisms. Among 20 ceftazidime-resistant and 20 ceftazidime-susceptible isolates of Pseudomonas aeruginosa, no strain was resistant and only five ceftazidime-resistant strains were intermediately susceptible (MIC, 8 mg/I) to imipenem. -
Revision of Precautions
Published by Translated by Ministry of Health, Labour and Welfare Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. Revision of Precautions Cefmenoxime hydrochloride (preparations for otic and nasal use), chloramphenicol (solution for topical use, oral dosage form), tetracycline hydrochloride (powders, capsules), polymixin B sulfate (powders), clindamycin hydrochloride, clindamycin phosphate (injections), benzylpenicillin potassium, benzylpenicillin benzathine hydrate, lincomycin hydrochloride hydrate, aztreonam, amoxicillin hydrate, ampicillin hydrate, ampicillin sodium, potassium clavulanate/amoxicillin hydrate, dibekacin sulfate (injections), sultamicillin tosilate hydrate, cefaclor, cefazolin sodium, cefazolin sodium hydrate, cephalexin (oral dosage form with indications for otitis media), cefalotin sodium, cefixime hydrate, cefepime dihydrochloride hydrate, cefozopran hydrochloride, cefotiam hydrochloride (intravenous injections), cefcapene pivoxil hydrochloride hydrate, cefditoren pivoxil, cefdinir, ceftazidime hydrate, cefteram pivoxil, ceftriaxone sodium hydrate, cefpodoxime proxetil, cefroxadine hydrate, cefuroxime axetil, tebipenem pivoxil, doripenem hydrate, bacampicillin hydrochloride, panipenem/betamipron, faropenem sodium hydrate, flomoxef sodium, fosfomycin calcium hydrate, meropenem hydrate, chloramphenicol sodium succinate, -
Directed Molecular Evolution of Fourth-Generation Cephalosporin Resistance in Wellington Moore Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2011 Directed molecular evolution of fourth-generation cephalosporin resistance in Wellington Moore Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Medical Sciences Commons Recommended Citation Moore, Wellington, "Directed molecular evolution of fourth-generation cephalosporin resistance in" (2011). Graduate Theses and Dissertations. 10107. https://lib.dr.iastate.edu/etd/10107 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Directed molecular evolution of fourth-generation cephalosporin resistance in Salmonella and Yersinia by Wellington Moore A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Biomedical Science (Pharmacology) Program of Study Committee: Steve Carlson, Major Professor Timothy Day Ronald Griffith Iowa State University Ames, Iowa 2011 ii TABLE OF CONTENTS LIST OF FIGURES………………………………………………………………………iii LIST OF TABLES………………………………………………………………………..iv ABSTRACT……………………………………………………………………………….v CHAPTER 1. INTRODUCTION…………………………………………………………1 Review of B-Lactam antimicrobials………………………………...………1 -
The Genus Ochrobactrum As Major Opportunistic Pathogens
microorganisms Review The Genus Ochrobactrum as Major Opportunistic Pathogens Michael P. Ryan 1,2 and J. Tony Pembroke 2,* 1 Department of Applied Sciences, Limerick Institute of Technology, Moylish V94 EC5T, Limerick, Ireland; [email protected] 2 Molecular Biochemistry Laboratory, Department of Chemical Sciences, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX2, Ireland * Correspondence: [email protected] Received: 22 October 2020; Accepted: 13 November 2020; Published: 16 November 2020 Abstract: Ochrobactrum species are non-enteric, Gram-negative organisms that are closely related to the genus Brucella. Since the designation of the genus in 1988, several distinct species have now been characterised and implicated as opportunistic pathogens in multiple outbreaks. Here, we examine the genus, its members, diagnostic tools used for identification, data from recent Ochrobactrum whole genome sequencing and the pathogenicity associated with reported Ochrobactrum infections. This review identified 128 instances of Ochrobactrum spp. infections that have been discussed in the literature. These findings indicate that infection review programs should consider investigation of possible Ochrobactrum spp. outbreaks if these bacteria are clinically isolated in more than one patient and that Ochrobactrum spp. are more important pathogens than previously thought. Keywords: Ochrobactrum; nosocomial infection; environmental bacteria 1. Introduction Gram-negative, non-fermenting bacteria are an emergent worry in medical situations and are becoming a growing cause of severe infections. Pathogens of this type are opportunistic and include many different bacterial species, such as Ralstonia spp., Pseudomonas aeruginosa, Sphingomonas paucimobilis and Brevundimonas spp. [1–5]. Gram-negative, non-fermenting bacteria can infect both patients undergoing treatments and individuals outside of a clinical setting with various underlying conditions or diseases.