Penicillin Causes Non-Allergic Anaphylaxis by Activating

Total Page:16

File Type:pdf, Size:1020Kb

Penicillin Causes Non-Allergic Anaphylaxis by Activating www.nature.com/scientificreports OPEN Penicillin causes non‑allergic anaphylaxis by activating the contact system Yuan Gao1, Yixin Han1, Xiaoyu Zhang1, Qiaoling Fei1, Ruijuan Qi1, Rui Hou1, Runlan Cai1, Cheng Peng2* & Yun Qi1* Immediate hypersensitivity reaction (IHR) can be divided into allergic‑ and non‑allergic‑mediated, while “anaphylaxis” is reserved for severe IHR. Clinically, true penicillin allergy is rare and most reported penicillin allergy is “spurious”. Penicillin‑initiated anaphylaxis is possible to occur in skin test- and specifc IgE-negative patients. The contact system is a plasma protease cascade initiated by activation of factor XII (FXII). Many agents with negative ion surface can activate FXII to drive contact system. Our data showed that penicillin signifcantly induced hypothermia in propranolol- or pertussis toxin‑pretreated mice. It also caused a rapid and reversible drop in rat blood pressure, which did not overlap with IgE-mediated hypotension. These efects could be countered by a bradykinin-B2 receptor antagonist icatibant, and consistently, penicillin indeed increased rat plasma bradykinin. Moreover, penicillin not only directly activated contact system FXii‑dependently, but also promoted bradykinin release in plasma incubated‑human umbilical vein endothelial cells. In fact, besides penicillin, other beta‑lactams also activated the contact system in vitro. Since the autoactivation of FXII can be afected by multiple-factors, plasma from diferent healthy individuals showed vastly diferent amidolytic activity in response to penicillin, suggesting the necessity of determining the potency of penicillin to induce individual plasma FXII activation. These results clarify that penicillin‑initiated non-allergic anaphylaxis is attributed to contact system activation, which might bring more efective diagnosis options for predicting penicillin‑induced fatal risk and avoiding costly and inappropriate treatment clinically. Anaphylaxis is a serious, life-threatening, generalized or systemic, allergy or non-allergic hypersensitivity with hypotension and vascular hyperpermeability as underlying symptoms1,2. Drugs are the most common anaphylaxis triggers in adults3–5. Beta lactams, including penicillins and cephalosporins, are the most widely used antibiotics owing to their high safety profle, broad spectrum of activity, and low costs 6. However, together with cephalo- sporins, penicillins are the antibiotics that most frequently provoke hypersensitivity reactions ranging from mild cutaneous symptoms to severe, life-threatening reactions7. Previous reports demonstrated that 42.6% of severe drug-induced anaphylaxis was caused by beta-lactam drugs8, and penicillin was the most frequent cause and accounted for approximately 75% of fatal anaphylactic cases in the United States9. Penicillin, discovered by Alexander Fleming in 1928, is still one of the most widely prescribed antibiotics today. Clinically, approximately 10% of patients report a penicillin allergy (PenA), and its incidence of anaphy- laxis has been estimated to be between 0.015 and 0.004%10,11. However, the reported PenA does not equate with true IgE-mediated allergy. In fact, true PenA is somewhat rare since only 1% of the general population is actu- ally allergic to penicillin12. Most individuals thought to be PenA do not have detectable specifc IgE (sIgE), and lack positive results from skin testing and oral challenge 13–16. Only less than 10% of those with PenA histories are found to be at risk for acute PenA 17. Some researchers ascribed the false attribution of PenA to IgE decline (disappearance) or viral rash misdiagnosis, while up to 90% of patients reporting PenA were found not to have a true allergy 10,12. Obviously, it is unconvincing that such a high false rate is completely attributed to the above reasons. Tese data suggest that non-allergic mechanism(s) may be more common in the clinic. 1Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 North Ma Lian Wa Road, Haidian District, Beijing, People’s Republic of China. 2Chengdu University of Traditional Chinese Medicine, Chengdu 610075, People’s Republic of China. *email: [email protected]; [email protected] SCIENTIFIC REPORTS | (2020) 10:14160 | https://doi.org/10.1038/s41598-020-71083-x 1 Vol.:(0123456789) www.nature.com/scientificreports/ Te contact system is a plasma protease cascade initiated by activation of factor XII (FXII). Activated FXII (FXIIa) initiates two branches of downstream events that mediate the interface between coagulation and infam- mation. Te coagulation branch-activated FXI initiates fbrin formation and the infammatory branch (also called kallikrein-kinin system)-activated prekallikrein cleaves the nonenzymatic cofactor high molecular weight kininogen (HK) to liberate oligopeptide bradykinin (BK)18. BK is involved in the regulation of infammatory processes, vascular permeability, and blood pressure. Recent data have linked FXIIa-driven formation of BK and the downstream activation of the G-protein-coupled receptor B2 (B2R) signaling to anaphylaxis 19,20. Te name “contact system” comes from the mode of FXII being activated, as “contact” with negatively charged surfaces trig- gers FXII activation via conformational rearrangement. Activators that initiate FXIIa formation in vivo include polyphosphate, heparin, misfolded proteins, collagen, nucleic acids (DNA and RNA), oversulfated chondroitin sulfate and artifcial surfaces21,22. In the present study, we demonstrate for the frst time that penicillin-driven FXII contact activation triggers kallikrein-kinin system, thus releasing BK to cause anaphylaxis. Our fndings suggest that targeting contact system-produced BK or its downstream signaling is a promising strategy for prevention and treatment of ana- phylaxis triggered by penicillin. Materials and methods Materials and reagents. Penicillin G sodium salt (1,550 U/mg) and other beta-lactams were from Solar- bio Life Sciences (Beijing, China) and Yuanye Biotechnology Ltd. (Shanghai, China), respectively. Icatibant was from MedChemExpress (Monmouth Junction, NJ, USA). S-2302™ was from Chromogenix (Milano, Italy). BK ELISA kit was from DS Pharma Biomedical Co., Ltd. (Osaka, Japan). Kaolin, dextran sulfate sodium salt (DS; Mr ~ 500,000), propranolol, triprolidine, SB290157 and CV3988 were from Sigma-Aldrich (Darmstadt, Ger- man). PMX53 and pertussis toxin (PTX) were from GL Biochem Ltd. (Shanghai, China) and Enzo Life Sciences (Farmingdale, NY, USA), respectively. Citrate-anticoagulant standard human plasma and FXII-depleted plasma were from Boatman Biotech Co., Ltd. (Shanghai, China). Antibodies for human FXII and transferrin were from GeneTex Inc. (San Antonio, TX, USA). Shrimp tropomyosin (ST) and its IgE monoclonal antibody (mAb) were prepared as we previously described23. Human plasma was obtained from eight healthy volunteers. Cells and animals. Primary human umbilical vein endothelial cells (HUVEC) were from Lonza (Basel, Switzerland). Te male Balb/c mice (18–20 g) and SD rats (180–200 g) were purchased from Vital River Experi- mental Animal Services (Beijing, China) and housed in an SPF laboratory. Anaphylactic shock assay. Anaphylactic shock was assessed by rectal thermometry 24. To increase the severity of anaphylaxis, the mice were pretreated (i.v.) with propranolol (35 μg/mouse)25,26. Twenty minutes later, the mice were challenged (i.p.) with normal saline (NS) or penicillin (50 KU/mouse). Tirty minutes later, the rectal temperature was measured. For the BK antagonist experiment, icatibant (0.25 mM, 800 μL/mouse) was injected (i.p.) into the mice 10 min before the propranolol pretreatment. Te anaphylactic shock assay in PTX-pretreated mice was performed according to previously described procedures27. Briefy, the mice were injected (i.p.) with PTX (200 ng/mouse) on days 1 and 3. On day 7, the mice were injected (i.v.) with normal saline (NS) or penicillin (30 KU/mouse). Tirty minutes later, the rectal temperature was measured. Evans blue extravasation assays. Evans blue extravasation assays in mouse hindpaws and rat dorsal skin were measured as previously described28,29. Measurement of blood pressure and BK generation in rats. Te rats were anesthetized and placed in a supine position. Catheters were placed into the carotid artery. Systolic arterial blood pressure was monitored in the lef carotid artery with an arterial catheter connected to a polygraph (RM6240C, Chengdu, P.R. China). Afer equilibrating, the rats were injected (i.v.) with penicillin (1,250 KU/kg) or NS, and blood pressure was continuously monitored. For the antagonist experiment, rats were treated with icatibant (200 μg/kg, i.v.) 5 min prior to penicillin challenge. For the determination of plasma BK, once penicillin (1,250 KU/kg) or NS was injected (i.v.) into the anes- thetized rats, arterial blood was immediately collected and added to ice-cooled absolute ethanol. BK level was determined by ELISA. Te overlapping efect of penicillin- and antigen/IgE-caused hypotension was measured using a rat undergo- ing passive systemic anaphylaxis. To clarify the respective role of penicillin and antigen, we deliberately chose anti-ST IgE, a non-penicillin IgE mAb, to induce IgE/antigen hypotension. Rats were passively sensitized intrave- nously (i.v.) with 1 mg/kg of anti-ST IgE. Twenty-four hours later, the rats were challenged (i.v.) with ST (10 mg/ kg) with or without penicillin (1,250 KU/kg),
Recommended publications
  • Comparative Effects of Cefpirome (Hr 810) and Other Cephalosporins on Experimentally Induced Pneumonia in Mice
    VOL. XXXIX NO. 7 THE JOURNAL OF ANTIBIOTICS 971 COMPARATIVE EFFECTS OF CEFPIROME (HR 810) AND OTHER CEPHALOSPORINS ON EXPERIMENTALLY INDUCED PNEUMONIA IN MICE N. KLESEL, D. ISERT, M. LIMBERT, G. SEIBERT, I. WINKLER and E. SCHRINNER Hoechst Aktiengesellschaft, Dept. of Chemotherapy, 6230 Frankfurt a. M. 80, FRG (Received for publication March 24, 1986) The chemotherapeutic efficacy of cefpirome (HR 810), a new polar aminothiazolyl- cephalosporin and that of ceftazidime, cefotaxime, cefoperazone, latamoxef and cefodizime were examined against experimental pneumonia caused by Klebsiella pneammlliae DT-S in mice. When compared in terms of MIC values against the infecting organism and the phar- macokinetic pattern, cefpirome showed equal activity and a similar pharmacokinetic behavior to ceftazidime and cefotaxime in mice. Trials to assess the bactericidial activity in vhro, however, showed that cefpirome displayed a more marked bactericidal effect in pneumonic mice than the other cephalosporins tested. Only cefodizime, a cephalosporin with extremely high and prolonged blood and tissue levels in experimental animals exerted chemotherapeutic effects similar to cefpirome. After cefpirome or cefodizime medication (50 mg/kg), the viable counts in the lungs of experimental animals fell steadily to 1/10,000 of the pretreatment level and, in contrast to the reference compounds, no regrowth of the challenge organisms could be observed with both drugs. Moreover, with ED.-,,,,sranging from 1.1 to 59.1 mg/kg in treatment studies, cefpirome as well as cefodizime were two to ten times more effective than ceftazidime and cefotaxime, whereas cefoperazone and latamoxef were considerably less effective. Cefpirome (3-((2,3-cyclopenteno-I-pyridium)methyl)-7-(2-syn-methoximino-2-(2-aminothiazol-4- yl)acetamido)ceph-3-em-4-carboxylate, HR 810) is a new semi-synthetic parenteral cephalosporin antibiotic with a broad spectrum of antibacterial activity in vitro and in rivo.
    [Show full text]
  • Synermox 500 Mg/125 Mg Tablets
    New Zealand Data Sheet 1. PRODUCT NAME Synermox 500 mg/125 mg Tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Synermox 500 mg/125 mg Tablets: Each film‐coated tablet contains amoxicillin trihydrate equivalent to 500 mg amoxicillin, with potassium clavulanate equivalent to 125 mg clavulanic acid. Excipient(s) with known effect For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Synermox 500 mg/125 mg Tablets: White to off‐white, oval shaped film‐coated tablets, debossed with “RX713” on one side and plain on the other. 4. CLINICAL PARTICULARS 4.1. Therapeutic indications Synermox is indicated in adults and children (see sections 4.2, 4.4 and 5.1) for short term treatment of common bacterial infections such as: Upper Respiratory Tract Infections (including ENT) e.g. Tonsillitis, sinusitis, otitis media. Lower Respiratory Tract Infection e.g. acute exacerbations of chronic bronchitis, lobar and broncho‐pneumonia. Genito‐urinary Tract Infections e.g. Cystitis, urethritis, pyelonephritis, female genital infections. Skin and Soft Tissue Infections. Bone and Joint Infections e.g. Osteomyelitis. Other Infections e.g. septic abortion, puerperal sepsis, intra‐abdominal sepsis, septicaemia, peritonitis, post‐surgical infections. Synermox is indicated for prophylaxis against infection which may be associated with major surgical procedures such as those involving: Gastro‐intestinal tract Pelvic cavity 1 | Page Head and neck Cardiac Renal Joint replacement Biliary tract surgery Infections caused by amoxicillin susceptible organisms are amenable to Synermox treatment due to its amoxicillin content. Mixed infections caused by amoxicillin susceptible organisms in conjunction with Synermox‐susceptible beta‐lactamase‐producing organisms may therefore be treated by Synermox.
    [Show full text]
  • WO 2010/025328 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 4 March 2010 (04.03.2010) WO 2010/025328 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US2009/055306 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 28 August 2009 (28.08.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/092,497 28 August 2008 (28.08.2008) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): FOR¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, EST LABORATORIES HOLDINGS LIMITED [IE/ ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, —]; 18 Parliament Street, Milner House, Hamilton, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, Bermuda HM12 (BM).
    [Show full text]
  • Clinical Ineffectiveness of Latamoxef for Stenotrophomonas Maltophilia Infection
    Infection and Drug Resistance Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Clinical ineffectiveness of latamoxef for Stenotrophomonas maltophilia infection Hideharu Hagiya1 Objectives: Stenotrophomonas maltophilia shows wide-spectrum resistance to antimicrobials Ken Tasaka2 and causes various infections in immunocompromised or critically ill patients with high mortality. Toshiaki Sendo2 In this era of antibiotics resistance, a revival of old antibiotics is now featured. We examined the Fumio Otsuka1 clinical usefulness of latamoxef (LMOX) for the treatment of S. maltophilia infection. Patients and methods: The observational study was retrospectively performed at Okayama 1Department of General Medicine, Okayama University Graduate University Hospital (Okayama, Japan) from January 2011 to December 2013. LMOX was School of Medicine, Dentistry and administered to 12 patients with S. maltophilia infection, with eleven of those patients being 2 Pharmaceutical Sciences, Department admitted to the intensive care unit. of Pharmacy, Okayama University Hospital, Okayama, Japan Results: Underlying conditions of the patients included postoperation, hematological trans- plantation, hepatic transplantation, and burn. Major infectious foci were surgical site infection (six cases), respiratory infection (four cases), blood stream infection (three cases), and burn site infection (one case). The doses of LMOX administered ranged from 1 g/d to 3 g/d for ten adult patients and from 40 mg/kg/d to 80 mg/kg/d for two pediatric patients. Microbiologic failure was seen in five (41.7%) of 12 cases, and 30-day and hospital mortality rates were 25% and 50%, respectively. Minimum inhibitory concentrations of LMOX were higher in the deceased group (4–64 µg/mL) than in the surviving group (1–4 µg/mL).
    [Show full text]
  • ESCMID Online Lecture Library © by Author
    APPROACHES FOR DEFINING SAFE AND EFFECTIVE REGIMENS FOR CHILDREN IN THE CONTEXT OF AMR Professor Mike Sharland,© by St George’s author University of London ESCMID/ASM Conference on Drug Development to Meet the Challenge of ESCMID OnlineAntimicrobial Lecture Resistance Library 21 ‐ 23 September 2016, Vienna, Austria 2016 GARPEC PPS Neonate Neonate: Antimicrobial Prescribing (90% DU) Gentamicin 12,2 Ceftizoxime 12,0 Meropenem 9,2 Ampicillin 8,5 Amoxicillin and enzyme inhibitor 6,6 Amikacin 6,4 Fluconazole 4,7 Latamoxef 3,8 Benzylpenicillin 3,8 Nystatin 3,5 Nevirapine 3,5 Vancomycin 2,6© by author Cefotaxime 2,6 Cefazolin 2,1 Mezlocillin 2,1 Piperacillin andESCMID enzyme inhibitor Online1,9 Lecture Library Other 1,9 Metronidazole 1,6 Flucloxacillin 1,6 0 2 4 6 8 10 12 14 Percentage (%) GARPEC 2016 PPS - Child Children: Antimicrobial Prescribing (90% DU) Ceftriaxone 7,0 Meropenem 6,9 Vancomycin 5,1 Vidarabine 4,5 Sulfamethoxazole and trimethoprim 4,2 Azithromycin 4,0 Amoxicillin and enzyme inhibitor 3,8 Amikacin 3,5 Cefepime 3,0 Latamoxef 2,8 Cefotaxime 2,7 Abacavir 2,6 Piperacillin and enzyme inhibitor 2,4 Metronidazole 2,3 Fluconazole 2,1 Clindamycin 2,1 Mezlocillin 2,0 Oseltamivir 1,9 Cefuroxime 1,9 Amoxicillin 1,8 Nystatin 1,7 Ciprofloxacin 1,6 Gentamicin 1,5 Isoniazid 1,4 Other 1,4 Ganciclovir 1,4 Rifampicin 1,3 Linezolid 1,2 © by author Oxacillin 1,2 Ampicillin 1,2 Pyrazinamide 1,1 Erythromycin 1,1 Trimethoprim 1,0 Cefazolin 0,9 Flucloxacillin 0,9 ESCMIDEthambutol Online Lecture Library 0,8 Cefoperazone, combinations 0,8 Ceftriaxone, combinations 0,8 Cefalexin 0,7 Amphotericin B 0,6 Sulfadiazine 0,6 Cefalotin 0,6 012345678 Percentage (%) Background • There is no global consensus on the conduct of clinical trials (CTs)in children with specific clinical infection syndromes (CIS).
    [Show full text]
  • Antibacterial Properties of Imipenem with Special Reference to the Activity
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library Journal of Antimicrobial Chemotherapy (1986) 18, Suppl. E, 27-33 Antibacterial properties of imipenem with special reference to the activity against methicillin-resistant staphylococci, cefotaxime-resistant Enterobacteriaceae and Pseudomonas aeruginosa U. Vurma-Rapp, F. H. Kayser and L. Barberis-Maino Institute of Medical Microbiology, University of Zurich, CH-8028 Zurich P.O. Box, Switzerland Imipenem was examined with standardized agar dilution procedures against a wide range of bacteria. Geometric mean MICs against the genera Escherichia, Klebsiella, Enterobacter, Citrobacter and Serratia were 0,1-0,4 mg/I, and Proteus and Providencia spp. were inhibited by 0·25-4 mg/I. Acinetobacter calcoaceticus var. anitratum strains were inhibited by concentrations ranging from 0,12-0,5 mg/I. Methicillin-susceptible staphylococci were highly susceptible to the drug (MICs: ~0'03 mg/I) and enterococci were inhibited by 0'25-16 mg/I. Most of the multi­ resistant JK corynebacteria were resistant to imipenem. Imipenem was more active than any other fj-Iactam against methicillin-resistant staphylococci; this was also demonstrated in a population analysis. Imipenem-resistant minorities in populations, however, were also observed. Cefotaxime-resistant and -intermediate Enterobacter and Citrobacter strains were inhibited by concentrations of O' 5 mg/I or less. No third-generation cephalosporin nor any other fj-Iactam showed similarly high activity against these groups of organisms. Among 20 ceftazidime-resistant and 20 ceftazidime-susceptible isolates of Pseudomonas aeruginosa, no strain was resistant and only five ceftazidime-resistant strains were intermediately susceptible (MIC, 8 mg/I) to imipenem.
    [Show full text]
  • And Latamoxef Resistance in Pmactamase- Derepressed Pseudomonas Aeruginosa
    Journal of Antimicrobial Chemotherapy (1987) 20, 7-13 'Covalent trapping' and latamoxef resistance in pMactamase- derepressed Pseudomonas aeruginosa D. M. Lfvennore Downloaded from https://academic.oup.com/jac/article/20/1/7/773707 by guest on 27 September 2021 Department of Medical Microbiology, London Hospital Medical College, Turner Street, London El 2AD, UK Three Pseudomonas aeruginosa strains which constitutively produced chromosomal (Id, or Sabath and Abraham) /Mactamase in large amounts were resistant to latamoxef (moxalactam) MICs, 128-256 mg/1). Their 0-lactamase-basal mutants, which produced 1200-18,000-fold less enzyme, were latamoxef-sensitive (MICs, 4-16 mg/1), suggesting that the enzyme caused the resistance of the parent organisms. Latamoxef was a feeble substrate of the enzyme (kM <0-5/min) but reacted to form a stable complex that lacked catalytic activity against benzylpenicillin. The complex was isolated by gel filtration and was shown to be stable to isoelcctric focusing, suggesting a covalent link between the enzyme and latamoxef. During incubation the complex underwent a slow breakdown, regenerating active enzyme. This breakdown obeyed first-order kinetics, and the half-life of the inactivated form was 19±lmin at 37°C. Binding of antibiotic molecules in this complex may contribute to the latamoxef-resistance observed in the /Mactamase-dereprcsscd strains. This 'covalent trapping' should be distinguished from the 'non-covalent trapping' proposed elsewhere as a general mechanism of /J-lactamase-mediated resistance to reversibly-bound weak-substrate /Mactams. Introduction Debate continues on the mechanism whereby production of large amounts of Class I /Mactamases can protect Gram-negative bacteria against newer /J-lactam antibiotics.
    [Show full text]
  • Most Strains of Bacteroides Fragilis Constitutively Produce a Small
    1302 THE JOURNAL OF ANTIBIOTICS OCT. 1990 R-PLASMID MEDIATED TRANSFER OF jS-LACTAM RESISTANCE IN BACTEROIDES FRAGILIS Kazukiyo Yamaoka, Kunitomo Watanabe, Yoshinori Muto, Naoki Katoh, Kazue Ueno and Francis P. Tally1 Institute of Anaerobic Bacteriology, School of Medicine, Gifu Univesity, Gifu 500, Japan * Infectious Diseases &Molecular Biology Research, American Cyanamid Company, Medical Research Division, Lederle Laboratories, Pearl River, N.Y. 10965, U.S.A. (Received for publication February 16, 1990) Wedescribed plasmid mediated transfer of resistance to /Mactam antibiotics between Bacteroides fragilis strains. Ampicillin-resistance was transferred from B. fragilis strain GAI- 101 50 to a B. fragilis strain JC-101 with a frequency of 10~6/input donor by a filter mating technique. A commonplasmid band, named pBFKWl,was found in both the donor and the transconjugants. The plasmid was purified by an ethidium bromide-CsClultracentrifugation. The molecular size of the plasmid pBFKWlwhich seemed to encode the /Mactamresistance and /Mactamase production was estimated ca. 40kb by the analysis of endonuclease digest. Substrate profile of the enzymes derived from the donor and a transconjugant wereof cephalosporinase character. Most strains of Bacteroides fragilis constitutively produce a small amount of /Mactamase, and show moderateresistance to most/Mactamantibiotics except for the cephamycinssuch as cefoxitin and the carbapenems such as imipenem. Somestrains of B. fragilis isolated from clinical materials produce large amounts of /Mactamase and therefore were resistant to /Mactamantibiotics.1* It has been hypothesized that resistance of B. fragilis to /Mactam antibiotics is encoded by an extrachromosomal gene. Recently, several investigators have reported that resistance to /Mactam and production of /Mactamase in B.
    [Show full text]
  • WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
    WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Beta-Lactamases of Type Culture Strains of the Bacteroides Fragilis Group and of Strains That Hydrolyse Cefoxitin, Latamoxef and Imipenem
    J. Med. Microbiol. -Vol. 21 (1986), 49-57 0 1986 The Pathological Society of Great Britain and Ireland Beta-lactamases of type culture strains of the Bacteroides fragilis group and of strains that hydrolyse cefoxitin, latamoxef and imipenem A. ELEY and D. GREENWOOD Department of Microbiology and Public Health Laboratory, University Hospital, Queen's Medical Centre, Nottingham NG7 2UH Summary. Susceptibilities to P-lactam antibiotics and P-lactamase content of two groups of Bacteroides strains were compared. Type cultures produced low levels of p- lactamase and were susceptible to cefoxitin, latamoxef, imipenem and the combination of benzylpenicillin and clavulanic acid. Other Bacteroides strains that produced higher levels of P-lactamase were generally less susceptible to these antibiotics; this resistance was more closely related to enzyme type than to the amount of enzyme present. The P-lactamases produced by the test strains fell into three broad groups on the basis of antibiotic degradation and inhibitor profiles: (i) those that inactivated benzylpenicillin, but not cefoxitin, latamoxef or imipenem, and were susceptible to inhibition by P-lactamase inhibitors; (ii) those that hydrolysed benzylpenicillin, cefoxitin and latamoxef, but not imipenem, and which were less susceptible to inhibition by P-lactamase inhibitors; (iii) an enzyme that inactivated all the antibiotics and was not inhibited by p-lactamase inhibitors. Introduction tin, latamoxef and imipenem. The P-lactamases of these strains have been characterised with respect to Production of P-lactamase is the major factor the kinetics of antibiotic breakdown and the pattern involved in the resistance of many bacteria to p- of inhibition by various enzyme inhibitors.
    [Show full text]
  • Antimicrobial Composition
    Europa,schesP_ MM M II M MM 1 1 M Ml MM M Ml J European Patent Office .ha no © Publication number: 0 384 41 OBI Office europeen, desJ brevets © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 17.05.95 © Int. CI.6: A61 K 31/545, A61 K 31/43, //(A61K31/545,31:43) © Application number: 90103266.4 @ Date of filing: 20.02.90 The file contains technical information submitted after the application was filed and not included in this specification © Antimicrobial composition. ® Priority: 21.02.89 JP 41286/89 9-1, Kamimutsuna 3-chome 14.04.89 JP 94460/89 Okazaki-shi, Aichi (JP) @ Date of publication of application: Inventor: Sanada, Mlnoru, c/o BANYU PHARM. 29.08.90 Bulletin 90/35 CO., LTD. OKAZAKI RES. LABORATORY, © Publication of the grant of the patent: 9-1, Kamimutsuna 3-chome 17.05.95 Bulletin 95/20 Okazaki-shi, Aichi (JP) © Designated Contracting States: Inventor: Nakagawa, Susumu, c/o BANYU CH DE FR GB IT LI NL PHARM. CO., LTD. OKAZAKI RES. LABORATORY, © References cited: 9-1, Kamimutsuna 3-chome EP-A- 0 248 361 Okazaki-shi, Aichi (JP) UNLISTED DRUGS, vol. 37, no. 2, February Inventor: Tanaka, Nobuo, c/o BANYU PHARM. 1985, Chatham, New Jersey, US; "Zienam CO., LTD. 250". 2-3, Nihonbashi Honcho 2-chome Chuo-ku, © Proprietor: BANYU PHARMACEUTICAL CO., Tokyo (JP) LTD. Inventor: Inoue, Matsuhisa 2-3, Nihonbashi Honcho 2-chome 3076-3, Oaza-Tokisawa 00 Chuo-ku, Tokyo (JP) Fujlmi-mura, Seta-gun, @ Inventor: Matsuda, Kouji, c/o BANYU PHARM. Gunma (JP) CO., LTD.
    [Show full text]
  • Revision of Precautions
    Published by Translated by Ministry of Health, Labour and Welfare Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. Revision of Precautions Cefmenoxime hydrochloride Ceftibuten hydrate Cefaclor Cefazolin sodium Cefazolin sodium hydrate Cefalexin Cefalotin sodium Cefixime hydrate Cefepime dihydrochloride hydrate Cefozopran hydrochloride Cefotiam hydrochloride Cefoperazone sodium/sulbactam sodium Cefcapene pivoxil hydrochloride hydrate Cefditoren pivoxil Pharmaceuticals and Medical Devices Agency 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013 Japan E-mail: [email protected] Published by Translated by Ministry of Health, Labour and Welfare Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. Cefdinir Ceftazidime hydrate Ceftizoxime sodium Cefteram pivoxil Ceftriaxone sodium hydrate Cefpirome sulfate Cefpodoxime proxetil Cefminox sodium hydrate Cefmetazole sodium Cefroxadine hydrate Flomoxef sodium Latamoxef sodium March 28, 2019 Non-proprietary name Cefmenoxime hydrochloride, ceftibuten hydrate, cefaclor, cefazolin sodium, cefazolin sodium hydrate, cephalexin, cefalotin sodium, cefixime hydrate, cefepime dihydrochloride hydrate, cefozopran hydrochloride, cefotiam hydrochloride, cefoperazone Pharmaceuticals and Medical Devices Agency 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013 Japan E-mail: [email protected] Published by Translated by Ministry of Health, Labour and Welfare Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail.
    [Show full text]