Antimicrobial Composition

Total Page:16

File Type:pdf, Size:1020Kb

Antimicrobial Composition Europa,schesP_ MM M II M MM 1 1 M Ml MM M Ml J European Patent Office .ha no © Publication number: 0 384 41 OBI Office europeen, desJ brevets © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 17.05.95 © Int. CI.6: A61 K 31/545, A61 K 31/43, //(A61K31/545,31:43) © Application number: 90103266.4 @ Date of filing: 20.02.90 The file contains technical information submitted after the application was filed and not included in this specification © Antimicrobial composition. ® Priority: 21.02.89 JP 41286/89 9-1, Kamimutsuna 3-chome 14.04.89 JP 94460/89 Okazaki-shi, Aichi (JP) @ Date of publication of application: Inventor: Sanada, Mlnoru, c/o BANYU PHARM. 29.08.90 Bulletin 90/35 CO., LTD. OKAZAKI RES. LABORATORY, © Publication of the grant of the patent: 9-1, Kamimutsuna 3-chome 17.05.95 Bulletin 95/20 Okazaki-shi, Aichi (JP) © Designated Contracting States: Inventor: Nakagawa, Susumu, c/o BANYU CH DE FR GB IT LI NL PHARM. CO., LTD. OKAZAKI RES. LABORATORY, © References cited: 9-1, Kamimutsuna 3-chome EP-A- 0 248 361 Okazaki-shi, Aichi (JP) UNLISTED DRUGS, vol. 37, no. 2, February Inventor: Tanaka, Nobuo, c/o BANYU PHARM. 1985, Chatham, New Jersey, US; "Zienam CO., LTD. 250". 2-3, Nihonbashi Honcho 2-chome Chuo-ku, © Proprietor: BANYU PHARMACEUTICAL CO., Tokyo (JP) LTD. Inventor: Inoue, Matsuhisa 2-3, Nihonbashi Honcho 2-chome 3076-3, Oaza-Tokisawa 00 Chuo-ku, Tokyo (JP) Fujlmi-mura, Seta-gun, @ Inventor: Matsuda, Kouji, c/o BANYU PHARM. Gunma (JP) CO., LTD. OKAZAKI RES. LABORATORY, 00 CO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention). Rank Xerox (UK) Business Services (3. 10/3.09/3.3.3) EP 0 384 410 B1 0 Representative: Klunker . Schmltt-NIIson . HIrsch WInzererstrasse 106 D-80797 Munchen (DE) 2 EP 0 384 410 B1 Description BACKGROUND OF THE INVENTION 5 1 . Field of the Invention The present invention relates to a combination of different kinds of ^-lactam antibiotics as a pharmaceu- tical composition, to the use of the composition for producing a medicament, and to products containing the combination. 70 2. Description of the Related Art Currently, although many kinds of antibiotics have been used for the therapy of various infectious diseases, due to a tendency of pathogenic microorganisms which have encountered antibiotics to acquire a 75 resistance to the antibiotics, usually microorganisms exist which are resistant to a single antibiotic. To resolve this dilemma, attempts have been made to use a combination of more than one antibiotic. For example, the use of a combination of more than one antibiotic has been proposed to enhance an antimicrobial activity against pathogenic microorganisms, for example, gram-positive bacteria such as Staphyrococcus aureus, S. epidermidis, Enterococcus faecalis, etc.; gram negative bacteria such as 20 Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Serratia marcescens, etc.; and glucose non-fermentative gram-negative rods, such as Pseudomonas aeruginosa, P. cepacia, P. maltophilia, Acinetobacter calcoaceticus, etc. Japanese Unexamined Patent Publication (KOKAI) No. 60-126230 and Japanese Examined Patent Publication (KOKOKU) No. 61-37248 describe antimicrobial compositions comprising a combination of 25 penicillin series antibiotic, and penicillin or cephalosporin series antibiotic; Japanese Examined Patent Publication (KOKOKU) No. 62-50448 describes antimicrobial compositions comprising a combination of a synthetic antimicrobial substance and penicillin or cephalosporin series antibiotic; and Japanese Examined Patent Publication (KOKOKU) No. 63-26732 describes antimicrobial compositions comprising a combination of a phosphoric derivative and one of various antimicrobial substances. 30 From EP-A-0 248 361 it is known that combinations of certain cephalosporins and penems exhibit a synergistic effect and may be used for treating bacterial infections. There is a tendency toward an increase in drug-resistant microorganisms isolated from patients suffering from intractable diseases, and there are few antimicrobial compositions which exhibit an effective and sufficient antimicrobial activity against methicillin resistant Staphylococcus aureus (MRSA), a repre- 35 sentative pathogen of such diseases, and this has led to serious clinical difficulties. It is well known that carbapenem series compounds have a wide antimicrobial spectrum. Known carbapenem series compounds include imipenem (Japanese Examined Patent Publication No. 61-60816), SM-7338 (Japanese Unexamined Patent Publication No. 60-10488), RS-533 (Japanese Unexamined Patent Publication No. 59-51286), but the administering of this carbapenem alone does not provide a sufficient 40 antimicrobial activity against MRSA. Further, although imipenem is often used for the therapy of MRSA infections, it does not provide satisfactory results as MRSA is highly resistant to ^-lactams. All of the above references refer to tests on usual gram-positive bacteria, gram negative bacteria and glucose non-fermetntative gram-negative rods, and do not refer to an evaluation of an acitivity against MRSA. 45 Since there are limitations to the therapy of MRSA infections by a single agent, the use of a combination of an aminoglycoside and a ^-lactam, or a combination of phosphomycin and a ^-lactam has been attempted, but these combinations are not satisfactorily effective. Since an infection with MRSA is representative of intractable infections, the deficiency in effective therapeutic agents must be urgently resolved. 50 SUMMARY OF THE INVENTION Accordingly, the present invention provides an antimicrobial composition comprising a combination of (1) a first ingredient selected from penicillin series compounds, cephalosporin series compounds and 55 pharmaceutically acceptable salts thereof; and (2) a second ingredient selected from carbapenem series compounds and pharmaceutically acceptable salts thereof wherein the penicillin series compound is selected from penicillin G, ampicillin, amoxicillin, mecillinam, pivmecillinam, carbenicillin, carfecillin, carin- dacillin, sulbenicillin, talampicillin, bacampicillin, ticarcillin, piperacillin, ciclacillin and hetacillin, the 3 EP 0 384 410 B1 cephalosporin series compound is selected from cefatrizine, cefamandole, cefuzoname, cefpimizole, cephapirin, cephaloridine, cefsulodin, cefotiam, ceforanide, ceftexzole, cefoxitin, latamoxef, flomoxef, cef- metazole, cefotetan, cefpiramide, cephaloglycin, cephalexin, cefadroxil, cefroxadine, ceferadine, cefaclor and cefoperazone, the carbapenem series compound is selected from imipenem, i.e., (5R,6S,8R)-3-[{2- 5 (formimidoylamino)ethyl}thio] -6-(1 -hydroxyethyl)-7-oxo-1 -azabicyclo[3,2,0]hept-2-ene-2-carboxylic acid monohydrate, SM-7338, i.e. (4R,5S,6S,8R,2'S,4'S)-3-[2-(dimethylaminocarbonyl)pyrrolidin-4-ylthio]-6-(1 - hydroxy-ethyl)-4-methyl-7-oxo-1-azabicyclo[3,2,0]hept-2-ene-2-carboxylic acid, and RS-533,i.e. (5R.6S, 8R,4'S)-3-[1-acetimidoylpyrrolidin-4-ylthio]-6-(1-hydroxyethyl)-7-oxo-1-azabicyclo[3,2,0]-hept-2-ene-2- carboxylic acid; and said combination providing a synergistic effect over the compounds used alone. io The composition of the present invention is effective against MRSA which is highly resistant to ^-lactam antibiotics. Further developments of the antimicrobial composition of the present invention result from the dependent claims 2 to 10. The present invention also provides products containing a first antibiotic and a second antibiotic, is wherein the first antibiotic is selected from penicillin series compounds, cephalosporin series compounds and pharmaceutically acceptable salts thereof and the second antibiotic is selected from carbapenem series compounds and pharmaceutically acceptable salts thereof, and wherein the penicillin series compound is selected from penicillin G, ampicillin, amoxicillin, mecillinam, pivmecillinam, carbenicillin, carfecillin, carin- dacillin, sulbenicillin, talampicillin, bacampicillin, ticarcillin, piperacillin, ciclacillin and hetacillin, the 20 cephalosporin series compound is selected from cefatrizine, cefamandole, cefuzoname, cefpimizole, cephapirin, cephaloridine, cefsulodin, cefotiam, ceforanide, ceftexzole, cefoxitin, latamoxef, flomoxef, cef- metazole, cefotetan, cefpiramide, cephaloglycin, cephalexin, cefadroxil, cefroxadine, ceferadine, cefaclor and cefoperazone, the carbapenem series compound is selected from imipenem, i.e., (5R,6S,8R)-3-[{2- (formimidoylamino)ethyl}thio] -6-(1 -hydroxyethyl)-7-oxo-1 -azabicyclo[3,2,0]hept-2-ene-2-carboxylic acid 25 monohydrate, SM-7338, i.e. (4R,5S,6S,8R,2'S,4'S)-3-[2-(dimethylaminocarbonyl)-pyrrolidin-4-ylthio]-6-(1- hydroxy-ethyl)-4-methyl-7-oxo-1-azabicyclo 3,2,0]hept-2-ene-2-carboxylic acid, and RS-533,i.e. (5R.6S, 8R,4'S)-3-[1-acetimidoylpyrrolidin-4-ylthio]-6-(1-hydroxyethyl)-7-oxo-1-azabicyclo[3,2,0]-hept-2-ene-2- carboxylic acid; and said combination providing a synergistic effect over the compounds used alone, the product containing the first antibiotic and the second antibiotic as a combined preparation for separate use 30 or separately administering in the MRSA infection therapy. The present invention further relates to the use of an antimicrobial composition comprising a combina-
Recommended publications
  • Supplement Ii to the Japanese Pharmacopoeia Fifteenth Edition
    SUPPLEMENT II TO THE JAPANESE PHARMACOPOEIA FIFTEENTH EDITION Official From October 1, 2009 English Version THE MINISTRY OF HEALTH, LABOUR AND WELFARE Notice: This English Version of the Japanese Pharmacopoeia is published for the conven- ience of users unfamiliar with the Japanese language. When and if any discrepancy arises between the Japanese original and its English translation, the former is authentic. The Ministry of Health, Labour and Welfare Ministerial Notification No. 425 Pursuant to Paragraph 1, Article 41 of the Pharmaceutical Affairs Law (Law No. 145, 1960), we hereby revise a part of the Japanese Pharmacopoeia (Ministerial Notification No. 285, 2006) as follows*, and the revised Japanese Pharmacopoeia shall come into ef- fect on October 1, 2009. However, in the case of drugs which are listed in the Japanese Pharmacopoeia (hereinafter referred to as “previous Pharmacopoeia”) [limited to those listed in the Japanese Pharmacopoeia whose standards are changed in accordance with this notification (hereinafter referred to as “new Pharmacopoeia”)] and drugs which have been approved as of October 1, 2009 as prescribed under Paragraph 1, Article 14 of the same law [including drugs the Minister of Health, Labour and Welfare specifies (the Ministry of Health and Welfare Ministerial Notification No. 104, 1994) as those ex- empted from marketing approval pursuant to Paragraph 1, Article 14 of the Pharmaceu- tical Affairs Law (hereinafter referred to as “drugs exempted from approval”)], the Name and Standards established in the previous Pharmacopoeia (limited to part of the Name and Standards for the drugs concerned) may be accepted to conform to the Name and Standards established in the new Pharmacopoeia before and on March 31, 2011.
    [Show full text]
  • Virtual Screening of Inhibitors Against Envelope Glycoprotein of Chikungunya Virus: a Drug Repositioning Approach
    www.bioinformation.net Research Article Volume 15(6) Virtual screening of inhibitors against Envelope glycoprotein of Chikungunya Virus: a drug repositioning approach Garima Agarwal1, Sanjay Gupta1, Reema Gabrani1, Amita Gupta2, Vijay Kumar Chaudhary2, Vandana Gupta3* 1Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP 201309, India: 2Centre for Innovation in Infectious Disease Research, Education and Training, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India: 3Department of Microbiology, Ram Lal Anand College, University of Delhi South Campus (UDSC), Benito Juarez Marg, New Delhi 110021, India. Vandana Gupta – E-mail: [email protected]; Phone: +91 7838004880 Received April 1, 2019; Accepted April 16, 2019; Published June 15, 2019 DOI: 10.6026/97320630015439 Abstract: Chikungunya virus (CHIKV) a re-emerging mosquito-borne alpha virus causes significant distress which is further accentuated in the lack of specific therapeutics or a preventive vaccine, mandating accelerated research for anti-CHIKV therapeutics. In recent years, drug repositioning has gained recognition for the curative interventions for its cost and time efficacy. CHIKV envelope proteins are considered to be the promising targets for drug discovery because of their essential role in viral attachment and entry in the host cells. In the current study, we propose structure-based virtual screening of drug molecule on the crystal structure of mature Chikungunya envelope protein (PDB 3N41) using a library of FDA approved drug molecules. Several cephalosporin drugs docked successfully within two binding sites prepared at E1-E2 interface of CHIKV envelop protein complex with significantly low binding energies. Cefmenoxime, ceforanide, cefotetan, cefonicid sodium and cefpiramide were identified as top leads with a cumulative score of -67.67, -64.90, -63.78, -61.99, and - 61.77, forming electrostatic, hydrogen and hydrophobic bonds within both the binding sites.
    [Show full text]
  • Download Download
    VOLUME 7 NOMOR 2 DESEMBER 2020 ISSN 2548 – 611X JURNAL BIOTEKNOLOGI & BIOSAINS INDONESIA Homepage Jurnal: http://ejurnal.bppt.go.id/index.php/JBBI IN SILICO STUDY OF CEPHALOSPORIN DERIVATIVES TO INHIBIT THE ACTIONS OF Pseudomonas aeruginosa Studi In Silico Senyawa Turunan Sefalosporin dalam Menghambat Aktivitas Bakteri Pseudomonas aeruginosa Saly Amaliacahya Aprilian*, Firdayani, Susi Kusumaningrum Pusat Teknologi Farmasi dan Medika, BPPT, Gedung LAPTIAB 610-612 Kawasan Puspiptek, Setu, Tangerang Selatan, Banten 15314 *Email: [email protected] ABSTRAK Infeksi yang diakibatkan oleh bakteri gram-negatif, seperti Pseudomonas aeruginosa telah menyebar luas di seluruh dunia. Hal ini menjadi ancaman terhadap kesehatan masyarakat karena merupakan bakteri yang multi-drug resistance dan sulit diobati. Oleh karena itu, pentingnya pengembangan agen antimikroba untuk mengobati infeksi semakin meningkat dan salah satu yang saat ini banyak dikembangkan adalah senyawa turunan sefalosporin. Penelitian ini melakukan studi mengenai interaksi tiga dimensi (3D) antara antibiotik dari senyawa turunan Sefalosporin dengan penicillin-binding proteins (PBPs) pada P. aeruginosa. Tujuan dari penelitian ini adalah untuk mengklarifikasi bahwa agen antimikroba yang berasal dari senyawa turunan sefalosporin efektif untuk menghambat aktivitas bakteri P. aeruginosa. Struktur PBPs didapatkan dari Protein Data Bank (PDB ID: 5DF9). Sketsa struktur turunan sefalosporin digambar menggunakan Marvins Sketch. Kemudian, studi mengenai interaksi antara antibiotik dan PBPs dilakukan menggunakan program Mollegro Virtual Docker 6.0. Hasil yang didapatkan yaitu nilai rerank score terendah dari kelima generasi sefalosporin, di antaranya sefalotin (-116.306), sefotetan (-133.605), sefoperazon (-160.805), sefpirom (- 144.045), dan seftarolin fosamil (-146.398). Keywords: antibiotik, penicillin-binding proteins, P. aeruginosa, sefalosporin, studi interaksi ABSTRACT Infections caused by gram-negative bacteria, such as Pseudomonas aeruginosa, have been spreading worldwide.
    [Show full text]
  • Comparative Effects of Cefpirome (Hr 810) and Other Cephalosporins on Experimentally Induced Pneumonia in Mice
    VOL. XXXIX NO. 7 THE JOURNAL OF ANTIBIOTICS 971 COMPARATIVE EFFECTS OF CEFPIROME (HR 810) AND OTHER CEPHALOSPORINS ON EXPERIMENTALLY INDUCED PNEUMONIA IN MICE N. KLESEL, D. ISERT, M. LIMBERT, G. SEIBERT, I. WINKLER and E. SCHRINNER Hoechst Aktiengesellschaft, Dept. of Chemotherapy, 6230 Frankfurt a. M. 80, FRG (Received for publication March 24, 1986) The chemotherapeutic efficacy of cefpirome (HR 810), a new polar aminothiazolyl- cephalosporin and that of ceftazidime, cefotaxime, cefoperazone, latamoxef and cefodizime were examined against experimental pneumonia caused by Klebsiella pneammlliae DT-S in mice. When compared in terms of MIC values against the infecting organism and the phar- macokinetic pattern, cefpirome showed equal activity and a similar pharmacokinetic behavior to ceftazidime and cefotaxime in mice. Trials to assess the bactericidial activity in vhro, however, showed that cefpirome displayed a more marked bactericidal effect in pneumonic mice than the other cephalosporins tested. Only cefodizime, a cephalosporin with extremely high and prolonged blood and tissue levels in experimental animals exerted chemotherapeutic effects similar to cefpirome. After cefpirome or cefodizime medication (50 mg/kg), the viable counts in the lungs of experimental animals fell steadily to 1/10,000 of the pretreatment level and, in contrast to the reference compounds, no regrowth of the challenge organisms could be observed with both drugs. Moreover, with ED.-,,,,sranging from 1.1 to 59.1 mg/kg in treatment studies, cefpirome as well as cefodizime were two to ten times more effective than ceftazidime and cefotaxime, whereas cefoperazone and latamoxef were considerably less effective. Cefpirome (3-((2,3-cyclopenteno-I-pyridium)methyl)-7-(2-syn-methoximino-2-(2-aminothiazol-4- yl)acetamido)ceph-3-em-4-carboxylate, HR 810) is a new semi-synthetic parenteral cephalosporin antibiotic with a broad spectrum of antibacterial activity in vitro and in rivo.
    [Show full text]
  • Breeding Laboratories (Hino, Japan)
    VOL. XLII NO. 6 THE JOURNAL OF ANTIBIOTICS 989 STIMULATORY EFFECT OF CEFODIZIME ON MACROPHAGE- MEDIATED PHAGOCYTOSIS Kazunori Oishi, Keizo Matsumoto, Masashi Yamamoto, Toshihiro Morito and Toshiaki Yoshida Department of Internal Medicine, Institute of Tropical Medicine, Nagasaki University, 12-4 Sakamoto-machi, Nagasaki 852, Japan (Received for publication January 27, 1989) Weevaluated the ingestion of anti-sheep erythrocyte (anti-E) IgG- and IgM-coated sheep erythiocytes by murineperitoneal macrophagesexposed to cefodizime, a newsemisynthetic cephalosporin, and other antibiotics. Cefodizime enhanced the ingestion of anti-E IgG- coated erythrocytes by peritoneal macrophages from CD-I and BALB/cmice in a dose- dependent manner, but had no effect on uncoated or IgM-coated erythrocytes. Similar enhancement was observed only in the case of cefpimizole (AC-1370), among the other anti- biotics examined. These results suggest that the favorable in vivo activity of cefodizime and cefpimizole may result from their phagocytosis-enhancing as well as antimicrobial properties. The new semisynthetic cephalosporin, cefodizime, is characterized by a cephem ring which con- tains a ^w-methoxyimino-aminothiazolyl group at the 7-position and a thiazolylthio-methyl group at the 3-position. The latter substitution is thought to provide metabolic stability and a prolonged half-life in humanserum0. The efficacy of cefodizime in experimental murine infections is apparently superior to that predicted from in vitro activity2>3). Wepostulated that the enhanced in vivo activity of cefodizime may be due to drug-induced immunostimulation. This speculation was in part based upon the previous demonstration that a variety of agents, including lysophosphatidylcholine4) and fibronectin5), enhance receptor-dependent phagocytosis. Moreover, it was previously reported that cefpimizole (AC-1370), another semisynthetic cephalosporin, potentiated phagocyte function of macrophages and neutrophils6).
    [Show full text]
  • Antimicrobial Resistance Benchmark 2020 Antimicrobial Resistance Benchmark 2020
    First independent framework for assessing pharmaceutical company action Antimicrobial Resistance Benchmark 2020 Antimicrobial Resistance Benchmark 2020 ACKNOWLEDGEMENTS The Access to Medicine Foundation would like to thank the following people and organisations for their contributions to this report.1 FUNDERS The Antimicrobial Resistance Benchmark research programme is made possible with financial support from UK AID and the Dutch Ministry of Health, Welfare and Sport. Expert Review Committee Research Team Reviewers Hans Hogerzeil - Chair Gabrielle Breugelmans Christine Årdal Gregory Frank Fatema Rafiqi Karen Gallant Nina Grundmann Adrián Alonso Ruiz Hans Hogerzeil Magdalena Kettis Ruth Baron Hitesh Hurkchand Joakim Larsson Dulce Calçada Joakim Larsson Marc Mendelson Moska Hellamand Marc Mendelson Margareth Ndomondo-Sigonda Kevin Outterson Katarina Nedog Sarah Paulin (Observer) Editorial Team Andrew Singer Anna Massey Deirdre Cogan ACCESS TO MEDICINE FOUNDATION Rachel Jones The Access to Medicine Foundation is an independent Emma Ross non-profit organisation based in the Netherlands. It aims to advance access to medicine in low- and middle-income Additional contributors countries by stimulating and guiding the pharmaceutical Thomas Collin-Lefebvre industry to play a greater role in improving access to Alex Kong medicine. Nestor Papanikolaou Address Contact Naritaweg 227-A For more information about this publication, please contact 1043 CB, Amsterdam Jayasree K. Iyer, Executive Director The Netherlands [email protected] +31 (0) 20 215 35 35 www.amrbenchmark.org 1 This acknowledgement is not intended to imply that the individuals and institutions referred to above endorse About the cover: Young woman from the Antimicrobial Resistance Benchmark methodology, Brazil, where 40%-60% of infections are analyses or results.
    [Show full text]
  • Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy Using Machine Learning
    Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy using Machine Learning Kate Wang et al. Supplemental Table S1. Drugs selected by Pharmacophore-based, ML-based and DL- based search in the FDA-approved drugs database Pharmacophore WEKA TF 1-Palmitoyl-2-oleoyl-sn-glycero-3- 5-O-phosphono-alpha-D- (phospho-rac-(1-glycerol)) ribofuranosyl diphosphate Acarbose Amikacin Acetylcarnitine Acetarsol Arbutamine Acetylcholine Adenosine Aldehydo-N-Acetyl-D- Benserazide Acyclovir Glucosamine Bisoprolol Adefovir dipivoxil Alendronic acid Brivudine Alfentanil Alginic acid Cefamandole Alitretinoin alpha-Arbutin Cefdinir Azithromycin Amikacin Cefixime Balsalazide Amiloride Cefonicid Bethanechol Arbutin Ceforanide Bicalutamide Ascorbic acid calcium salt Cefotetan Calcium glubionate Auranofin Ceftibuten Cangrelor Azacitidine Ceftolozane Capecitabine Benserazide Cerivastatin Carbamoylcholine Besifloxacin Chlortetracycline Carisoprodol beta-L-fructofuranose Cilastatin Chlorobutanol Bictegravir Citicoline Cidofovir Bismuth subgallate Cladribine Clodronic acid Bleomycin Clarithromycin Colistimethate Bortezomib Clindamycin Cyclandelate Bromotheophylline Clofarabine Dexpanthenol Calcium threonate Cromoglicic acid Edoxudine Capecitabine Demeclocycline Elbasvir Capreomycin Diaminopropanol tetraacetic acid Erdosteine Carbidopa Diazolidinylurea Ethchlorvynol Carbocisteine Dibekacin Ethinamate Carboplatin Dinoprostone Famotidine Cefotetan Dipyridamole Fidaxomicin Chlormerodrin Doripenem Flavin adenine dinucleotide
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • 595 PART 441—PENEM ANTIBIOTIC DRUGS Subpart A—Bulk Drugs
    Food and Drug Administration, HHS § 441.20a (6) pH. Proceed as directed in § 436.202 imipenem per milliliter at 25 °C is ¶85° of this chapter, using an aqueous solu- to ¶95° on an anhydrous basis. tion containing 60 milligrams per mil- (vi) It gives a positive identity test. liliter. (vii) It is crystalline. (7) Penicillin G content. Proceed as di- (2) Labeling. It shall be labeled in ac- rected in § 436.316 of this chapter. cordance with the requirements of (8) Crystallinity. Proceed as directed § 432.5 of this chapter. in § 436.203(a) of this chapter. (3) Requests for certification; samples. (9) Heat stability. Proceed as directed In addition to complying with the re- in § 436.214 of this chapter. quirements of § 431.1 of this chapter, [42 FR 59873, Nov. 22, 1977; 43 FR 2393, Jan. 17, each such request shall contain: 1978, as amended at 45 FR 22922, Apr. 4, 1980; (i) Results of tests and assays on the 50 FR 19918, 19919, May 13, 1985] batch for potency, sterility, pyrogens, loss on drying, specific rotation, iden- PART 441ÐPENEM ANTIBIOTIC tity, and crystallinity. DRUGS (ii) Samples, if required by the Direc- tor, Center for Drug Evaluation and Subpart AÐBulk Drugs Research: (a) For all tests except sterility: 10 Sec. 441.20a Sterile imipenem monohydrate. packages, each containing approxi- mately 500 milligrams. Subpart BÐ[Reserved] (b) For sterility testing: 20 packages, each containing equal portions of ap- Subpart CÐInjectable Dosage Forms proximately 300 milligrams. 441.220 Imipenem monohydrate-cilastatin (b) Tests and methods of assayÐ(1) Po- sodium injectable dosage forms.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • Synermox 500 Mg/125 Mg Tablets
    New Zealand Data Sheet 1. PRODUCT NAME Synermox 500 mg/125 mg Tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Synermox 500 mg/125 mg Tablets: Each film‐coated tablet contains amoxicillin trihydrate equivalent to 500 mg amoxicillin, with potassium clavulanate equivalent to 125 mg clavulanic acid. Excipient(s) with known effect For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Synermox 500 mg/125 mg Tablets: White to off‐white, oval shaped film‐coated tablets, debossed with “RX713” on one side and plain on the other. 4. CLINICAL PARTICULARS 4.1. Therapeutic indications Synermox is indicated in adults and children (see sections 4.2, 4.4 and 5.1) for short term treatment of common bacterial infections such as: Upper Respiratory Tract Infections (including ENT) e.g. Tonsillitis, sinusitis, otitis media. Lower Respiratory Tract Infection e.g. acute exacerbations of chronic bronchitis, lobar and broncho‐pneumonia. Genito‐urinary Tract Infections e.g. Cystitis, urethritis, pyelonephritis, female genital infections. Skin and Soft Tissue Infections. Bone and Joint Infections e.g. Osteomyelitis. Other Infections e.g. septic abortion, puerperal sepsis, intra‐abdominal sepsis, septicaemia, peritonitis, post‐surgical infections. Synermox is indicated for prophylaxis against infection which may be associated with major surgical procedures such as those involving: Gastro‐intestinal tract Pelvic cavity 1 | Page Head and neck Cardiac Renal Joint replacement Biliary tract surgery Infections caused by amoxicillin susceptible organisms are amenable to Synermox treatment due to its amoxicillin content. Mixed infections caused by amoxicillin susceptible organisms in conjunction with Synermox‐susceptible beta‐lactamase‐producing organisms may therefore be treated by Synermox.
    [Show full text]
  • Empiric Treatment with Antibiotic Combination Therapy Compared with Monotherapy for Adult Patients with Septic Shock of Unknown
    REPORT 2020 SYSTEMATIC REVIEW: Empiric treatment with antibiotic combination therapy compared with monotherapy for adult patients with septic shock of unknown pathogen and origin Utgitt av Norwegian Institute of Public Health Division for Health Services Title Empiric treatment with antibiotic combination therapy compared with monotherapy for adult patients with septic shock of unknown pathogen and origin: a systematic review Norwegian title Hva er effekten av empirisk kombinasjonsbehandling med antibiotika sammen- lignet med monoterapi for voksne pasienter med septisk sjokk forårsaket av ukjent patogen og ukjent opprinnelse: en systematisk oversikt Responsible Camilla Stoltenberg, Director General Authors Jan PW Himmels, project leader, seniorrådgiver, Norwegian Institute of Public Health Gunn Elisabeth Vist, seniorforsker, Norwegian Institute of Public Health Liv Giske, seniorforsker, Norwegian Institute of Public Health Eva Helene Arentz-Hansen, seniorforsker, Norwegian Institute of Public Health Gyri Hval, bibliotekar, Norwegian Institute of Public Health ISBN 978-82-8406-084-2 Project number RL035 Type of report Systematic Review No. of pages 26 (32 inklusiv vedlegg) Client Helsedirektoratet Subject Septic shock, antibiotic dual treatment, antibiotic monotherapy, antimicrobi- heading(MeSH) otic ressistance (AMR) Citation Himmels JPW, Vist GE, Giske L, Arentz-Hansen EH, Hval G. Empiric treatment with antibiotic combination therapy compared with monotherapy for adult patients with septic shock of unknown pathogen and origin: a systematic
    [Show full text]