(12) United States Patent (10) Patent No.: US 8,835,117 B2 Mitchell Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8,835,117 B2 Mitchell Et Al US008835117B2 (12) United States Patent (10) Patent No.: US 8,835,117 B2 Mitchell et al. (45) Date of Patent: Sep. 16, 2014 (54) NUCLEICACIDS FOR DETECTION AND OTHER PUBLICATIONS DISCRIMINATION OF GENOTYPES OF CHLAMYDOPHILA PSITTAC Nazarenko, I. Methods in Molecular Biology (2006) 335: 95-114.* Jeffrey et al. Microbiology (2007) 153: 2679-2688.* 75) Inventors: Stephaniep L. Mitchell, Somerville, MA Geens et al. Journal of Clinical Microbiology (2005) 43(5): 2456 (US); Jonas M. Winchell, Lilburn, GA 2461. (US) Geens et al., “Development of a Chlamydophila psittaci species specific and genotype-specific real-time PCR.” Vet. Res., 36: 787 (73) Assignee: The United States of America as 797, 2005. represented by the Secretary of the Geens et al., “Sequencing of the Chlamydophila psittaci OmpA Gene Department of Health and Human Reveals a New Genotype, E/B, and the Need for a Rapid Discrimi Services, Centers for Disease Control natory Genotyping Method.” J. Clin. Microbiol. 43(5): 2456-2461, and Prevention, Washington, DC (US) 2005. Heddema, “Genotyping of Chlamydophila psittaci in Human (*) Notice: Subject to any disclaimer, the term of this Samples.” Emerging Infectious Diseases, 12(12): 1989-1990, 2006. patent is extended or adjusted under 35 Menard, “Development of a real-time PCR for the detection of U.S.C. 154(b) by 82 days. Chlamydia psittaci,” J. Med. Microbiol. 55(Pt. 4): 471-473, 2006. Mitchellet al., “Genotyping of Chlamydophilapsittaci by Real-Time (21) Appl. No.: 13/322,787 PCR and High-Resolution Melt Analysis,” Journal of Clinical Microbiology, 47(1): 175-181, 2009. (22) PCT Filed: May 28, 2010 Sachse et al., “Genotyping of Chlamydophila psittaci using a new DNA microarray assay based on sequence analysis of ompA genes.” (86). PCT No.: PCT/US2O10/036742 BMC Microbiology, 8:63, pp. 1-12, 2008. S371 (c)(1), (2), (4) Date: Nov. 28, 2011 * cited by examiner (87) PCT Pub. No.: WO2010/138926 Primary Examiner — Angela MBertagna PCT Pub. Date: Dec. 2, 2010 (74) Attorney, Agent, or Firm — Klarduist Sparkman, LLP (65) Prior Publication Data US 2012/0082984 A1 Apr. 5, 2012 (57) ABSTRACT Methods of detecting Chlamydophila, including differentiat Related U.S. Application Data ing between species of Chlamydophila and/or strains of (60) Provisional application No. 61/182,628, filed on May Chlamydophila psittaci are disclosed, for example to detect 29, 2009. and genotype a Chlamydophila psittaci infection. A sample Suspected of containing a nucleic acid of a Chlamydophila, is (51) Int. Cl. screened for the presence of that nucleic acid. The presence of CI2O I/68 (2006.01) the Chlamydophila nucleic acid indicates the presence of the C7H 2L/04 (2006.01) Chlamydophila bacterium. Determining whether a Chlamy (52) U.S. Cl. dophila nucleic acid is present in a sample can be accom CPC ...................................... CI2O I/689 (2013.01) plished by detecting hybridization between a Chlamydophila USPC ... 435/6.12: 435/6.15:536/24.32:536/24.33 specific primer, a Chlamydophila psittaci specific primer, (58) Field of Classification Search and/or a Chlamydophila psittaci genotype-specific primer None and the Chlamydophila nucleic acid containing sample. Thus, See application file for complete search history. primers for the detection, species-specific and/or genotype specific identification of Chlamydophila psittaci are dis (56) References Cited closed. Kits that contain the disclosed primers also are dis U.S. PATENT DOCUMENTS closed. 6,884,784 B1* 4/2005 Mitchell et al. ................. 514/31 2006, OOO8828 A1 1/2006 Vanrompay 9 Claims, 10 Drawing Sheets U.S. Patent Sep. 16, 2014 Sheet 1 of 10 US 8,835,117 B2 s Eo: . S . o is Esee .. e o rt v. ise aoueoSejon entee U.S. Patent Sep. 16, 2014 Sheet 2 of 10 US 8,835,117 B2 FIG. 2 . six later test k g site. ior ... s ... lossessessssssssssssss U.S. Patent Sep. 16, 2014 Sheet 3 of 10 US 8,835,117 B2 sae mae De íbol Bouaission pazeltic N U.S. Patent Sep. 16, 2014 Sheet 4 of 10 US 8,835,117 B2 ”: sg) se ,! s: s ae addeosauori pezetion U.S. Patent US 8,835,117 B2 |0:0 30 sease. On pazieutoN U.S. Patent Sep. 16, 2014 Sheet 6 of 10 US 8,835,117 B2 FIG. 4A festyge: * * sies: sers: sse-assass seas). x & sesse yxxxx x axes sea-ww.we w w w w 8. E. * -X X xx xxx xx. 8w x w, ... we w w w w x. xxx xxx xxx x X x w w w w w www.xxxx xxx xxx x. $xx xxx. $$ x x 8 8x X x w8 saw 8.8% we w w xx aggers . .'"Ce actersectice. Accer C3 '''''C' Ceras. CCII"; "C" st;3. so see ess ess re-s-s-s-s-----------------essessess - is sesses so sole as or see see essesses - so a saw was a wises xx. s. s. s. ss as x & aw w w w x x xxx xx ss w age esse ... we geod was ---------ax- X w. aws also was wo was sow x -x ax was a su - a u. ------a was a wa sax axe.<x wax. a. we & w w war as saw saw we cygosiers: ... GC. craggreggagger AGAS FIG. 4B 33. fe 2&ss:se As S$33.52 is: - - - - -e ss see sees a ree or or ever ---------- - - - - - - - as was we w we essess esses as a rever or - owe re-orie so sesses asses as a so a so sees as . was so assess as asssssssssss asses asso sease essesses rese sessesses asse are uses a so, was so www.ser----------a or a was uses as as a so or is wise os os e er everse -----a or as a new our seve? Aw one see e. e. e. e. e. e. we are see age to esco was a sesses a see a rocese sessee essess eers -- ~ rese sers - or erose to see or so see sesse as esses or re-seas or on to rew we were was so see to see on see as were were or evere re ess were esse or remove treet see sess - - - - - or so season or use was no e o see or a region so see receive rees e see is as ess see to won an ove Castry . .''''''''', 'Crage. Act. CT *, *, *. as are serve see see or re-recor-----w way or so as re-o or as a was a so, or a we on to severse veters rew remons were ever - so essesses -- - - - - - - - ww.we as a so see ess serve on ore are or were are or ree or se e o so sers or es were r - to or to wors sess sess - as essars as we were essesse as see esse esses one one or sesses esses - - - - - - ov. - or vessee or or was -----ee-------------------- - - - - - - - - as are was e a see ye six sex. x: xares x^ 3xes was ests was we raw wremewea---, -a was we asks - - - - - - - - - -os--- e. over esses essee ears one essee. e. e. eas a so-e as were were so assigs is '' is GCs. G. cra,3-CCCAGCACAA'''''''''''', crisy Cray-3C ir sarcos os convey owe were or one oe is so is ex v is no no so, so we we one to sess is season was so wrote ve as he is so see to score, or we ever to e o serve see or evere one on to one or no more so a seases as sa, as a 9 s to sts of a sea. Soisso a is a sea as is a to as ago. ess is sever, refore were to role were res---------------- a-- a to a as a vessesses as season gave see er's see A-Cio on to a sesses as a per Creek or is use to was a be ess as see s is a to as were so asses a sesses or re...e. a ceae see to e st see seases are ess as assassesses or as species or ser's so sessesses eas or were west sees tyrs ags is A. C. * CS 8 .''CATIC &c., 3, AAC* {SC 3, is is . * * * * : A CAS as esses: s or or so were were serie esses to sessive ocese rever or e o servoire - - - - - - - - - - - - a was in ce Cese a sees a stores were asso's so e s so so sees to so as on v or so we was as as a ... we was so see to sesses were won more Co-oo-o-o-n& a wo won a were wo to see to Coso owess v. to re-w, we're is . we' ses to ox to wo is a so so. 9 se se to avor one evolve see see säx or a grew to we are sees as a 8.8 vote to a will use is use a rolesX"& ofS& so an eco as were is or ree e s' sess's sea solo too musko Co. as a so as an as as as a so use or w w w a serve series see were verse Xers 283 : 3 & Asia C*-C* . .''''', a on was esses as as a reas on v. men we were a sess sco - we we are rese vessee sessessesses esse arre or re-aware see see e-ses-as &M was sw-wx xxx xxw - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - a less see ess Cexs as a stew was a view Co. v.-vi. ss or as are is solo or co-woo Crosses or co-e-r-------- see to avoc relieve to ove."& sersx as see was see we so own we we vs west we so sess ss to as so is as was well as was a .
Recommended publications
  • Mycoplasma Spermatophilum, a New Species Isolated from Human Spermatozoa and Cervix AURIOL C
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1991, p. 229-233 Vol. 41, No. 2 0020-7713/91/020229-05$02.oo/o Copyright 0 1991, International Union of Microbiological Societies Mycoplasma spermatophilum, a New Species Isolated from Human Spermatozoa and Cervix AURIOL C. HILL Medical Research Council Toxicology Unit, Woodmansterne Road, Carshalton, Surrey SM5 4EF, United Kingdom A mycoplasma isolated from human spermatozoa and a human cervix was shown to be serologically distinct from 98 previously recognized MycopEasma and AchoZepZasma spp. Six mycoplasma colonies were cloned and examined in detail for morphology, growth, and biochemical characteristics; five of these were from sperm samples and one was from a cervix. These strains were closely related and had the following properties: guanine-plus-cytosine content of 32 mol%, requirement for sterol, and anaerobic growth. Glucose was not metabolized, and arginine and urea were not hydrolyzed. Strain AH159 (= NCTC 11720) is the type strain of a new species, Mycoplasma spermatophilum. Twelve named Mycoplasma and Acholeplasma species colony isolated from each patient was cloned to produce a have been isolated from the respiratory or genital tracts of pure culture; this was done by initially filtering a broth humans (6). Mycoplasma buccale, Mycoplasma faucium, culture through a 220-nm-pore-size membrane filter, cultur- Mycoplasma lipophilum , Mycoplasma orale, Mycoplasma ing the filtrate on solid medium, transferring a single result- pneumoniae, and Mycoplasma salivarium are found almost ing colony to another agar plate, and inoculating the subse- exclusively in respiratory tracts. Mycoplasma fermentans quent growth into broth. This whole procedure was repeated has been found infrequently in urogenital tracts, while My- an additional four times; thus, the organisms were filter coplasma primatum, a species commonly present in nonhu- cloned five times (29).
    [Show full text]
  • Microbial Signatures of Oral Dysbiosis, Periodontitis and Edentulism 2 Revealed by Gene Meter Methodology 3 4 M
    bioRxiv preprint doi: https://doi.org/10.1101/070367; this version posted August 19, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Microbial Signatures of Oral Dysbiosis, Periodontitis and Edentulism 2 Revealed by Gene Meter Methodology 3 4 M. Colby Hunter1, Alex E. Pozhitkov2, and Peter A. Noble#3 5 6 *Corresponding author, Peter A Noble, Email: [email protected] 7 8 Authors’ affiliations: 9 10 1. Program in Microbiology, Alabama State University, Montgomery, AL 36101 11 2. Department of Oral Health, University of Washington, Box 3574444, Seattle, Washington 12 98195-7444 Ph: 206-409-6664 13 3. Department of Periodontics, University of Washington, Box 3574444, Seattle, Washington 14 98195-7444 Ph: 206-409-6664 15 16 Authors’ emails: 17 18 Hunter: [email protected] 19 Pozhitkov: [email protected] 20 Noble: [email protected] 21 22 bioRxiv preprint doi: https://doi.org/10.1101/070367; this version posted August 19, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 ABSTRACT (N=305 WORDS) 24 25 Conceptual models suggest certain microorganisms (e.g., the red complex) are indicative of a specific 26 disease state (e.g., periodontitis); however, recent studies have questioned the validity of these models. 27 Here, the abundances of 500+ microbial species were determined in 16 patients with clinical signs of 28 one of the following oral conditions: periodontitis, established caries, edentulism, and oral health.
    [Show full text]
  • Moving Beyond Serovars
    ABSTRACT Title of Document: MOLECULAR AND BIOINFORMATICS APPROACHES TO REDEFINE OUR UNDERSTANDING OF UREAPLASMAS: MOVING BEYOND SEROVARS Vanya Paralanov, Doctor of Philosophy, 2014 Directed By: Prof. Jonathan Dinman, Cell Biology and Molecular Genetics, University of Maryland College Park Prof. John I. Glass, Synthetic Biology, J. Craig Venter Institute Ureaplasma parvum and Ureaplasma urealyticum are sexually transmitted, opportunistic pathogens of the human urogenital tract. There are 14 known serovars of the two species. For decades, it has been postulated that virulence is related to serotype specificity. Understanding of the role of ureaplasmas in human diseases has been thwarted due to two major barriers: (1) lack of suitable diagnostic tests and (2) lack of genetic manipulation tools for the creation of mutants to study the role of potential pathogenicity factors. To address the first barrier we developed real-time quantitative PCRs (RT-qPCR) for the reliable differentiation of the two species and 14 serovars. We typed 1,061 ureaplasma clinical isolates and observed about 40% of isolates to be genetic mosaics, arising from the recombination of multiple serovars. Furthermore, comparative genome analysis of the 14 serovars and 5 clinical isolates showed that the mba gene, used for serotyping ureaplasmas was part of a large, phase variable gene system, and some serovars shown to express different MBA proteins also encode mba genes associated with other serovars. Together these data suggests that differential pathogenicity and clinical outcome of an ureaplasmal infection is most likely due to the presence or absence of potential pathogenicity factors in individual ureaplasma clinical isolates and/or patient to patient differences in terms of autoimmunity and microbiome.
    [Show full text]
  • Genital Mycoplasmal Infections: Their Relation to Prematurity and Other Abnormalities of Reproduction
    J Clin Pathol: first published as 10.1136/jcp.s3-10.1.95 on 1 January 1976. Downloaded from J. clin. Path., 29, Suppl. (Roy. Coll. Path.), 10, 95-98 Infections Genital mycoplasmal infections: their relation to prematurity and other abnormalities of reproduction WILLIAM M. McCORMACK' From the Channing Laboratory, Departments of Medical Microbiology and Medicine, Boston City Hospital, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts Mycoplasmas are a distinct group of microorganisms Respiratory Genital differing in important biological characteristics from Mycoplasma pneumoniae Mycoplasma hominis bacteria, viruses, fungi, protozoa and chlamydia Mycoplasma salivarium Mycoplasmafermentans (McCormack et al, 1973a).There are eight recognized Mycoplasma orale Ureaplasma urealyticum species of mycoplasmas which have been isolated Mycoplasma buccale from man (table I). Mycoplasma pneumoniae, the Mycoplasmafaucium Eaton agent, causes cold agglutinin-positive primary Table I Human mycoplasmal species atypical pneumonia. M. salivarium, M. orale, M. buccale, and M. faucium are oropharyngeal com- mensals and have not as yet been convincingly implicated in any disease process (Freundt et al, genitalia and upper respiratory tract of about 30 % of copyright. 1974). M. fermentans is an unusual genital isolate newborn infants. These organisms are primarily which also appears to be a commensal. M. hominis acquired during passage through the birth canal; and Ureaplasma urealyticum, also known as the infants who are delivered by caesarian section are T-mycoplasmas or T-strains, are common genital colonized less often than those who are delivered organisms (Shepard et al, 1974). Although M. vaginally (Klein et al, 1969). Colonization does not hominis and U. urealyticum have been implicated in persist throughout childhood.
    [Show full text]
  • New Concepts of Mycoplasma Pneumoniae Infections in Children
    Pediatric Pulmonology 36:267–278 (2003) New Concepts of Mycoplasma pneumoniae Infections in Children Ken B. Waites, MD* INTRODUCTION trilayered cell membrane and do not possess a cell wall. The permanent lack of a cell-wall barrier makes the The year 2002 marked the fortieth anniversary of the mycoplasmas unique among prokaryotes, renders them first published report describing the isolation and char- insensitive to the activity of beta-lactam antimicrobials, acterization of Mycoplasma pneumoniae as the etiologic prevents them from staining by Gram stain, makes them agent of primary atypical pneumonia by Chanock et al.1 very susceptible to drying, and influences their pleo- Lack of understanding regarding the basic biology of morphic appearance. The extremely small genome and mycoplasmas and the inability to readily detect them in limited biosynthetic capabilities explain their parasitic or persons with respiratory disease has led to many mis- saprophytic existence and fastidious growth requirements. understandings about their role as human pathogens. Attachment of MP to host cells in the respiratory tract Formerly, infections by Mycoplasma pneumoniae (MP) following inhalation of infectious organisms is a pre- were considered to occur mainly in children, adolescents, requisite for colonization and infection.2 Cytadherence, and young adults, and to be infrequent, confined to the mediated by the P1 adhesin protein and other accessory respiratory tract, and largely self-limiting. Outcome data proteins, protects the mycoplasma from removal by the from children and adults with community-acquired pne- mucociliary clearance mechanism. Cytadherence is fol- umonias (CAP) proven to be due to MP provided evidence lowed by induction of ciliostasis, exfoliation of the that it is time to change these misconceived notions.
    [Show full text]
  • Mycoplasma 16S Ribosomal RNA Gene
    Techne ® qPCR test Mycoplasma 16S ribosomal RNA gene 150 tests For general laboratory and research use only Quantification of Mycoplasma genomes. 1 Advanced kit handbook HB10.03.07 Introduction to Mycoplasma Mycoplasmas are a genus of Gram negative, aerobic, pathogenic bacteria that have been isolated from many animal species. They are members of the class Mollicutes, which contains approximately 200 known species. They are unique among prokaryotes in that they lack a cell wall and are not susceptible to many commonly prescribed antibiotics, including beta-lactams. The small genome size of Mycoplasma organisms are associated with reduced metabolic pathways such that they rely heavily on the nutrients afforded by the host environment. N.B. genesig® has kits to detect specific types of mycoplasma and the handbooks for these kits contain further details specific to that individual pathogen. Quantification of Mycoplasma genomes. 2 Advanced kit handbook HB10.03.07 Specificity MAX MIN The Techne qPCR Kit for Mycoplasma (Mycoplasma) genomes is designed for the in vitro quantification of Mycoplasma genomes. The kit is designed to have the broadest detection profile possible whilst remaining specific to the Mycoplasma genome. The primers and probe sequences in this kit have 100% homology with a broad range of Mycoplasma sequences based on a comprehensive bioinformatics analysis. Among others, the kit will detect the following species of Mycoplasma: Mycoplasma agassizii, Mycoplasma anatis, Mycoplasma anseris, Mycoplasma arginine,Mycoplasma arthritidis,
    [Show full text]
  • Isothermal Detection of Mycoplasma Pneumoniae Directly from Respiratory Clinical Specimens
    Isothermal Detection of Mycoplasma pneumoniae Directly from Respiratory Clinical Specimens Brianna L. Petrone, Bernard J. Wolff, Alexandra A. DeLaney,* Maureen H. Diaz, Jonas M. Winchell Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA Mycoplasma pneumoniae is a leading cause of community-acquired pneumonia (CAP) across patient populations of all ages. We have developed a loop-mediated isothermal amplification (LAMP) assay that enables rapid, low-cost detection of M. pneu- Downloaded from moniae from nucleic acid extracts and directly from various respiratory specimen types. The assay implements calcein to facili- tate simple visual readout of positive results in approximately 1 h, making it ideal for use in primary care facilities and resource- poor settings. The analytical sensitivity of the assay was determined to be 100 fg by testing serial dilutions of target DNA ranging from 1 ng to 1 fg per reaction, and no cross-reactivity was observed against 17 other Mycoplasma species, 27 common respiratory -and unextracted re (252 ؍ agents, or human DNA. We demonstrated the utility of this assay by testing nucleic acid extracts (n collected during M. pneumoniae outbreaks and sporadic cases occurring in the United States from (72 ؍ spiratory specimens (n February 2010 to January 2014. The sensitivity of the LAMP assay was 88.5% tested on extracted nucleic acid and 82.1% evalu- ated on unextracted clinical specimens compared to a validated real-time PCR test. Further optimization and improvements to http://jcm.asm.org/ this method may lead to the availability of a rapid, cost-efficient laboratory test for M.
    [Show full text]
  • Mycoplasma Genesig Advanced
    Primerdesign TM Ltd Mycoplasma 16S ribosomal RNA gene genesig® Advanced Kit 150 tests For general laboratory and research use only Quantification of Mycoplasma genomes. 1 genesig Advanced kit handbook HB10.03.11 Published Date: 09/11/2018 Introduction to Mycoplasma Mycoplasmas are a genus of Gram negative, aerobic, pathogenic bacteria that have been isolated from many animal species. They are members of the class Mollicutes, which contains approximately 200 known species. They are unique among prokaryotes in that they lack a cell wall and are not susceptible to many commonly prescribed antibiotics, including beta-lactams. The small genome size of Mycoplasma organisms are associated with reduced metabolic pathways such that they rely heavily on the nutrients afforded by the host environment. N.B. genesig® has kits to detect specific types of mycoplasma and the handbooks for these kits contain further details specific to that individual pathogen. Quantification of Mycoplasma genomes. 2 genesig Advanced kit handbook HB10.03.11 Published Date: 09/11/2018 Specificity MAX MIN The Primerdesign genesig Kit for Mycoplasma (Mycoplasma) genomes is designed for the in vitro quantification of Mycoplasma genomes. The kit is designed to have a broad detection profile. Specifically, the primers represent 100% homology with over 95% of the NCBI database reference sequences available at the time of design. The dynamics of genetic variation means that new sequence information may become available after the initial design. Primerdesign periodically reviews
    [Show full text]
  • Mycoplasma Genesig Standard
    Primerdesign TM Ltd Mycoplasma 16S ribosomal RNA gene genesig® Standard Kit 150 tests For general laboratory and research use only Quantification of Mycoplasma genomes. 1 genesig Standard kit handbook HB10.04.10 Published Date: 09/11/2018 Introduction to Mycoplasma Mycoplasmas are a genus of Gram negative, aerobic, pathogenic bacteria that have been isolated from many animal species. They are members of the class Mollicutes, which contains approximately 200 known species. They are unique among prokaryotes in that they lack a cell wall and are not susceptible to many commonly prescribed antibiotics, including beta-lactams. The small genome size of Mycoplasma organisms are associated with reduced metabolic pathways such that they rely heavily on the nutrients afforded by the host environment. N.B. genesig® has kits to detect specific types of mycoplasma and the handbooks for these kits contain further details specific to that individual pathogen. Quantification of Mycoplasma genomes. 2 genesig Standard kit handbook HB10.04.10 Published Date: 09/11/2018 Specificity MAX MIN The Primerdesign genesig Kit for Mycoplasma (Mycoplasma) genomes is designed for the in vitro quantification of Mycoplasma genomes. The kit is designed to have a broad detection profile. Specifically, the primers represent 100% homology with over 95% of the NCBI database reference sequences available at the time of design. The dynamics of genetic variation means that new sequence information may become available after the initial design. Primerdesign periodically reviews
    [Show full text]
  • Phylogenetic Position of Rare Human Mycoplasmas, Mycoplasma Faucium, Mm Buccale, Mmprimatum and M
    lnternational Journal of Systematic Bacteriology (1 998), 48, 305-309 Printed in Great Britain Phylogenetic position of rare human mycoplasmas, Mycoplasma faucium, Mm buccale, Mmprimatum and M. spermatophilum, based on 16s rRNA gene sequences G eorg es Raw ad if An nic k Du j ea nco urt- H e nry, B rigi tte Le merc ie r and Daisy Roulland-Dussoix Author for correspondence: Georges Rawadi. Tel: +33 1 45 68 87 39. Fax: +33 1 40 61 33 56. e-mail : rawadi21 @pasteur.fr lnstitut Pasteur, The nucleotide sequence of the 16s rRNA genes of four rare human Departement de mycoplasma species, Mycoplasma faucium, M. buccale, M. primatum and M. Bactkriologie et de Mycologie, La boratoi re des spermatophilum, were partially sequenced and compared to pub1ished rRNA Mycoplasmes, 25 Rue genes of mycoplasmas to determine their position in the Mollicutes Docteur Roux, 75724 Paris phylogenetic tree. Nucleotide sequence motif and overall similarities allowed Cedex 15, France positioning of these mycoplasmas in the hominis phylogenetic group, as defined by Weisburg eta/. [Weisburg, W. G., Tully, J. G., Rose, D. L. & 9 other authors (1989). J Bacteriol 171, 6455-64671. Furthermore, these mycoplasmas could be clustered into two different subdivisions of the hominis group: (i) M. faucium and M. buccale were found to be included in the M. fermentans subdivision, and (ii) M. primatum and M. spermatophilum were included in the M. hominis one. Variable regions of the 16s rRNA genes were used to determine specific PCR primers to detect and identify M. faucium. Keywords: mycoplasmas, 16s rRNA Mycoplasmas are the smallest micro-organisms able to these rare species should be clarified by further replicate in acellular media.
    [Show full text]
  • Mycoplasma Ellychniae Sp. Nov., a Sterol-Requiring Mollicute from the Firefly Beetle Ellychnia Comma JOSEPH G
    INTERNATIONAL JOURNAL OF SYSTEMATICBACTERIOLOGY, July 1989, p. 284-289 Vol. 39, No. 3 0020-7713/89/030284-06$02.00/0 Copyright 0 1989, International Union of Microbiological Societies Mycoplasma ellychniae sp. nov., a Sterol-Requiring Mollicute from the Firefly Beetle Ellychnia comma JOSEPH G. TULLY,l* DAVID L. ROSE,l KEVIN J. HACKETT,2 ROBERT F. WHITCOMB,2 PATRICIA CARLE,' JOSEPH M. BOVE,3 DAVID E. COLFLESH,4 AND DAVID L. WILLIAMSON' Mycoplasma Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Injectious Diseases, Frederick Cancer Research Facility, Frederick, Maryland 21 701 I; Insect Pathology Laboratory, United States Department of Agriculture, Beltsville, Maryland 2070j2; Laboratoire de Biologie Cellulaire et Mole'culaire, Institut Nationale de Recherche Agronomique, Pont-de-la-Maye, France3; and Department of Anatomical Sciences, State University of New York, Stony Brook, New York 1179# Strain ELCN-lT (T = type strain), which was isolated from the hemolymph of the firefly beetle Ellychniu corrusca (Co1eoptera:Lampyridae) in Maryland, was shown to be a sterol-requiring mollicute. Electron and dark-field microscopy showed that the organism consisted of small, nonhelical, nonmotile, pleomorphic coccoid cells. Individual cells were surrounded by a single cytoplasmic membrane, but no evidence of a cell wall was observed. The organism grew well in SP-4 broth medium containing fetal bovine serum, but failed to grow in formulations containing horse serum or bovine serum fraction supplements. Growth on solid media occurred only when agar cultures were incubated aerobically or in an atmosphere containing 5% carbon dioxide. Strain ELCN-lTcatabolized glucose but did not hydrolyze arginine or urea.
    [Show full text]
  • Alloiococcus Otitidis Is Present in Ear Discharge from Indigenous Children with Acute Otitis Media, Potentially As a Secondary Middle Ear Pathogen
    Culture-independent analysis of the bacteriology associated with acute otitis media in Indigenous Australian children. Robyn Marsh BAppSc (MLS), MSc Thesis submitted for the degree of Doctor of Philosophy December 2011 Child Health Division Menzies School of Health Research Charles Darwin University Darwin, Australia ii Declaration I hereby declare that the work herein, now submitted as a thesis for the degree of Doctor of Philosophy of the Charles Darwin University, is the result of my own investigations, and all references to the ideas and work of other researchers have been specifically acknowledged. I hereby certify that the work embodied in this thesis has not already been accepted in substance for any degree, and is not being currently submitted in candidature for any other degree. Robyn Marsh December 2011 iii Abstract Otitis media is endemic in many remote Indigenous Australian communities. Children in remote communities develop otitis media in the first weeks of life and are at high-risk of progression to chronic suppurative otitis media (CSOM). Current therapeutic and preventive interventions are of limited benefit. This thesis presents a culture-independent analysis of the bacteriology associated with acute otitis media in Indigenous children from the Northern Territory. The objective of the study was to use culture-independent methods to better understand the bacteriology underlying acute otitis media in this population. Principle findings from the study are as follows: 1. Nasopharyngeal total or pathogenic bacterial loads are unsuitable as prognostic indicators of clinical antibiotic treatment outcomes in Indigenous children with acute otitis media. 2. Alloiococcus otitidis is present in ear discharge from Indigenous children with acute otitis media, potentially as a secondary middle ear pathogen.
    [Show full text]