New Concepts of Mycoplasma Pneumoniae Infections in Children

Total Page:16

File Type:pdf, Size:1020Kb

New Concepts of Mycoplasma Pneumoniae Infections in Children Pediatric Pulmonology 36:267–278 (2003) New Concepts of Mycoplasma pneumoniae Infections in Children Ken B. Waites, MD* INTRODUCTION trilayered cell membrane and do not possess a cell wall. The permanent lack of a cell-wall barrier makes the The year 2002 marked the fortieth anniversary of the mycoplasmas unique among prokaryotes, renders them first published report describing the isolation and char- insensitive to the activity of beta-lactam antimicrobials, acterization of Mycoplasma pneumoniae as the etiologic prevents them from staining by Gram stain, makes them agent of primary atypical pneumonia by Chanock et al.1 very susceptible to drying, and influences their pleo- Lack of understanding regarding the basic biology of morphic appearance. The extremely small genome and mycoplasmas and the inability to readily detect them in limited biosynthetic capabilities explain their parasitic or persons with respiratory disease has led to many mis- saprophytic existence and fastidious growth requirements. understandings about their role as human pathogens. Attachment of MP to host cells in the respiratory tract Formerly, infections by Mycoplasma pneumoniae (MP) following inhalation of infectious organisms is a pre- were considered to occur mainly in children, adolescents, requisite for colonization and infection.2 Cytadherence, and young adults, and to be infrequent, confined to the mediated by the P1 adhesin protein and other accessory respiratory tract, and largely self-limiting. Outcome data proteins, protects the mycoplasma from removal by the from children and adults with community-acquired pne- mucociliary clearance mechanism. Cytadherence is fol- umonias (CAP) proven to be due to MP provided evidence lowed by induction of ciliostasis, exfoliation of the that it is time to change these misconceived notions. infected cells, chronic inflammation, and cytotoxicity me- Development of powerful molecular-based tests such as diated by hydrogen peroxide and other reactive molecules, the polymerase chain reaction (PCR) assay, coupled with leading to oxidative stress.2 Talkington et al.3 and Balish traditional diagnostic approaches using serology and and Krause4 discussed current concepts regarding the culture, have shed new light on the characteristics of pathogenesis of MP infection at greater length in recent MP in respiratory disease of children and adults. This reviews. review is intended to provide a concise summary of the Following opsonization of MP by complement or anti- basic biology of MP, how it produces disease, its epide- body, macrophages become activated and release cyto- miology, clinical manifestations, diagnosis, and treat- kines, and a mononuclear cell inflammatory response ment, with emphasis on pediatric infections. develops. CD4þ T cells, B cells, and plasma cells infiltrate the lung, followed by proliferation of lymphocytes, BIOLOGY AND PATHOGENESIS OF production of antibody, and further release of cytokines MYCOPLASMA PNEUMONIAE INFECTION such as TNF-a, IL-1, IL-5, and IL-6.5 Cytokine production Currently, there are 16 known Mycoplasma species and lymphocyte activation may either minimize disease isolated from humans, excluding occasional animal through the enhancement of host defense mechanisms or mycoplasmas that have been detected from time to time, usually in immunosuppressed hosts (Table 1), but are Department of Pathology, University of Alabama at Birmingham, generally considered transient colonizers. Among these, Birmingham, Alabama. MP is the organism best known as a human pathogen. However, oral commensal mycoplasmas that have only This paper was presented at the Fifth International Congress of Pediatric rarely been associated with disease may occasionally Pulmonology (Nice, France), February 2002. spread to the lower respiratory tract and can cause diag- *Correspondence to: Ken B. Waites, M.D., Department of Pathology, nostic confusion. University of Alabama at Birmingham, P230 West Pavilion, Birmingham, Mycoplasmas are smaller than conventional bacteria, AL 35233. E-mail: [email protected] both in cellular dimensions as well as genome size, making them the smallest free-living, self-replicating Received 24 February 2003; Accepted 17 April 2003. organisms known. Cells of MP are 1–2 mm in length and DOI 10.1002/ppul.10346 0.1–0.2 mm in width. The organisms are contained by a Published online in Wiley InterScience (www.interscience.wiley.com). ß 2003 Wiley-Liss, Inc. 268 Waites TABLE 1— Mycoplasmas Isolated From Humans1 and replicates within alveolar macrophages during natu- rally occurring infections is not known with certainty, Primary body site of origin intracellular localization may be responsible for protect- Respiratory Genitourinary Role in ing the organism from antibodies and antibiotics, as well Organism tract tract disease2 as contributing to disease chronicity and difficulty in cultivation. High-frequency phase and antigenic variation Acholeplasma laidlawii þNo Mycoplasma buccale þNo of surface adhesin proteins may also be a factor in the Mycoplasma faucium þNo ability of the organism to produce prolonged infection and Mycoplasma fermentans þYes a carrier state in otherwise healthy persons.3 Mycoplasma hominis þYes Mycoplasma genitalium þYes Mycoplasma lipophilum þNo EPIDEMIOLOGY OF M. PNEUMONIAE Mycoplasma orale þNo INFECTIONS Mycoplasma pirum ??No Mycoplasma penetrans þ? MP causes up to 40% or more of CAP in children and Mycoplasma primatum þþNo as many as 18% of cases requiring hospitalization.3,17–29 M. salivarium þNo The incidence of MP pneumonia is greatest among school- M. pneumoniae þYes 20,21 M. spermatophilum þNo age children and declines after adolescence. However, U. urealyticum þYes MP may occur endemically and occasionally epidemically U. parvum þYes in older persons, as well as in children under 5 years of age.21–29 Detection of the organism in 23% of CAPs in 1Listing excludes occasional isolates and those mycoplsma species children 3–4 years of age in a study in the United States known to be primarily of animal origin that have been recovered from 21 humans in isolated instances, usually in association with immunocom- performed in the mid-1990s, and documentation of its promise. frequent occurrence in children under 4 years of age in a 2In immunocompetent persons. study performed in France28 that was unable to show a difference in infection rates between very young exacerbate disease through immunologic lesion devel- children vs. children in other age groups and adults, may opment.6 Examination of histopathologic specimens from reflect the greater number of young children who attend fatal cases that occurred primarily in adults and from daycare centers on a regular basis than in previous years, animal models showed edema of the airway walls, and and the ease with which young children share respiratory peribronchial mononuclear infiltrates with luminal ex- secretions. Children may also represent an asymptomatic udates consisting of mononuclear, polymorphonuclear, reservoir of infection for outbreaks in families.29 Although and sloughed epithelial cells.3 Pleural effusions and MP is generally not considered a neonatal pathogen, Ursi diffuse alveolar damage with long-term sequelae such as et al.30 described probable transplacental transmission of scarring, bronchiectasis, and pulmonary fibrosis some- MP, documented by PCR, in the nasopharyngeal aspirate times occur in association with more severe cases of MP in a neonate with congenital pneumonia. pneumonia.5,7–10 Whereas pneumonia may be the most severe aspect of Autoimmune reactions with MP infections occur as a MP infection, the most typical syndrome in children is result of amino-acid sequence homology of mycoplasmal tracheobronchitis, often accompanied by upper respira- adhesins and a variety of human tissues, the I antigen on tory tract manifestations. The organism may persist in the erythrocytes, and human CD4 and class II major histo- respiratory tract for several months after initial infection, compatibility complex lymphocyte antigens, and through possibly because the organism attaches strongly to and development of immune complexes. Mycoplasmas may invades epithelial cells, and a prolonged asymptomatic also serve as B-cell and T-cell mitogens and induce carrier state may occur in some children.27,29 MP infection autoimmune disease through the activation of antiself is ordinarily mild and as many cases may be asympto- T cells or polyclonal B cells.7 Although autoimmunity matic, particularly in adults who experienced infections plays an important role in the pathogenesis of extra- with MP previously. Reinfection may occur throughout pulmonary manifestations of MP disease, dissemination life, since protective immunity does not typically follow and direct invasion were proved by detection of the orga- initial infection. Foy et al.31 reported that subsequent nism by culture and/or the PCR assay in a wide array of infections were more common following initial mild body sites, including the bloodstream, cerebrospinal fluid, infections as opposed to infections in which pneumonia brain tissue, pericardial fluid, and synovial fluid.3,11–16 developed. Deaths due to MP infection, usually in other- Intracellular localization is now appreciated for MP wise healthy adults and children, have been reported.9,32–34 and is thought to be mediated by fusion of organisms Historically, endemic MP disease transmission has been with host cells through their cholesterol-containing unit punctuated with cyclic epidemics every 4–5 years, with membranes.16
Recommended publications
  • Antimicrobial Resistance and Disinfectants Susceptibility of Persistent Bacteria in a Tertiary Care Hospital
    Journal of Microbiology and Antimicrobials Vol. 2(7), pp. xx-xx, October 2010 Available online http://www.academicjournals.org/JMA ISSN 2141-2308 ©2010 Academic Journals Full Length Research Paper Antimicrobial resistance and disinfectants susceptibility of persistent bacteria in a tertiary care hospital Maria Lucia Morcerf Bouzada1, Vania Lucia Silva1, Felipe Augusto Sa Moreira1, Girlene Alves Silva2 and Claudio Galuppo Diniz1* 1Department of Parasitology, Microbiology and Immunology, Laboratory of Bacterial Physiology and Molecular Genetics, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora/MG,36036-900, Brazil. 2Department of Applied Nursing, School of Nursing, Federal University of Juiz de Fora, Juiz de Fora/MG, 36036-900, Brazil. Accepted 22 October, 2010 It is well known that putative pathogenic bacteria are ubiquitous and widely distributed in the hospital environment. This study aimed to detect bacterial persistence in the nosocomial environment (different critical areas of the hospital) after mopping by the cleaning staff. Susceptibility patterns to antimicrobial drugs and disinfectants commonly used in health services were also investigated by disk diffusion and agar dilution tests. Rinse water from mops was processed for isolation of Enterobacteriaceae (GNR), non-fermenting Gram-negative rods (NFGNR), coagulase-negative staphylococci (CNS) and enterococci (ENT). Microorganisms were biochemically characterized and 547 strains were recovered. Only CNS and NFGNR were isolated in all critical areas. Overall 67% of the isolated bacteria were resistant to more than three drugs, being considered as multiresistant. Disinfectants were effective in concentrations ranging from 0.125 to 1%. Hospitals provide reservoirs of multiresistant microorganisms borne by patients and staff, but the hospital environment may be an important repository.
    [Show full text]
  • Identification of Genes Involved in Acid Tolerance, Antimicrobial Resistance and Virulence of Enterococcus Faecium
    Identification of genes involved in acid tolerance, antimicrobial resistance and virulence of Enterococcus faecium Thesis submitted by Hashimatul Fatma binti Hashim For the degree of DOCTOR OF PHILOSOPHY in the Faculty of Medical Sciences University College London Division of Microbial Diseases UCL Eastman Dental Institute 256 Gray’s Inn Road London WC1X 8LD UK 2016 Declaration I hereby certify that the work embodied in this thesis is the result of my own investigation, except where otherwise stated. 2 Abstract Enterococcus faecium is an opportunistic human nosocomial pathogen that has developed resistance to many existing antimicrobial therapies. Treatment of enterococcal infections is becoming increasingly challenging and there are limited therapeutic options against multidrug-resistant enterococci. The work described in this thesis aimed to identify genes involved in resistance to host stresses and virulence as these could potentially be future therapeutic targets. An E. faecium transposon mutant library was screened for altered resistance to lysozyme and to nisin as a model antimicrobial peptide. This approach led to the identification of several genes that contribute to lysozyme and nisin resistance. A number of mutants that were sensitive to nisin had a transposon insertion in a gene predicted to encode a tyrosine decarboxylase. It was shown that the tyrosine decarboxylase plays a role in acid tolerance and mediates virulence of E. faecium in a Galleria mellonella larvae infection model. A targeted genetic approach was used to examine the role of an E. faecium serine threonine protein kinase (Stk1) in antimicrobials resistance, host cell stresses and virulence. Disruption of the stk1 gene led to higher sensitivity to antibiotics that target the penicillin- binding proteins and bile salts compared to the wild type.
    [Show full text]
  • Clinical Review Nicholas Rister, MD NDA 021572 Cubicin (Daptomycin for Injection)
    Clinical Review Nicholas Rister, MD NDA 021572 Cubicin (Daptomycin for injection) CLINICAL REVIEW Application Type NDA supplement Application Number(s) 21572 Priority or Standard Priority Submit Date(s) March 1, 2017 Received Date(s) March 2, 2017 PDUFA Goal Date September 2, 2017 Division / Office DAIP/OAP Reviewer Name(s) Nicholas Rister, MD Review Completion Date August 4, 2017 Established Name Daptomycin (Proposed) Trade Name Cubicin Therapeutic Class Cyclic Lipopeptide Applicant Cubist Pharmaceuticals Formulation(s) Injection Dosing Regimen 7 mg/kg (12-17 years), 9 mg/kg (7-11 years), and 12 mg/kg (1-6 years) Indication(s) Bacteremia caused by Staphylococcus aureus Intended Population(s) Ages 1-17 years 1 Reference ID: 4142515 Clinical Review Nicholas Rister, MD NDA 021572 Cubicin (Daptomycin for injection) Table of Contents 1 RECOMMENDATIONS/RISK BENEFIT ASSESSMENT ......................................... 7 1.1 Recommendation on Regulatory Action ............................................................. 7 1.2 Risk Benefit Assessment .................................................................................... 7 1.3 Recommendations for Postmarket Risk Evaluation and Mitigation Strategies ... 8 1.4 Recommendations for Postmarket Requirements and Commitments ................ 8 2 INTRODUCTION AND REGULATORY BACKGROUND ........................................ 8 2.1 Product Information ............................................................................................ 8 2.2 Tables of Currently Available Treatments
    [Show full text]
  • Calves Infected with Virulent and Attenuated Mycoplasma Bovis Strains Have Upregulated Th17 Inflammatory and Th1 Protective Responses, Respectively
    G C A T T A C G G C A T genes Article Calves Infected with Virulent and Attenuated Mycoplasma bovis Strains Have Upregulated Th17 Inflammatory and Th1 Protective Responses, Respectively Jin Chao 1,2,3,4, Xiaoxiao Han 1,2, Kai Liu 1,2, Qingni Li 1,2, Qingjie Peng 5, Siyi Lu 1,2, Gang Zhao 1,2, Xifang Zhu 1,2, Guyue Hu 1,2, Yaqi Dong 1,2, Changmin Hu 2, Yingyu Chen 1,2, Jianguo Chen 2, Farhan Anwar Khan 1, Huanchun Chen 1,2,3,4 and Aizhen Guo 1,2,3,4,* 1 The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China 2 College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China 3 Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China 4 Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China 5 Wuhan Keqian Biology Ltd., Wuhan 430223, China * Correspondence: [email protected]; Tel.: +86-27-8728-6861 Received: 15 June 2019; Accepted: 27 August 2019; Published: 28 August 2019 Abstract: Mycoplasma bovis is a critical bovine pathogen, but its pathogenesis remains poorly understood. Here, the virulent HB0801 (P1) and attenuated HB0801-P150 (P150) strains of M. bovis were used to explore the potential pathogenesis and effect of induced immunity from calves’ differential transcriptomes post infection. Nine one-month-old male calves were infected with P1, P150, or mock-infected with medium and euthanized at 60 days post-infection.
    [Show full text]
  • Role of Protein Phosphorylation in Mycoplasma Pneumoniae
    Pathogenicity of a minimal organism: Role of protein phosphorylation in Mycoplasma pneumoniae Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen vorgelegt von Sebastian Schmidl aus Bad Hersfeld Göttingen 2010 Mitglieder des Betreuungsausschusses: Referent: Prof. Dr. Jörg Stülke Koreferent: PD Dr. Michael Hoppert Tag der mündlichen Prüfung: 02.11.2010 “Everything should be made as simple as possible, but not simpler.” (Albert Einstein) Danksagung Zunächst möchte ich mich bei Prof. Dr. Jörg Stülke für die Ermöglichung dieser Doktorarbeit bedanken. Nicht zuletzt durch seine freundliche und engagierte Betreuung hat mir die Zeit viel Freude bereitet. Des Weiteren hat er mir alle Freiheiten zur Verwirklichung meiner eigenen Ideen gelassen, was ich sehr zu schätzen weiß. Für die Übernahme des Korreferates danke ich PD Dr. Michael Hoppert sowie Prof. Dr. Heinz Neumann, PD Dr. Boris Görke, PD Dr. Rolf Daniel und Prof. Dr. Botho Bowien für das Mitwirken im Thesis-Komitee. Der Studienstiftung des deutschen Volkes gilt ein besonderer Dank für die finanzielle Unterstützung dieser Arbeit, durch die es mir unter anderem auch möglich war, an Tagungen in fernen Ländern teilzunehmen. Prof. Dr. Michael Hecker und der Gruppe von Dr. Dörte Becher (Universität Greifswald) danke ich für die freundliche Zusammenarbeit bei der Durchführung von zahlreichen Proteomics-Experimenten. Ein ganz besonderer Dank geht dabei an Katrin Gronau, die mich in die Feinheiten der 2D-Gelelektrophorese eingeführt hat. Außerdem möchte ich mich bei Andreas Otto für die zahlreichen Proteinidentifikationen in den letzten Monaten bedanken. Nicht zu vergessen ist auch meine zweite Außenstelle an der Universität in Barcelona. Dr. Maria Lluch-Senar und Dr.
    [Show full text]
  • Mycoplasma Agalactiae MEMBRANE PROTEOME
    UNIVERSITÀ DEGLI STUDI DI SASSARI SCUOLA DI DOTTORATO IN SCIENZE BIOMOLECOLARI E BIOTECNOLOGICHE INDIRIZZO MICROBIOLOGIA MOLECOLARE E CLINICA XXIII Ciclo CHARACTERIZATION OF Mycoplasma agalactiae MEMBRANE PROTEOME Direttore: Prof. Bruno Masala Tutor: Dr. Alberto Alberti Tesi di dottorato della Dott.ssa Carla Cacciotto ANNO ACCADEMICO 2009-2010 TABLE OF CONTENTS 1. Abstract 2. Introduction 2.1 Mycoplasmas: taxonomy and main biological features 2.2 Metabolism 2.3 In vitro cultivation 2.4 Mycoplasma lipoproteins 2.5 Invasivity and pathogenicity 2.6 Diagnosis of mycoplasmosis 2.7 Mycoplasma agalactiae and Contagious Agalactia 3. Research objectives 4. Materials and methods 4.1 Media and buffers 4.2 Bacterial strains and culture conditions 4.3 Total DNA extraction and PCR 4.4 Total proteins extraction 4.5 Triton X-114 fractionation 4.6 SDS-PAGE 4.7 Western immunoblotting 4.8 2-D PAGE 4.9 2D DIGE 4.10 Spot picking and in situ tryptic digestion 4.11 GeLC-MS/MS 4.12 MALDI-MS 4.13 LC-MS/MS 4.14 Data analysis Dott.ssa Carla Cacciotto, Characterization of Mycoplasma agalactiae membrane proteome. Tesi di Dottorato in Scienze Biomolecolari e Biotecnologiche, Università degli Studi di Sassari. 5. Results 5.1 Species identification 5.2 Extraction of bacterial proteins and isolation of liposoluble proteins 5.3 2-D PAGE/MS of M. agalactiae PG2T liposoluble proteins 5.4 2D DIGE of liposoluble proteins among the type strain and two field isolates of M. agalactiae 5.5 GeLC-MS/MS of M. agalactiae PG2T liposoluble proteins 5.6 Data analysis and classification 6. Discussion 7.
    [Show full text]
  • Mycoplasma Orale “Types” 2 and 3, Respectively E
    INTERNATIONAL JOURNAL of SYSTEMATIC BACTERIOLOGY Vol. 24, No. 2 April 1974, p. 252-255 Printed in U.S.A. Copyright 0 1974 International Association of Microbiological Societies Proposal of Mycoplasma buccale nom. nov. and Mycoplasmafaucium nom. nov. for Mycoplasma orale “Types” 2 and 3, Respectively E. A. FREUNDT, D. TAYLOR-ROBINSON, R. H. PURCELL, R. M. CHANOCK, and F. T. BLACK Institute of Medical Microbiology, University of Aarhus, Aarhus, Denmark; MRC Clinical Research Centre, Harrow, Middlesex, England; and Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20014 Following recommendations made by the Subcommittee on the Taxonomy of Mycoplasrnatales of the International Committee on Systematic Bacteriology, it is proposed that Mycoplasma orale 2 and Mycoplasrna orale 3 be recognized as two separate species, Mycoplasrna buccale nom. nov. (type strain: CH20247; ATCC 23636) and Mycoplasrna fauciurn nom. nov. (type strain: DC-333; ATCC 25293), respectively. The general properties and distinctive characteristics of the newly named species are summarized. At present, three “types” of Mycoplasrna (22) be recognized as a species under the new orale are recognized: M. orale 1 Taylor- name Mycoplasrna buccale (L. adj. buccalis Robinson et al. 1964 (21), M. orale 2 Taylor- buccal), and (ii) Mycoplasrna orale 3 Fox et al. Robinson et al. 1965 (22), and M. orale 3 Fox 1969 (7) be recognized as a species under the et al. 1969 (7). However, the authors who new name Mycoplasma fauciurn (L. noun described the latter two “types” or “serotypes” fauces the throat; L. gen. pl. noun fauciurn of did, in fact, regard them as distinct new species throats).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,835,117 B2 Mitchell Et Al
    US008835117B2 (12) United States Patent (10) Patent No.: US 8,835,117 B2 Mitchell et al. (45) Date of Patent: Sep. 16, 2014 (54) NUCLEICACIDS FOR DETECTION AND OTHER PUBLICATIONS DISCRIMINATION OF GENOTYPES OF CHLAMYDOPHILA PSITTAC Nazarenko, I. Methods in Molecular Biology (2006) 335: 95-114.* Jeffrey et al. Microbiology (2007) 153: 2679-2688.* 75) Inventors: Stephaniep L. Mitchell, Somerville, MA Geens et al. Journal of Clinical Microbiology (2005) 43(5): 2456 (US); Jonas M. Winchell, Lilburn, GA 2461. (US) Geens et al., “Development of a Chlamydophila psittaci species specific and genotype-specific real-time PCR.” Vet. Res., 36: 787 (73) Assignee: The United States of America as 797, 2005. represented by the Secretary of the Geens et al., “Sequencing of the Chlamydophila psittaci OmpA Gene Department of Health and Human Reveals a New Genotype, E/B, and the Need for a Rapid Discrimi Services, Centers for Disease Control natory Genotyping Method.” J. Clin. Microbiol. 43(5): 2456-2461, and Prevention, Washington, DC (US) 2005. Heddema, “Genotyping of Chlamydophila psittaci in Human (*) Notice: Subject to any disclaimer, the term of this Samples.” Emerging Infectious Diseases, 12(12): 1989-1990, 2006. patent is extended or adjusted under 35 Menard, “Development of a real-time PCR for the detection of U.S.C. 154(b) by 82 days. Chlamydia psittaci,” J. Med. Microbiol. 55(Pt. 4): 471-473, 2006. Mitchellet al., “Genotyping of Chlamydophilapsittaci by Real-Time (21) Appl. No.: 13/322,787 PCR and High-Resolution Melt Analysis,” Journal of Clinical Microbiology, 47(1): 175-181, 2009. (22) PCT Filed: May 28, 2010 Sachse et al., “Genotyping of Chlamydophila psittaci using a new DNA microarray assay based on sequence analysis of ompA genes.” (86).
    [Show full text]
  • Mycoplasma Pneumoniae Terminal Organelle
    MYCOPLASMA PNEUMONIAE TERMINAL ORGANELLE DEVELOPMENT AND GLIDING MOTILITY by BENJAMIN MICHAEL HASSELBRING (Under the Direction of Duncan Charles Krause) ABSTRACT With a minimal genome containing less than 700 open reading frames and a cell volume < 10% of that of model prokaryotes, Mycoplasma pneumoniae is considered among the smallest and simplest organisms capable of self-replication. And yet, this unique wall-less bacterium exhibits a remarkable level of cellular complexity with a dynamic cytoskeleton and a morphological asymmetry highlighted by a polar, membrane-bound terminal organelle containing an elaborate macromolecular core. The M. pneumoniae terminal organelle functions in distinct, and seemingly disparate cellular processes that include cytadherence, cell division, and presumably gliding motility, as individual cells translocate over surfaces with the cell pole harboring the structure engaged as the leading end. While recent years have witnessed a dramatic increase in the knowledge of protein interactions required for core stability and adhesin trafficking, the mechanism of M. pneumoniae gliding has not been defined nor have interdependencies between the various terminal organelle functions been assessed. The studies presented in the current volume describe the first genetic and molecular investigations into the location, components, architecture, and regulation of the M. pneumoniae gliding machinery. The data indicate that cytadherence and gliding motility are separable properties, and identify a subset of M. pneumoniae proteins contributing directly to the latter process. Characterizations of novel gliding-deficient mutants confirm that the terminal organelle contains the molecular gliding machinery, revealing that with the loss of a single terminal organelle cytoskeletal element, protein P41, terminal organelles detach from the cell body but retain gliding function.
    [Show full text]
  • Comparison of the Effectiveness of Penicillin and Broad-Spectrum Β-Lactam Antibiotics in the Treatment of Community-Acquired Pneumonia in Children
    Clinical research Comparison of the effectiveness of penicillin and broad-spectrum β-lactam antibiotics in the treatment of community-acquired pneumonia in children Vojko Berce1, Maja Tomazin1, Erika Jerele2, Maša Cugmas2, Maša Berce3, Mario Gorenjak2 1Department of Pediatrics, University Medical Centre, Maribor, Slovenia Corresponding author: 2Department of Pediatrics, Faculty of Medicine, University of Maribor, Maribor, Slovenia Assist. Prof. Vojko Berce MD, 3 Section of Dental Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, PhD Slovenia Department of Pediatrics University Medical Centre Submitted: 5 April 2020 Maribor, Slovenia Accepted: 16 July 2020 Phone: +38 631870834 E-mail: vojko.berce@guest. Arch Med Sci arnes.si DOI: https://doi.org/10.5114/aoms.2020.98198 Copyright © 2020 Termedia & Banach Abstract Introduction: Bacterial community-acquired pneumonia (CAP) in children is caused mostly by Streptococcus pneumoniae. The resistance of pneumococci to penicillin is increasing. However, most guidelines still prefer treatment with narrow-spectrum antibiotics. Therefore, we compared the effect of in- travenous treatment with penicillin and broad-spectrum β-lactam antibiot- ics in children with CAP. The objective of our study was to assess the eligi- bility of treatment of bacterial CAP with intravenous penicillin. Material and methods: We performed a prospective study and included 136 children hospitalised because of bacterial CAP. Patients were treated in- travenously with either penicillin G or broad-spectrum β-lactam antibiotic monotherapy. Lung ultrasound and blood tests were performed at admis- sion and after 2 days of treatment. The time interval from the application of antibiotics to permanent defervescence was recorded. Results: Eighty-seven (64.0%) patients were treated with penicillin G, and 49 (36.0%) were treated with broad-spectrum β-lactam antibiotics.
    [Show full text]
  • Chlamydia Trachomatis and Genital Mycoplasmas: Pathogens with an Impact on Human Reproductive Health
    Hindawi Publishing Corporation Journal of Pathogens Volume 2014, Article ID 183167, 15 pages http://dx.doi.org/10.1155/2014/183167 Review Article Chlamydia trachomatis and Genital Mycoplasmas: Pathogens with an Impact on Human Reproductive Health SunIanica Ljubin-Sternak1 and Tomislav MeštroviT2 1 Teaching Institute of Public Health “Dr Andrija Stampar”ˇ and School of Medicine, University of Zagreb, Salataˇ 3b, 10000 Zagreb, Croatia 2Clinical Microbiology and Parasitology Unit, Polyclinic “Dr Zora Profozi´c”, Bosutska 19, 10000 Zagreb, Croatia Correspondence should be addressed to Suncanicaˇ Ljubin-Sternak; [email protected] Received 29 September 2014; Revised 9 December 2014; Accepted 11 December 2014; Published 31 December 2014 Academic Editor: Nongnuch Vanittanakom Copyright © 2014 S. Ljubin-Sternak and T. Meˇstrovic.´ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The most prevalent, curable sexually important diseases are those caused by Chlamydia trachomatis (C. trachomatis) and genital mycoplasmas. An important characteristic of these infections is their ability to cause long-term sequels in upper genital tract, thus potentially affecting the reproductive health in both sexes. Pelvic inflammatory disease (PID), tubal factor infertility (TFI), and ectopic pregnancy (EP) are well documented complications of C. trachomatis infection in women. The role of genital mycoplasmas in development of PID, TFI, and EP requires further evaluation, but growing evidence supports a significant role for these in the pathogenesis of chorioamnionitis, premature membrane rupture, and preterm labor in pregnant woman. Both C. trachomatis and genital mycoplasmas can affect the quality of sperm and possibly influence the fertility of men.
    [Show full text]
  • Comparative Radiographic Features of Community Acquired Legionnaires' Disease, Pneumococcal Pneumonia, Mycoplasma Pneumonia, and Psittacosis
    Thorax: first published as 10.1136/thx.39.1.28 on 1 January 1984. Downloaded from Thorax 1984;39:28-33 Comparative radiographic features of community acquired legionnaires' disease, pneumococcal pneumonia, mycoplasma pneumonia, and psittacosis JT MACFARLANE, AC MILLER, WH RODERICK SMITH, AH MORRIS, DH ROSE From the Departments of Thoracic Medicine and Radiology, City Hospital, Nottingham ABSTRACT The features of the chest radiographs of 49 adults with legionnaires' disease were compared with those of 91 adults with pneumococcal pneumonia (31 of whom had bacteraemia or antigenaemia), 46 with mycoplasma pneumonia, and 10 with psittacosis pneumonia. No distinctive pattern was seen for any group. Homogeneous shadowing was more frequent in legionnaires' disease (40/49 cases) (p < 0.005), bacteraemic pneumococcal pneumonia (25/31) (p < 0.01) and non-bacteraemic pneumococcal pneumonia (42/60) (p < 0.05) than in myco- plasma pneumonia (23/46). Multilobe disease at presentation was commoner in bacteraemic pneumococcal pneumonia (20/31) than in non-bacteraemic pneumococcal pneumonia (15/60) (p < 0.001) or legionnaires' disease (19/49) (p < 0.025). In bacteraemic pneumococcal pneumonia multilobe disease at presentation was associated with increased mortality. Pleural effusions and some degree of lung collapse were seen in all groups, although effusions were commoner in bacteraemic pneumococcal pneumonia. Cavitation was unusual. Lymphadenopathy occurred only in mycoplasma pneumonia (10/46). Radiographic deterioration was particularly a feature of legionnaires' disease (30/46) and bacteraemic pneumococcal pneumonia (14/27), and these groups also showed slow radiographic resolution in survivors. Radiographic resolution was fastest with mycoplasma pneumonia; psittacosis and non-bacteraemic pneumococcal pneumonia http://thorax.bmj.com/ cleared at an intermediate rate.
    [Show full text]