Floristic Analysis of Central Iowa Woodlands, and Comparison of Reproduction and Regeneration in Common and Restricted Herbaceou

Total Page:16

File Type:pdf, Size:1020Kb

Floristic Analysis of Central Iowa Woodlands, and Comparison of Reproduction and Regeneration in Common and Restricted Herbaceou Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Floristic analysis of central Iowa woodlands, and comparison of reproduction and regeneration in common and restricted herbaceous species Catherine Mary Mabry Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Ecology and Evolutionary Biology Commons, and the Environmental Sciences Commons Recommended Citation Mabry, Catherine Mary, "Floristic analysis of central Iowa woodlands, and comparison of reproduction and regeneration in common and restricted herbaceous species " (2000). Retrospective Theses and Dissertations. 12350. https://lib.dr.iastate.edu/rtd/12350 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter ^ce, while others may t)e from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print t)leedthrough, substarxjard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will t)e noted. Also, if unauthorized copyright material had to t>e removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawir)gs, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. Photographs included in the original manuscript have t)een reproduced xerographically in this copy. Higher quality 6' x 9' t>iack and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & Howell lnformatk>n and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 Floristic analysis of central Iowa woodlands, and comparison of reproduction and regeneration in common and restricted herbaceous species by Catherine Mary Mabry A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Major Professor: Donald R. Farrar Iowa State University Ames, Iowa 2000 Copyright © Catherine Mary Mabry, 2000. All rights reserved. UMI Number 9990476 UMI^ UMI Microfomi9990476 Copyright 2001 by Bell & Howell Infomiation and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. Bell & Howell Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Artxir, Ml 48106-1346 ii Graduate College Iowa State University This is to certify that the Doctoral dissertation of Catherine Mary Mabry has met the dissertation requirements of Iowa State University Signature was redacted for privacy. Major Professor Signature was redacted for privacy. For^ Signature was redacted for privacy. For ^ Gradibte College iii My dissertation is dedicated to my mom, Mary Catherine Mabry, 1930-1999. She was faithful in her support of my long education, and shared her love for the beauty of nature with me. iv TABLE OF CONTENTS ACKNOWLEDGMENTS v ABSTRACT vi CHAPTER 1. GENERAL INTRODUCTION 1 CHAPTER 2. ENVIRONMENTAL GRADIENTS AND HUMAN 9 DISTURBANCE IN CENTRAL IOWA WOODLANDS CHAPTER 3. EFFECT OF CATTLE GRAZING ON WOODLANDS IN 54 CENTRAL IOWA CHAPTER 4. PLANT TRAITS IN RELATION TO 82 ENVIRONMENMENTAL FACTORS AND HUMAN DISTURBANCE IN A TEMPERATE WOODLAND CHAPTER 5: REPRODUCTIVE OUTPUT AND ALLOCATION OF 127 COMMON VERSUS RESTRICTED WOODLAND HERBACEOUS SPECIES IN CENTRAL IOWA, U.S.A. CHAPTER 6. SEED VL\BILITY AND EMERGENCE IN 145 WOODLAND HERBACEOUS SPECIES IN CENTRAL IOWA, U.S.A. CHAPTER 7. GENERAL CONCLUSIONS 163 V ACKNOWLEDGMENTS My research for this dissertation was funded primarily by the Leopold Center for Sustainable Agriculture at Iowa State University, with additional assistance from The Iowa Department of Natural Resources (State Preserves Advisory Board), The Iowa chapter of The Nature Conservancy and Trees Forever. Without their generous support this research would not have been possible. Support from the graduate college (Leopold Brown Trust Fellowship) and the program in Ecology and Evolutionary Biology (Scholarly Excellence Fellowship) provided me with valuable time to write my dissertation. I would like to thank Brad Atchison, Joe Dixon and Becky Mack for their help in sampling plots, Becky Mack and Michelle Ritchey for help with weighing and counting seeds, and Michelle Ritchey for tirelessly pushing plastic straws into the ground. I appreciate Bill Norris and Eddie Watkins for their illuminating and sometimes entertaining discussions. My committee members, Diane Debinski (Animal Ecology), Philip Dixon (Statistics), Tom Jurik (Botany) and Kirk Moloney (Botany) were generous in their comments and made many helpful improvements to the manuscripts. The staff of the ISU Botany Office (Joanne Nystrom, Joyce Hanson, Sharon East and Christina Gallop) was always kind, even when I exasperated them. I especially thank Larissa Mottl for sharing her enthusiasm and interest in forests and restoration ecology. Her excitement and appreciation for the beauty of the woods have been an inspiration to me. I am very grateful for Don Farrar, my major professor. I came to ISU looking for a mentor, £md I found a great one in Don. I admire his breadth of knowledge, opermess to new ideas, and kindness towards me and other students. Finally, I thank my husband, Clark McMulIen, for his love and patience. vi ABSTRACT I studied the distribution and abundance of the plant species of forests in central Iowa, with particular emphasis on the differences in species composition between sites currently or recently grazed by cattle verstis those that had not been grazed for over 50 years. In order examine some of the potential mechanisms underlying the distribution and abundance of species, 1 scored each species for 29 categories of fimctional and morphological traits. I then used these traits to identify groups of species that potentially flmction in a similar marmer (irrespective of taxa), to examine the distribution of traits along the major environmental gradients, and to address whether species' fi^uency was correlated with any of the traits. Finally, in order to imderstand in more detail the difference between species that were common compared to those relatively less common (restricted species), I examined whether the two groups of species differed in reproductive output and allocation, seed viability, and seedling emergence. Understory species and canopy trees were generally distributed along the same environmental gradients; landform, soil phosphorous and nitrogen content, and disturbance and woodland size. The understory vegetation of small woodlands indicated that they were high quality remnants, while weedier and more common understory species were associated with grazed sites. The trees that are canopy dominants appeared to have a homogeneous distribution. Species of oak were not regenerating well. The matched pairs study identified a distinct group of understory species associated with ungrazed and grazed sites. Ungrazed woods had no exotic species and had more species of perennial herbs, herbs with extensive rhizomes, and species characteristic of moist forests with closed canopies, habitats lacking human disturbance, and with ranges restricted to the eastem United States, hi contrast, 30 percent of species associated with grazed woods were exotic, and the species associated with these sites were more likely to be annuals, have little or no vegetative spread, to occur in a wide variety of habitats, and to have a cosmopolitan distribution. The strongest effect of grazing on tree species was the reduction in number of seedlings found in grazed woods. Most of the variation in the ordination of plots by traits was found on axis 1, which separated woods based on grazing history and size. The traits associated with ungrazed and smaller woods included preference for undisturbed, moist and low light habitats, very low stature, flowering in the earliest part of spring, presence of root storage and ant dispersal. Traits associated with a lighter canopy and grazing were largely those that define annuals and shrubs and included a preference for high or low moisture and light, tolerance of human disturbance, small seed size, relatively seed production, low frequency of occurrence and non-natives. Linkages between traits and environment were identified, but the data suggested that the groups identified by TWINSPAN are not acting the functional groups in this community. Although other groupings of species acting as functional likely occur, particularly in relation to strong gradients, e.g. different grazing history, there are a number of reasons to be cautious before concluding that a small number of key characters define functional
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Specialist Foragers in Forest Bee Communities Are Small, Social Or Emerge Early
    Received: 5 November 2018 | Accepted: 2 April 2019 DOI: 10.1111/1365-2656.13003 RESEARCH ARTICLE Specialist foragers in forest bee communities are small, social or emerge early Colleen Smith1,2 | Lucia Weinman1,2 | Jason Gibbs3 | Rachael Winfree2 1GraDuate Program in Ecology & Evolution, Rutgers University, New Abstract Brunswick, New Jersey 1. InDiviDual pollinators that specialize on one plant species within a foraging bout 2 Department of Ecology, Evolution, and transfer more conspecific and less heterospecific pollen, positively affecting plant Natural Resources, Rutgers University, New Brunswick, New Jersey reproDuction. However, we know much less about pollinator specialization at the 3Department of Entomology, University of scale of a foraging bout compared to specialization by pollinator species. Manitoba, Winnipeg, Manitoba, CanaDa 2. In this stuDy, we measured the Diversity of pollen carried by inDiviDual bees forag- Correspondence ing in forest plant communities in the miD-Atlantic United States. Colleen Smith Email: [email protected] 3. We found that inDiviDuals frequently carried low-Diversity pollen loaDs, suggest- ing that specialization at the scale of the foraging bout is common. InDiviDuals of Funding information Xerces Society for Invertebrate solitary bee species carried higher Diversity pollen loaDs than Did inDiviDuals of Conservation; Natural Resources social bee species; the latter have been better stuDied with respect to foraging Conservation Service; GarDen Club of America bout specialization, but account for a small minority of the worlD’s bee species. Bee boDy size was positively correlated with pollen load Diversity, and inDiviDuals HanDling EDitor: Julian Resasco of polylectic (but not oligolectic) species carried increasingly Diverse pollen loaDs as the season progresseD, likely reflecting an increase in the Diversity of flowers in bloom.
    [Show full text]
  • The Native Plant Center Large Deciduous Shrub Or Small Tree with Striking Horizontal Branching
    Cornus alternifolia Lindera benzoin 40 Pagoda dogwood 43 Spicebush BD BF BE DR WL BD BF The Native Plant Center Large deciduous shrub or small tree with striking horizontal branching. Deciduous shrub covered with fragrant yellow flowers before leaf-out at Westchester Community College Fragrant white flower clusters in late spring give way to purple berries in March, providing color to awakening woodlands. Aromatic leaves relished by birds. Red fruit stems; rich fall foliage. Larval host for the turn yellow in fall. Only female plants bear brilliant-red fruit attractive spring azure. Average soil, sun to part shade, 15–25’ tall. to birds and need a male pollinator. Note: The plants offered will be of 2017 Native Plant Pre-Sale undetermined sex. The Native Plant Center’s 2017 Woody of the Year. Corylus americana Moist to average soil, sun to part shade, 6–12’ tall. Order Deadline: February 21, 2017 41 American hazelnut BD Nyssa sylvatica you’LL FIND A great MIX of native plants in various sizes to suit all garden Showy yellow catkins in late winter. Edible nuts encased in papery husks 44 Black tupelo needs. Peruse the descriptions and color pictures of the plants for sale. Then use taste similar to European filberts. Foliage turns yellow to red in fall. WL BD BE Looking for the enclosed form to place your order. If you have questions, please e-mail Dense, thicket-forming deciduous shrub that can be used as a screen or A stately deciduous tree with a straight trunk and handsome pyramidal [email protected] or call (914) 606-7870.
    [Show full text]
  • American Hornbeam Is Planted in Landscapes and AMERICAN Naturalized Areas
    Plant Fact Sheet American hornbeam is planted in landscapes and AMERICAN naturalized areas. It prefers deep, fertile, moist, acidic soil and grows best in partial shade, but will HORNBEAM grow in full sun. Its chief liabilities in cultivation are Carpinus caroliniana Walt. a relatively slow growth rate and difficulty in transplantation. It is not drought-tolerant. Plant Symbol = CACA18 Seeds, buds, or catkins are eaten by a number of Contributed by: USDA NRCS National Plant Data songbirds, ruffed grouse, ring-necked pheasants, Center & the Biota of North America Program bobwhite, turkey, fox, and gray squirrels. Cottontails, beaver, and white-tailed deer eat the leaves, twigs, and larger stems. American hornbeam is heavily used by beaver, because it is readily available in typical beaver habitat. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g. threatened or endangered species, state noxious status, and wetland indicator values). Description American hornbeam is a native, large shrub or small tree with a wide-spreading, flat-topped crown, the stems are slender, dark brown, hairy; bark gray, thin, usually smooth, with smooth, longitudinal fluting (resembling a flexed muscle). Its leaves are deciduous, arranged alternately along stems, egg- shaped to elliptical in outline, ¾ to 4¾ inches long, with doubly-serrate edges. They are glabrous above, slightly to moderately pubescent beneath, especially on major veins, with or without conspicuous dark glands. During the growing season, leaves are dark green but turn yellow to orange or red in the fall. The flowers are unisexual, in catkins.
    [Show full text]
  • Global Survey of Ex Situ Betulaceae Collections Global Survey of Ex Situ Betulaceae Collections
    Global Survey of Ex situ Betulaceae Collections Global Survey of Ex situ Betulaceae Collections By Emily Beech, Kirsty Shaw and Meirion Jones June 2015 Recommended citation: Beech, E., Shaw, K., & Jones, M. 2015. Global Survey of Ex situ Betulaceae Collections. BGCI. Acknowledgements BGCI gratefully acknowledges the many botanic gardens around the world that have contributed data to this survey (a full list of contributing gardens is provided in Annex 2). BGCI would also like to acknowledge the assistance of the following organisations in the promotion of the survey and the collection of data, including the Royal Botanic Gardens Edinburgh, Yorkshire Arboretum, University of Liverpool Ness Botanic Gardens, and Stone Lane Gardens & Arboretum (U.K.), and the Morton Arboretum (U.S.A). We would also like to thank contributors to The Red List of Betulaceae, which was a precursor to this ex situ survey. BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) BGCI is a membership organization linking botanic gardens is over 100 countries in a shared commitment to biodiversity conservation, sustainable use and environmental education. BGCI aims to mobilize botanic gardens and work with partners to secure plant diversity for the well-being of people and the planet. BGCI provides the Secretariat for the IUCN/SSC Global Tree Specialist Group. www.bgci.org FAUNA & FLORA INTERNATIONAL (FFI) FFI, founded in 1903 and the world’s oldest international conservation organization, acts to conserve threatened species and ecosystems worldwide, choosing solutions that are sustainable, based on sound science and take account of human needs. www.fauna-flora.org GLOBAL TREES CAMPAIGN (GTC) GTC is undertaken through a partnership between BGCI and FFI, working with a wide range of other organisations around the world, to save the world’s most threated trees and the habitats which they grow through the provision of information, delivery of conservation action and support for sustainable use.
    [Show full text]
  • Phylogeny of Rosids! ! Rosids! !
    Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Alnus - alders A. rubra A. rhombifolia A. incana ssp. tenuifolia Alnus - alders Nitrogen fixation - symbiotic with the nitrogen fixing bacteria Frankia Alnus rubra - red alder Alnus rhombifolia - white alder Alnus incana ssp. tenuifolia - thinleaf alder Corylus cornuta - beaked hazel Carpinus caroliniana - American hornbeam Ostrya virginiana - eastern hophornbeam Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Fagaceae (Beech or Oak family) ! Fagaceae - 9 genera/900 species.! Trees or shrubs, mostly northern hemisphere, temperate region ! Leaves simple, alternate; often lobed, entire or serrate, deciduous
    [Show full text]
  • Oemleria Cerasiformis (Torr
    O&P genera Layout (a) 1/31/08 11:28 AM Page 749 Rosaceae—Rose family O Oemleria cerasiformis (Torr. & Gray ex Hook. & Arn.) Landon osoberry William I. Stein Dr. Stein is a forest ecologist emeritus at the USDA Forest Service’s Pacific Northwest Research Station, Corvallis, Oregon Other common names. Indian plum, squaw-plum, Ripening osoberry fruits are highly attractive to birds Indian peach. such as cedar waxwings (Bombycilla cedrorum), and ripe Growth habit, occurrence, and uses. The genus fruits are readily eaten by both birds and mammals (Dayton Oemleria contains a single species—osoberry, Oemleria 1931; Dimock and Stein 1974). The fruits were eaten in cerasiformis (Torr. & Gray ex Hook. & Arn.) Landon. small quantities fresh, cooked, or dried by Native American Osoberry was described originally as Nuttalia cerasiformis, peoples in the Pacific Northwest; twigs and bark were used then identified for decades as Osmaronia cerasiformis (Hunt for several medicinal purposes (Gunther 1945; Mitchem 1970) until an earlier legitimate name was rediscovered 1993; Pojar and Mackinnon 1994). Flavor of the fruits about 30 years ago (Landon 1975). apparently varies by locality, from sweet to bitter (Dayton Osoberry is a deciduous, generally multiple-stemmed 1931). Its attractiveness as an ornamental includes flushing shrub that is 1.5 to 5 m or taller and sometimes develops of light green leaves and white flowers much earlier than into a small tree (Abrams 1944; Hitchcock and others 1961). other plant associates, handsome variegated appearance as A plant may have 10 or more stems and can produce new scattered leaves throughout the crown turn yellow in early stems throughout its lifetime.
    [Show full text]
  • Native Tree Families, Including Large and Small Trees, 1/1/08 in the Southern Blue Ridge Region (Compiled by Rob Messick Using Three Sources Listed Below.)
    Native Tree Families, Including Large and Small Trees, 1/1/08 in the Southern Blue Ridge Region (Compiled by Rob Messick using three sources listed below.) • Total number of tree families listed in the southern Blue Ridge region = 33. • Total number of native large and small tree species listed = 113. (Only 84 according to J. B. & D. L..) There are 94 tree species in more frequently encountered families. There are 19 tree species in less frequently encountered families. • There is 93 % compatibility between Ashe & Ayers (1902), Little (1980), and Swanson (1994). (W. W. Ashe lists 105 tree species in the region in 1902. These are fully compatible with current listings.) ▸means more frequently encountered species. ?? = means a tree species that possibly occurs in the region, though its presence is not clear. More frequently encountered tree families (21): Pine Family Cashew Family Walnut Family Holly Family Birch Family Maple Family Beech Family Horse-chestnut (Buckeye) Family Magnolia Family Linden (Basswood) Family Laurel Family Tupelo-gum Family Witch-hazel Family Dogwood Family Plane-tree (Sycamore) Family Heath Family Rose Family Ebony Family Legume Family Storax (Snowbell) Family Olive Family Less frequently encountered tree families (12): Cypress Family Bladdernut Family Willow Family Buckthorn Family Elm Family Tea Family Mulberry Family Ginseng Family Custard-apple (Annona) Family Sweetleaf Family Rue Family Honeysuckle Family ______________________________________________________________________________ • More Frequently Encountered Tree Families: Pine Family (10): ▸ Fraser fir - Abies fraseri (a.k.a. Balsam) ▸ red spruce - Picea rubens ▸ shortleaf pine - Pinus echinata ▸ table mountain pine - Pinus pungens ▸ pitch pine - Pinus rigida ▸ white pine - Pinus strobus ▸ Virginia pine - Pinus virginiana loblolly pine - Pinus taeda ▸ eastern hemlock - Tsuga canadensis (a.k.a.
    [Show full text]
  • The Role of the Francisco Javier Clavijero Botanic Garden
    Research article The role of the Francisco Javier Clavijero Botanic Garden (Xalapa, Veracruz, Mexico) in the conservation of the Mexican flora El papel del Jardín Botánico Francisco Javier Clavijero (Xalapa, Veracruz, México) en la conservación de la flora mexicana Milton H. Díaz-Toribio1,3 , Victor Luna1 , Andrew P. Vovides2 Abstract: Background and Aims: There are approximately 3000 botanic gardens in the world. These institutions cultivate approximately six million plant species, representing around 100,000 taxa in cultivation. Botanic gardens make an important contributionex to situ conservation with a high number of threat- ened plant species represented in their collections. To show how the Francisco Javier Clavijero Botanic Garden (JBC) contributes to the conservation of Mexican flora, we asked the following questions: 1) How is vascular plant diversity currently conserved in the JBC?, 2) How well is this garden perform- ing with respect to the Global Strategy for Plant Conservation (GSPC) and the Mexican Strategy for Plant Conservation (MSPC)?, and 3) How has the garden’s scientific collection contributed to the creation of new knowledge (description of new plant species)? Methods: We used data from the JBC scientific living collection stored in BG-BASE. We gathered information on species names, endemism, and endan- gered status, according to national and international policies, and field data associated with each species. Key results: We found that 12% of the species in the JBC collection is under some risk category by international and Mexican laws. Plant families with the highest numbers of threatened species were Zamiaceae, Orchidaceae, Arecaceae, and Asparagaceae. We also found that Ostrya mexicana, Tapirira mexicana, Oreopanax capitatus, O.
    [Show full text]
  • Diversity and Evolution of Asterids!
    Diversity and Evolution of Asterids! . mints and snapdragons . ! *Boraginaceae - borage family! Widely distributed, large family of alternate leaved plants. Typically hairy. Typically possess helicoid or scorpiod cymes = compound monochasium. Many are poisonous or used medicinally. Mertensia virginica - Eastern bluebells *Boraginaceae - borage family! CA (5) CO (5) A 5 G (2) Gynobasic style; not terminal style which is usual in plants; this feature is shared with the mint family (Lamiaceae) which is not related Myosotis - forget me not 2 carpels each with 2 ovules are separated at maturity and each further separated into 1 ovuled compartments Fruit typically 4 nutlets *Boraginaceae - borage family! Echium vulgare Blueweed, viper’s bugloss adventive *Boraginaceae - borage family! Hackelia virginiana Beggar’s-lice Myosotis scorpioides Common forget-me-not *Boraginaceae - borage family! Lithospermum canescens Lithospermum incisium Hoary puccoon Fringed puccoon *Boraginaceae - borage family! pin thrum Lithospermum canescens • Lithospermum (puccoon) - classic Hoary puccoon dimorphic heterostyly *Boraginaceae - borage family! Mertensia virginica Eastern bluebells Botany 401 final field exam plant! *Boraginaceae - borage family! Leaves compound or lobed and “water-marked” Hydrophyllum virginianum - Common waterleaf Botany 401 final field exam plant! **Oleaceae - olive family! CA (4) CO (4) or 0 A 2 G (2) • Woody plants, opposite leaves • 4 merous actinomorphic or regular flowers Syringa vulgaris - Lilac cultivated **Oleaceae - olive family! CA (4)
    [Show full text]
  • Carpinus L. Hornbeam Or Ironwood
    C Betulaceae—Birch family Carpinus L. hornbeam or ironwood Paula M. Pijut Dr. Pijut is a plant physiologist at the USDA Forest Service’s North Central Research Station, Hardwood Tree Improvement and Regeneration Center,West Lafayette, Indiana Growth habit, occurrence, and use. The hornbeam Appalachian Mountains and northern interior regions to the genus—Carpinus L.—includes about 35 species of decidu- West (Furlow 1987b). The Latin American C. tropicalis is ous, monoecious, small to large trees, that are native to the divided into subsp. tropicalis of the highlands of southern Northern Hemisphere from Europe to eastern Asia, south to Mexico and north Central America and subsp. mexicana of the Himalayas, and in North and Central America (Furlow the mountains in northeastern Mexico and the trans-Mexican 1990; Hillier 1991; Krüssmann 1984; LHBH 1976; Suszka volcanic belt (Furlow 1987b). and others 1996). Five species are considered here (table The wood of hornbeams is extremely hard—hence the 1). Hornbeams occur mainly as understory trees in rich, common name “ironwood”—and is used for making tool moist soils on bottomlands and on protected slopes handles and mallet heads. It is also used to produce the (Metzger 1990; Rudolf and Phipps 1974). European horn- high-quality charcoal used in gunpowder manufacture beam is an important forest tree species throughout Europe (Bugala 1993; Furlow 1990). Species of ornamental interest (Furlow 1990). In Mexico and Central America, Carpinus in the United States are listed in table 1. Most of the infor- tropicalis (J.D. Sm.) Lundell forms a dominant canopy mation presented in this chapter deals with European and component (Furlow 1990).
    [Show full text]