An Update on the Management of Cholestatic Liver Diseases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Drug-Induced Cholestatic Pattern
Review articles Hepatotoxicity: A Drug-Induced Cholestatic Pattern Laura Morales M.,1 Natalia Vélez L.,1 Octavio Germán Muñoz M., MD.2 1 Medical Student in the Faculty of Medicine and Abstract the Gastrohepatology Group at the Universidad de Antioquia in Medellín, Colombia Although drug induced liver disease is a rare condition, it explains 40% to 50% of all cases of acute liver 2 Internist and Hepatologist at the Hospital Pablo failure. In 20% to 40% of the cases, the pattern is cholestatic and is caused by inhibition of the transporters Tobon Uribe and in the Gastrohepatology Group at that regulate bile synthesis. This reduction in activity is directly or indirectly mediated by drugs and their me- the Universidad de Antioquia in Medellín, Colombia tabolites and/or by genetic polymorphisms and other risk factors of the patient. Its manifestations range from ......................................... biochemical alterations in the absence of symptoms to acute liver failure and chronic liver damage. Received: 30-01-15 Although there is no absolute test or marker for diagnosis of this disease, scales and algorithms have Accepted: 26-01-16 been developed to assess the likelihood of cholestatic drug induced liver disease. Other types of evidence are not routinely used because of their complexity and cost. Diagnosis is primarily based on exclusion using circumstantial evidence. Cholestatic drug induced liver disease has better overall survival rates than other patters, but there are higher risks of developing chronic liver disease. In most cases, the patient’s condition improves when the drug responsible for the damage is removed. Hemodialysis and transplantation should be considered only for selected cases. -
New Brunswick Drug Plans Formulary
New Brunswick Drug Plans Formulary August 2019 Administered by Medavie Blue Cross on Behalf of the Government of New Brunswick TABLE OF CONTENTS Page Introduction.............................................................................................................................................I New Brunswick Drug Plans....................................................................................................................II Exclusions............................................................................................................................................IV Legend..................................................................................................................................................V Anatomical Therapeutic Chemical (ATC) Classification of Drugs A Alimentary Tract and Metabolism 1 B Blood and Blood Forming Organs 23 C Cardiovascular System 31 D Dermatologicals 81 G Genito Urinary System and Sex Hormones 89 H Systemic Hormonal Preparations excluding Sex Hormones 100 J Antiinfectives for Systemic Use 107 L Antineoplastic and Immunomodulating Agents 129 M Musculo-Skeletal System 147 N Nervous System 156 P Antiparasitic Products, Insecticides and Repellants 223 R Respiratory System 225 S Sensory Organs 234 V Various 240 Appendices I-A Abbreviations of Dosage forms.....................................................................A - 1 I-B Abbreviations of Routes................................................................................A - 4 I-C Abbreviations of Units...................................................................................A -
Supplementary Information
Supplementary Information Network-based Drug Repurposing for Novel Coronavirus 2019-nCoV Yadi Zhou1,#, Yuan Hou1,#, Jiayu Shen1, Yin Huang1, William Martin1, Feixiong Cheng1-3,* 1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA 3Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA #Equal contribution *Correspondence to: Feixiong Cheng, PhD Lerner Research Institute Cleveland Clinic Tel: +1-216-444-7654; Fax: +1-216-636-0009 Email: [email protected] Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. Supplementary Table S2. Protein sequence identities across 5 protein regions in 15 coronaviruses. Supplementary Table S3. HCoV-associated host proteins with references. Supplementary Table S4. Repurposable drugs predicted by network-based approaches. Supplementary Table S5. Network proximity results for 2,938 drugs against pan-human coronavirus (CoV) and individual CoVs. Supplementary Table S6. Network-predicted drug combinations for all the drug pairs from the top 16 high-confidence repurposable drugs. 1 Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. GenBank ID Coronavirus Identity % Host Location discovered MN908947 2019-nCoV[Wuhan-Hu-1] 100 Human China MN938384 2019-nCoV[HKU-SZ-002a] 99.99 Human China MN975262 -
A Rare Hepatic Manifestation of Systemic Lupus Erythematosus
Cholestatic hepatitis in SLE Cholestatichepatitis:ararehepaticmanifestationof systemiclupuserythematosus WHChow,MSLam,WKKwan,WFNg Systemic lupus erythematosus is a multi-system inflammatory disease. The clinical manifestations are diverse. Hepatic manifestation is a rarely seen complication of systemic lupus erythematosus. We report a case of complication of systemic lupus erythematosus presenting as cholestatic hepatitis in a 56-year- old Chinese woman. The cholestatic hepatitis progressed as part of the lupus activity and responded to steroid therapy. HKMJ 1997;3:331-4 Key words: Hepatitis; Cholestasis; Lupus erythematosus, systemic; Liver Introduction of body weight and had had a poor appetite. She was a non-drinker and had no long term drug history. Systemic lupus erythematosus (SLE) is a multi- system inflammatory disease associated with the A general examination showed her to be jaundiced, development of auto-antibodies to a variety of self- pale, and dyspnoeic with an elevated body tempera- antigens. The clinical manifestations of SLE are ture of 38.2°C. Chest examination demonstrated coarse diverse. In 1982, the American Rheumatism Associa- crackles heard over both lung fields. Other parts of tion (ARA) published revised criteria for the classifi- the examination were unremarkable. There was 2+ cation of SLE.1 For a diagnosis of SLE, individuals proteinuria in the mid-stream urine but the culture should have four or more of the following features: for organisms was negative. Investigations revealed a malar rash, discoid rash, photosensitivity, oral ulcers, normochromic, normocytic anaemia (haemoglobin 9.4 non-erosive arthritis, pleuritis or pericarditis, renal g/dL [normal range, 11.5-15.5 g/dL]) with normal disorder, seizures or psychosis, haematological white cell and differential counts. -
Primary Biliary Cholangitis: a Brief Overview Justin S
REVIEW Primary Biliary Cholangitis: A Brief Overview Justin S. Louie,* Sirisha Grandhe,* Karen Matsukuma,† and Christopher L. Bowlus* Primary biliary cholangitis (PBC), previously referred to supported by the higher concordance of PBC in monozy- as primary biliary cirrhosis, is the most common chronic gotic compared with dizygotic twins.4 In addition, certain cholestatic autoimmune disease affecting adults in the human leukocyte antigen haplotypes have been associ- United States.1 It is characterized by a hallmark serologic ated with PBC, as well as variants at loci along the inter- signature, antimitochondrial antibody (AMA), and specific leukin-12 (IL-12) immunoregulatory pathway (IL-12A and bile duct pathology with progressive intrahepatic duct de- IL-12RB2 loci).5 struction leading to cholestasis. PBC is potentially fatal and can have both intrahepatic and extrahepatic complications. PATHOGENESIS EPIDEMIOLOGY The primary disease mechanism in PBC is thought to be T cell lymphocyte–mediated injury against intralobu- PBC affects all races and ethnicities; however, it is best lar biliary epithelial cells. This causes progressive destruc- studied in the Caucasian population. The condition pre- tion and eventual disappearance of the intralobular bile dominantly affects women older than 40 years, with a ducts. Molecular mimicry has been proposed as the ini- female/male ratio of 9:1.2 Although the incidence of PBC tiating event in the loss of tolerance primarily to mito- appears to be stable, the overall prevalence of the disease chondrial pyruvate dehydrogenase complex, E2, during is increasing.3 An individual’s genetic susceptibility, epige- which exogenous antigens evoke an immune response netic factors, and certain environmental triggers seem to that recognizes an endogenous (self) antigen inciting an play important roles. -
Merit of an Ursodeoxycholic Acid Clinical Trial in COVID-19 Patients
Viewpoint Merit of an Ursodeoxycholic Acid Clinical Trial in COVID-19 Patients Subbaya Subramanian 1 , Tinen Iles 1, Sayeed Ikramuddin 1 and Clifford J. Steer 2,* 1 Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] (S.S.); [email protected] (T.I.); [email protected] (S.I.) 2 Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA * Correspondence: [email protected]; Tel.: +1-612-624-6648 Received: 28 May 2020; Accepted: 17 June 2020; Published: 19 June 2020 Abstract: Corona Virus Disease 2019 (COVID-19) has affected over 8 million people worldwide. We underscore the potential benefits of conducting a randomized open-label unblinded clinical trial to evaluate the role of ursodeoxycholic acid (UDCA) in the treatment of COVID-19. Some COVID-19 patients are characterized with cytokine storm syndrome that can cause severe and irreversible damage to organs leading to multi-organ failure and death. Therefore, it is critical to control both programmed cell death (apoptosis) and the hyper-immune inflammatory response in COVID-19 patients to reduce the rising morbidity and mortality. UDCA is an existing drug with proven safety profiles that can reduce inflammation and prevent cell death. National Geographic reported that, “China Promotes Bear Bile as Coronavirus Treatment”. Bear bile is rich in UDCA, comprising up to 40–50% of the total bile acid. UDCA is a logical and attainable replacement for bear bile that is available in pill form and merits clinical trial consideration. Keywords: Coronavirus; COVID-19; cytokine storm; ursodeoxycholic acid; clinical trial Coronavirus SARS-CoV-2 as the cause of COVID-19 (Corona Virus Disease 2019) has affected over 8 million people worldwide. -
Progress Report Cholestasis and Lesions of the Biliary Tract in Chronic Pancreatitis
Gut: first published as 10.1136/gut.19.9.851 on 1 September 1978. Downloaded from Gut, 1978, 19, 851-857 Progress report Cholestasis and lesions of the biliary tract in chronic pancreatitis The occurrence of jaundice in the course of chronic pancreatitis has been recognised since the 19th century" 2. But in the early papers it is uncertain whether the cases were due to acute, acute relapsing, or to chronic pan- creatitis, or even to pancreatic cancer associated with pancreatitis or benign ampullary stenosis. With the introduction of endoscopic retrograde cholangiopancreato- graphy (ERCP), there has been a renewed interest in the biliary complica- tions of chronic pancreatitis (CP). However, papers published recently by endoscopists have generally neglected the cholangiographic aspect of the lesions and are less precise and less well documented than papers published just after the second world war, following the introduction of manometric cholangiography3-5. Furthermore, the description of obstructive jaundice due to chronic pancreatitis, classical 20 years ago, seems to have been forgotten until the recent papers. Radiological aspects of bile ducts in chronic pancreatitis http://gut.bmj.com/ If one limits the subject to primary diseases of the pancreas, particularly chronic calcifying pancreatitis (CCP)6, excluding chronic pancreatitis secondary to benign ampullary stenosis7, cancer obstructing the main pancreatic duct8 9 and acute relapsing pancreatitis secondary to gallstones'0 radiological aspect of the main bile duct" is type I the most.common on September 25, 2021 by guest. Protected copyright. choledocus (Figure). This description has been repeatedly confirmed'2"13. It is a long stenosis of the intra- or retropancreatic part of the main bile duct. -
OCALIVA™ (Obeticholic Acid) Oral
PHARMACY COVERAGE GUIDELINES ORIGINAL EFFECTIVE DATE: 9/15/2016 SECTION: DRUGS LAST REVIEW DATE: 8/19/2021 LAST CRITERIA REVISION DATE: 8/19/2021 ARCHIVE DATE: OCALIVA™ (obeticholic acid) oral Coverage for services, procedures, medical devices and drugs are dependent upon benefit eligibility as outlined in the member's specific benefit plan. This Pharmacy Coverage Guideline must be read in its entirety to determine coverage eligibility, if any. This Pharmacy Coverage Guideline provides information related to coverage determinations only and does not imply that a service or treatment is clinically appropriate or inappropriate. The provider and the member are responsible for all decisions regarding the appropriateness of care. Providers should provide BCBSAZ complete medical rationale when requesting any exceptions to these guidelines. The section identified as “Description” defines or describes a service, procedure, medical device or drug and is in no way intended as a statement of medical necessity and/or coverage. The section identified as “Criteria” defines criteria to determine whether a service, procedure, medical device or drug is considered medically necessary or experimental or investigational. State or federal mandates, e.g., FEP program, may dictate that any drug, device or biological product approved by the U.S. Food and Drug Administration (FDA) may not be considered experimental or investigational and thus the drug, device or biological product may be assessed only on the basis of medical necessity. Pharmacy Coverage Guidelines are subject to change as new information becomes available. For purposes of this Pharmacy Coverage Guideline, the terms "experimental" and "investigational" are considered to be interchangeable. BLUE CROSS®, BLUE SHIELD® and the Cross and Shield Symbols are registered service marks of the Blue Cross and Blue Shield Association, an association of independent Blue Cross and Blue Shield Plans. -
Ocaliva (Obeticholic Acid)
HIGHLIGHTS OF PRESCRIBING INFORMATION Staging/ Classification Non-Cirrhotic or Child-Pugh Class B These highlights do not include all the information needed to use Compensated Child- or C or Patients OCALIVA® safely and effectively. See full prescribing information for Pugh Class A with a Prior OCALIVA. Decompensation a Event ® OCALIVA (obeticholic acid) tablets, for oral use Starting OCALIVA 5 mg once daily 5 mg once weekly Initial U.S. Approval: 2016 Dosage for first 3 months WARNING: HEPATIC DECOMPENSATION AND FAILURE IN OCALIVA Dosage 10 mg once daily 5 mg twice weekly INCORRECTLY DOSED PBC PATIENTS WITH CHILD-PUGH Titration after first (at least 3 days apart) CLASS B OR C OR DECOMPENSATED CIRRHOSIS 3 months, for patients See full prescribing information for complete boxed warning who have not achieved Titrate to 10 mg an adequate reduction twice weekly (at least • In postmarketing reports, hepatic decompensation and failure, in in ALP and/or total 3 days apart) based bilirubin and who are on response and some cases fatal, have been reported in patients with primary biliary b tolerating OCALIVA tolerability cholangitis (PBC) with decompensated cirrhosis or Child-Pugh Class B or C hepatic impairment when OCALIVA was dosed more Maximum OCALIVA 10 mg once daily 10 mg twice weekly frequently than recommended. (5.1) Dosage (at least 3 days apart) a • The recommended starting dosage of OCALIVA is 5 mg once weekly Gastroesophageal variceal bleeding, new or worsening jaundice, for patients with Child-Pugh Class B or C hepatic impairment or a spontaneous bacterial peritonitis, etc. b prior decompensation event. -
Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01 -
TRANSPARENCY COMMITTEE Opinion 19 February 2014
The legally binding text is the original French version TRANSPARENCY COMMITTEE Opinion 19 February 2014 ORPHACOL 50 mg, hard capsule B/30 (CIP 34009 416 886 0 7) B/60 (CIP 34009 416 887 7 5) ORPHACOL 250 mg, hard capsule B/30 (CIP: 34009 416 890 8 6) Applicant: CTRS INN cholic acid ATC Code (2012) A05AA03 (Bile acid preparations) Reason for the Inclusion request List concerned Hospital use (French Public Health Code L.5123-2) "Treatment of inborn errors in primary bile acid synthesis due to 3β-hydroxy-∆5-C -steroid oxidoreductase deficiency or ∆4-3-oxosteroid- Indication concerned 27 5β-reductase deficiency in infants, children and adolescents aged 1 month to 18 years and adults." HAS - Medical, Economic and Public Health Assessment Division 1/20 Actual Benefit Substantial. The benefits of using cholic acid in the treatment of inborn errors in primary 5 bile acid synthesis due to 3 β-hydroxy-∆ -C27 -steroid oxidoreductase deficiency or ∆4-3-oxosteroid-5β-reductase deficiency as soon as they are diagnosed have been established since 1993, when the first hospital preparation was made available in France by the AP-HP [Paris public hospital system], followed by temporary authorisations for use by a named patient [ATU nominative in French] since 2007. In particular, none of the 20 patients followed in France and treated with cholic acid since this date have needed a liver transplant, the only other treatment option. Treatment Improvement in with cholic acid allows postponing liver transplantation and improving Actual Benefit overall symptomatology, normalising lab work results and improving histological liver lesions, with good safety. -
Estonian Statistics on Medicines 2016 1/41
Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole