University of Southampton Research Repository

Total Page:16

File Type:pdf, Size:1020Kb

University of Southampton Research Repository University of Southampton Research Repository Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s. When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g. Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the University Faculty or School or Department, PhD Thesis, pagination. Data: Author (Year) Title. URI [dataset] University of Southampton Faculty of Environmental and Life Sciences Geography and Environmental Science Late-Quaternary Dynamics of Northern Plant Communities: A Sedimentary Ancient DNA (SedaDNA) Perspective by Charlotte Louise Clarke ORCID ID 0000-0002-1296-2229 Thesis for the degree of Doctor of Philosophy (Ph.D.) September 2019 University of Southampton Abstract Faculty of Environmental and Life Sciences Geography and Environmental Science Thesis for the degree of Doctor of Philosophy (Ph.D.) Late-Quaternary Dynamics of Northern Plant Communities: A Sedimentary Ancient DNA (SedaDNA) Perspective by Charlotte Louise Clarke Tundra plant communities in the northern high latitudes are expected to undergo large distributional changes, habitat loss and/or local species extinction with future climate changes. This is in part linked to the projected northward expansion of climate-sensitive, woody plant taxa of the boreal forest-tundra ecotone. Nevertheless, recurrent glacial-interglacial cycles throughout the Quaternary period (<2.6 million years BP) have repeatedly shifted the ranges of many northern plants. Knowledge of how the composition of plant communities changed in response to previous large-magnitude climate changes could therefore inform predictive modelling of the effect of global change on their distributions. Ancient DNA recovered from sediments (sedaDNA) has proved a useful new tool for studying change in terrestrial ecosystems over time. The cold climate conditions in northern regions appear to be ideal for the long-term preservation of extra-cellular (i.e. “environmental”) DNA. This thesis explores the potential of sedaDNA extracted from lake sediments for reconstructing changes in the composition and diversity of northern plant communities since the peak of last glacial interval (ca. 24,000 cal. years BP). It focuses on three specific northern regions: a previously glaciated area of northeast Norway and two regions (the Polar Ural Mountains of northern Russia and interior Alaska) which remained ice-free during the last glacial interval. In each of the four papers presented in this thesis, the analysis of sedaDNA is shown to contribute new insights towards understanding the long-term dynamics of northern plant communities over the late-Quaternary interval. Many of these new insights arise from unique differences in the source and representation of sedaDNA compared to records derived from pollen. Reconstructions of community composition and floristic richness were improved by using sedaDNA as the sedaDNA signal is less sensitive to “swamping” by woody anemophilous taxa at the expense of insect-pollinated herbaceous taxa than pollen. SedaDNA was also able to document fossil-silent plant taxa which are poorly represented and/or taxonomically resolved within pollen records, including the coniferous tree Larix, a diversity of arctic-alpine herbs and turnover amongst bryophyte and grass genera over time. The findings presented in this thesis demonstrate that lake selection is an important consideration for plant sedaDNA studies, as it acts as a control on levels of DNA preservation, detection success and representation of floristic composition. At a small lake (with <2 km2 catchment area) located close to the Pinus treeline in northeast Norway, the sedaDNA record shows little change in floristic composition and diversity over the Holocene period investigated (ca. 10,700 and 3,300 cal. years BP), with high values of Pinus sedaDNA detected throughout the record. The high Pinus values could not be determined with certainty as representing past local presence of the tree. In contrast, at a large lake (with >200 km2 catchment) in the Polar Urals, located north of a treeline comprising Larix and Picea, the sedaDNA record documents a range of different plant communities growing within its large and topographically complex catchment, including a period of establishment of coniferous forest taxa between ca. 9000 and 4000 cal. years BP. Contrary to the conclusions of earlier sedaDNA studies, the findings presented in Paper III demonstrate that when compared with a detailed pollen record counted with a high pollen sum, sedaDNA and pollen analyses can show considerable overlap in the pattern of occurrence of key plant taxa. At the two sites which remained unglaciated during the last glacial interval, the sedaDNA records reveal a diverse full-glacial flora of what can best be called a herb-tundra vegetation, dominated by forbs (e.g. Papaver, Draba, Saxifraga sp., Astragalus, Bistorta vivipara) with some graminoids (e.g. Puccinellia, Festuca, Juncus biglumis, Bromus pumpellianus). Floristic richness based on sedaDNA at these sites showed a sustained increase until the early- to middle-Holocene, with the sequential addition of new plant taxa over time, before stabilising over the later Holocene. The sedaDNA record from the previously glaciated site in northeast Norway provides no evidence for increased floristic richness over time that might have been expected due to successional arrival and/or delayed immigration of species. Lastly, the sedaDNA record from the site in the Polar Urals provides robust evidence of persistence of arctic-alpine taxa through several large-magnitude climate changes over the past 24,000 cal. years BP, demonstrating the buffering capacity of a spatially heterogeneous mountain region. However, a distinct decline in their proportional abundance and diversity began as soon as woody taxa started to expand, suggesting that in a future warming scenario, local species loss may occur long before tree establishment occurs. Table of Contents Table of Contents Table of Contents ............................................................................................................ i Table of Tables .............................................................................................................. vii Table of Figures .............................................................................................................. ix Research Thesis: Declaration of Authorship ................................................................... xv Acknowledgements ..................................................................................................... xvii Chapter 1 Introduction ................................................................................................ 1 1.1 Preamble .................................................................................................................. 1 1.2 The Last Glacial-Interglacial Transition .................................................................... 1 1.3 Compositional Changes in Northern Plant Communities Over the Last Glacial- Interglacial Transition .............................................................................................. 3 1.4 Research Questions ................................................................................................. 5 1.5 Research Aim and Objectives ................................................................................... 6 1.6 Thesis Structure and Author Contributions .............................................................. 6 Chapter 2 Literature Review .......................................................................................11 2.1 Introduction ........................................................................................................... 11 2.2 Present-Day Patterns in the Diversity and Distribution of Northern Plant Communities .......................................................................................................... 11 2.3 Floristic Changes Over the Last Glacial-Interglacial Cycle....................................... 14 2.3.1 The Last Glacial Maximum (LGM) ................................................................... 14 2.3.2 Postglacial Colonisation and Development of Plant Communities Within Previously Glaciated Regions ......................................................................... 15 2.3.3 Composition of the Full-Glacial Flora Within Ice-Free (i.e. Unglaciated) Regions........................................................................................................... 16 2.3.4 Traditional Palaeoecological Records ............................................................. 18 2.4 Sedimentary Ancient DNA (SedaDNA) Analysis ...................................................... 18 2.4.1 A Brief History of Ancient DNA (aDNA) .......................................................... 18 2.4.2 Environmental DNA (eDNA) ..........................................................................
Recommended publications
  • 'Cejkaian Tubules' in the Posterior Midgut of Terrestrial Enchytraeidae (Oligochaeta)
    85 (2) · August 2013 pp. 113–122 ‘Cejkaian tubules’ in the posterior midgut of terrestrial Enchytraeidae (Oligochaeta) Rüdiger M. Schmelz1,2,* and Rut Collado2 1 ECT Oekotoxikologie GmbH, Böttgerstrasse 2–14, 65439 Flörsheim am Main, Germany 2 Universidad de A Coruña, Fac. Ciencias, Dep. Biología Animal, Biol. Vegetal, y Ecología, Rua da Fraga 10, 15008 A Coruña, Spain * Corresponding author, e-mail: [email protected] Received 29 May 2013 | Accepted 2 July 2013 Published online at www.soil-organisms.de 1 August 2013 | Printed version 15 August 2013 Abstract More than one hundred years ago, Bohumil Čejka described peculiar elongate tubules in the posterior region of the intestine of Hepatogaster birulae, a new terrestrial enchytraeid species collected in North-East Siberia. The tubules have no cilia but a proper epithelium and they run parallel to the longitudinal axis of the intestine over several segments, inside the intestinal epithelium but in close contact with the blood sinus. The tubules end blindly anteriorly and with a porus to the intestinal lumen posteriorly. The number of tubules increases from posterior to anterior due to bifurcations, and their diameter decreases. Čejka hypothesized that these tubules are glands that provide secretions for the final process of digestion or that aid in the egestion of faeces. He found them only in one species, Hepatogaster birulae, which was later synonymized with Henlea ochracea. In recent years we screened a large number of terrestrial enchytraeids in vivo and found these peculiar tubules in two further species of Henlea, in one species of Oconnorella and in thirteen species of Fridericia.
    [Show full text]
  • Systematic Botany 29(1):29-41. 2004 Doi
    Systematic Botany 29(1):29-41. 2004 doi: http://dx.doi.org/10.1600/036364404772973960 Phylogenetic Relationships of Haplolepideous Mosses (Dicranidae) Inferred from rps4 Gene Sequences Terry A. Heddersonad, Donald J. Murrayb, Cymon J. Coxc, and Tracey L. Nowella aBolus Herbarium, Department of Botany, University of Cape Town, Private Bag, Rondebosch 7701, Republic of South Africa bThe Birmingham Botanical Garden, Westbourne Road, Edgbaston, Birmingham, B15 3TR U. K. cDepartment of Biology, Duke University, Durham, North Carolina 27708 dAuthor for Correspondence ( [email protected]) Abstract The haplolepideous mosses (Dicranidae) constitute a large group of ecologically and morphologically diverse species recognised primarily by having peristome teeth with a single row of cells on the dorsal surface. The reduction of sporophytes in numerous moss lineages renders circumscription of the Dicranidae problematic. Delimitation of genera and higher taxa within it has also been difficult. We analyse chloroplast-encoded rps4 gene sequences for 129 mosses, including representatives of nearly all the haplolepideous families and subfamilies, using parsimony, likelihood and Bayesian criteria. The data set includes 59 new sequences generated for this study. With the exception of Bryobartramia, which falls within the Encalyptaceae, the Dicranidae are resolved in all analyses as a monophyletic group including the extremely reduced Archidiales and Ephemeraceae. The monotypic Catoscopium, usually assigned to the Bryidae is consistently resolved as sister to Dicranidae, and this lineage has a high posterior probability under the Bayesian criterion. Within the Dicranidae, a core clade is resolved that comprises most of the species sampled, and all analyses identify a proto-haplolepideous grade of taxa previously placed in various haplolepideous families.
    [Show full text]
  • State of Colorado 2016 Wetland Plant List
    5/12/16 State of Colorado 2016 Wetland Plant List Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetland Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X http://wetland-plants.usace.army.mil/ Aquilegia caerulea James (Colorado Blue Columbine) Photo: William Gray List Counts: Wetland AW GP WMVC Total UPL 83 120 101 304 FACU 440 393 430 1263 FAC 333 292 355 980 FACW 342 329 333 1004 OBL 279 285 285 849 Rating 1477 1419 1504 1511 User Notes: 1) Plant species not listed are considered UPL for wetland delineation purposes. 2) A few UPL species are listed because they are rated FACU or wetter in at least one Corps Region. 3) Some state boundaries lie within two or more Corps Regions. If a species occurs in one region but not the other, its rating will be shown in one column and the other column will be BLANK. Approved for public release; distribution is unlimited. 1/22 5/12/16 Scientific Name Authorship AW GP WMVC Common Name Abies bifolia A. Murr. FACU FACU Rocky Mountain Alpine Fir Abutilon theophrasti Medik. UPL UPL FACU Velvetleaf Acalypha rhomboidea Raf. FACU FACU Common Three-Seed-Mercury Acer glabrum Torr. FAC FAC FACU Rocky Mountain Maple Acer grandidentatum Nutt. FACU FAC FACU Canyon Maple Acer negundo L. FACW FAC FAC Ash-Leaf Maple Acer platanoides L. UPL UPL FACU Norw ay Maple Acer saccharinum L. FAC FAC FAC Silver Maple Achillea millefolium L. FACU FACU FACU Common Yarrow Achillea ptarmica L.
    [Show full text]
  • DNA-Based Environmental Monitoring for the Invasive Myxozoan Parasite, Myxobolus Cerebralis, in Alberta, Canada
    ! ! ! ! "#$%&'()*!+,-./0,1),2'3!40,.20/.,5!60/!27)!!8,-'(.-)!49:0;0',!<'/'(.2)=!!"#$%$&'() *+,+%,-&.(=!.,!$3>)/2'=!?','*'! ! >9! ! "',.)33)!+/.,!&'//9! ! ! ! ! ! ! ! ! $!27)(.(!(@>1.22)*!.,!A'/2.'[email protected]),2!06!27)!/)B@./)1),2(!60/!27)!*)5/))!06! ! ! 4'(2)/!06!CD.),D)! ! .,! ! +,-./0,1),2'3!E)'327!CD.),D)(! ! ! ! ! ! CD7003!06!<@>3.D!E)'327! F,.-)/(.29!06!$3>)/2'! ! ! ! ! ! ! ! ! ! ! ! G!"',.)33)!+/.,!&'//9=!HIHI! !! ! ! ! ! ! !"#$%&'$( ! J7./3.,5!*.()'()!.(!'!*.()'()!06!6.(7!D'@()*!>9!',!.,-'(.-)!19:0(A0/)',!A'/'(.2)=! !"#$%$&'()*+,+%,-&.(K!82!L'(!6./(2!*)2)D2)*!.,!?','*'!.,!M07,(0,!N'O)!.,!&',66!#'2.0,'3!<'/O=! $3>)/2'=!.,!$@5@(2!HIPQ=!',*!3.223)!.(!O,0L,!'>0@2!27)!2/',(1.((.0,!06!27.(!A'/'(.2)!.,!?','*'K! ?@//),2!2)(2.,5!60D@()(!0,!27)!*)2)D2.0,!06!!/)*+,+%,-&.(!.,!6.(7!2.((@)(=!/)B@./.,5!3)27'3!2)(2.,5!06! >027!.,6)D2)*!',*!,0,%.,6)D2)*!6.(7K!E0L)-)/=!27)!A'/'(.2)!7'(!'!*)6.,.2.-)!70(2=!27)!03.50D7')2)! L0/1!0'%.1+#)2'%.1+#!',*!2L0!),-./0,1),2'3!(2'5)(!60@,*!.,!L'2)/!',*!()*.1),2!27'2!D/)'2)! 027)/!'-),@)(!60/!*)2)D2.0,K!J)!A/0A0()!27'2!@(.,5!27)!A'/'(.2)!(2'5)(!60@,*!.,!L'2)/!',*! ()*.1),2!',*!27)!'32)/,'2)!L0/1!70(2=!0'%.1+#)2'%.1+#3!'/)!'!/)'(0,'>3)!D01A3)1),2!20!6.(7! ('1A3.,5!',*!L.33!>)!)(A)D.'339!@()6@3!60/!('1A3.,5!.,!'/)'(!L7)/)!6.(7!D033)D2.0,!.(!D7'33),5.,5! 0/!A/07.>.2.-)!*@)!20!-@3,)/'>.3.29!06!27)!6.(7!A0A@3'2.0,(K!8,!'**.2.0,=!0/)2'%.1+#!(@(D)A2.>.3.29!20! !/)*+,+%,-&.(!.(!,02!D0,(.(2),2!'D/0((!27)!(A)D.)(=!L.27!):A)/.1),2(!(70L.,5!(01)!'/)!/)6/'D20/9K! ?7'/'D2)/.;'2.0,!06!27)()!L0/1!A0A@3'2.0,(!L.33!7)3A!2'/5)2!6@2@/)!10,.20/.,5!',*!D0,2/03!
    [Show full text]
  • Fossil Mosses: What Do They Tell Us About Moss Evolution?
    Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca.
    [Show full text]
  • BOTANICAL RESOURCES REPORT Chetco Wild and Scenic River Mineral Withdrawal Project Rogue River-Siskiyou National Forest Gold Beach Ranger District
    BOTANICAL RESOURCES REPORT Chetco Wild and Scenic River Mineral Withdrawal Project Rogue River-Siskiyou National Forest Gold Beach Ranger District Clint Emerson District Botanist October 25, 2012 CONTENTS 1 Introduction ........................................................................................................................................... 2 2 Project and Effects Summary ................................................................................................................ 2 3 Affected Environment ........................................................................................................................... 2 3.1 Botanical Resources ...................................................................................................................... 3 3.1.1 Threatened, Endangered, Sensitive and survey and Manage Plant and Fungi Species 3 3.1.2 Invasive Plant Species ......................................................................................................... 6 4 Environmental Effects........................................................................................................................... 7 4.1 Effects on Botanical Resources ..................................................................................................... 8 4.1.1 Effects on Threatened, Endangered, Sensitive and Survey and Manage Plant and Fungi Species 8 4.1.2 Risk of Invasive Plant Species Spread .................................................................................. 9 References ..................................................................................................................................................
    [Show full text]
  • Botanical Survey at Reed River Hot Springs, Gates of the Arctic National Park and Preserve (GAAR)
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Botanical Survey at Reed River Hot Springs, Gates of the Arctic National Park and Preserve (GAAR) Natural Resource Report NPS/GAAR/NRR—2016/1136 ON THIS PAGE Photograph of two hot water outlets in the uppermost part of the A field. The hot springs are surrounded by azonal, lush fern vegetation. The central part of the A field consisted mainly of broken sinter material and very sparse vegetation. Photograph courtesy of Lisa Strecker ON THE COVER Photograph of A field of the Reed River Hot Springs and the Reed River as seen from the slope above the hot springs. The bright green vegetation of the hot springs area contrasts starkly with plant cover on the other side of the Reed River which is characteristic for the area. Photograph courtesy of Lisa Strecker Botanical Survey at Reed River Hot Springs, Gates of the Arctic National Park and Preserve (GAAR) Natural Resource Report NPS/GAAR/NRR—2016/1136 Lisa Strecker Gates of the Arctic National Park and Preserve 4175 Geist Road Fairbanks, AK 99709 February 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public.
    [Show full text]
  • Chapter 4 Phytogeography of Northeast Asia
    Chapter 4 Phytogeography of Northeast Asia Hong QIAN 1, Pavel KRESTOV 2, Pei-Yun FU 3, Qing-Li WANG 3, Jong-Suk SONG 4 and Christine CHOURMOUZIS 5 1 Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA, e-mail: [email protected]; 2 Institute of Biology and Soil Science, Russian Academy of Sciences, Vladivostok, 690022, Russia, e-mail: [email protected]; 3 Institute of Applied Ecology, Chinese Academy of Sciences, P.O. Box 417, Shenyang 110015, China; 4 Department of Biological Science, College of Natural Sciences, Andong National University, Andong 760-749, Korea, e-mail: [email protected]; 5 Department of Forest Sciences, University of British Columbia, 3041-2424 mail Mall, Vancouver, B.C., V6T 1Z4, Canada, e-mail: [email protected] Abstract: Northeast Asia as defined in this study includes the Russian Far East, Northeast China, the northern part of the Korean Peninsula, and Hokkaido Island (Japan). We determined the species richness of Northeast Asia at various spatial scales, analyzed the floristic relationships among geographic regions within Northeast Asia, and compared the flora of Northeast Asia with surrounding floras. The flora of Northeast Asia consists of 971 genera and 4953 species of native vascular plants. Based on their worldwide distributions, the 971 gen- era were grouped into fourteen phytogeographic elements. Over 900 species of vascular plants are endemic to Northeast Asia. Northeast Asia shares 39% of its species with eastern Siberia-Mongolia, 24% with Europe, 16.2% with western North America, and 12.4% with eastern North America.
    [Show full text]
  • Native Plant List, Pdf Format
    Appendix A: City of Bellingham Native Plant List December 2020 The City of Bellingham Native Plant List (Figure 1) includes plant species that are native to Bellingham watersheds (Figure 2). The native plant list applies to all habitat types, including riparian, upland, and wetland areas. The list was developed using specimen records from the Consortium of Pacific Northwest Herbaria and Bellingham plant checklists curated by Don Knoke, a volunteer at the University of Washington Herbarium. To improve plant establishment and protect the genetic resources of our local plant populations, the City recommends using native plants that were grown from seeds or cuttings collected from the Puget Trough Ecoregion (Figure 3). Obtaining native plants grown from material collected from the Puget Trough Ecoregion will help ensure the plants are adapted to the unique environmental conditions of Bellingham watersheds and are genetically similar to our local plant populations. A more thorough discussion of the rational and selection process is provided in the City of Bellingham Public Works Department Native Plant Materials Selection Guidelines, December 2020. Figure 1. City of Bellingham Native Plant List Ferns Common Name Scientific Name Family Bracken fern Pteridium aquilinum var. pubescens Dennstaedtiaceae Bristle-like quillwort Isoetes tenella Isoetaceae Common horsetail Equisetum arvense Equisetaceae Deer fern Struthiopteris spicant (Blechnum spicant) Blechnaceae Dream fern Aspidotis densa Pteridaceae Giant horsetail Equisetum telmateia ssp. braunii
    [Show full text]
  • Molecular Phylogeny of Subtribe Artemisiinae (Asteraceae), Including Artemisia and Its Allied and Segregate Genera Linda E
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 9-26-2002 Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E. Watson Miami University, [email protected] Paul E. Bates University of Nebraska-Lincoln, [email protected] Timonthy M. Evans Hope College, [email protected] Matthew M. Unwin Miami University, [email protected] James R. Estes University of Nebraska State Museum, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscifacpub Watson, Linda E.; Bates, Paul E.; Evans, Timonthy M.; Unwin, Matthew M.; and Estes, James R., "Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera" (2002). Faculty Publications in the Biological Sciences. 378. http://digitalcommons.unl.edu/bioscifacpub/378 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BMC Evolutionary Biology BioMed Central Research2 BMC2002, Evolutionary article Biology x Open Access Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E Watson*1, Paul L Bates2, Timothy M Evans3,
    [Show full text]
  • Chenopodium Ucrainicum (Chenopodiaceae / Amaranthaceae Sensu APG), a New Diploid Species: a Morphological Description and Pictorial Guide
    https://doi.org/10.15407/ukrbotj77.04.237 Chenopodium ucrainicum (Chenopodiaceae / Amaranthaceae sensu APG), a new diploid species: a morphological description and pictorial guide Sergei L. MOSYAKIN1, Bohumil MANDÁK2, 3 1 M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereschenkivska Str., Kyiv 01601, Ukraine [email protected] 2 Faculty of Environmental Sciences, Czech University of Life Sciences Prague 129 Kamýcká, Praha 6 – Suchdol 165 21, Czech Republic [email protected] 3 Institute of Botany, Czech Academy of Sciences 1 Zámek, Průhonice 252 43, Czech Republic [email protected] Mosyakin S.L., Mandák B. 2020. Chenopodium ucrainicum (Chenopodiaceae / Amaranthaceae sensu APG), a new diploid species: a morphological description and pictorial guide. Ukrainian Botanical Journal, 77(4): 237–248. Abstract. A morphological description is provided for Chenopodium ucrainicum Mosyakin & Mandák (Chenopodiaceae / Amaranthaceae sensu APG), a new species allied to C. suecicum and C. ficifolium. At present this new species is reliably known from several localities in Ukraine (three areas in Kyiv city, one in Kyiv Region, one in Rivne Region), but it is probably more widespread, or could be even alien in Eastern Europe. Comparison of our plants with other taxa [such as C. suecicum (incl. C. neumanii, etc.), C. ficifolium, several morphotypes of C. album, as well as plants known as C. borbasii, C. missouriense (sensu stricto and sensu auct. europ.), C. lobodontum, etc.], demonstrated that C. ucrainicum is morphologically different from all these known and named taxa. It is also a late-flowering and late-fruiting species: in Kyiv fruits/seeds normally develop during late September – early November.
    [Show full text]
  • 2007-2008 NARGS Seed List
    Abelmoschus-Allium 1 Abelmoschus manihot creamy yellow 2m 158 72 Alcea rosea 'Queen Purple' purple 60-90cm 124 2 Acantholimon armenum pink-white 10-20cm 265 73 sp red 99 3 glumaceum pink 10-15cm 220 74 Alchemilla glaucescens yellow-green 20cm 103 4 Acanthus hungaricus pink/mauve to 1.5m 79 75 Allium abramsii rose-purple 6-15cm 7 5 mollis mauve/white 120cm 79 76 acuminatum deep pink 15-30cm 262 6 Acer palmatum v dissectum to 3m 157 77 angulosum lilac 45cm 79 7 Achillea ageratifolia white 15-30cm 17 78 bolanderi reddish purple 10-35cm 7 196 8 ageratifolia ssp aizoon white 15cm 152 79 brevistylum ex Boulder Mt, Utah 102 9 alpina white 7.5cm 79 80 caeruleum blue 40cm 2 148 10 ambrosiaca white 10-15cm 21 81 caesium 'Zaamin' ex Ruksans bright dark blue 25cm 66 190 11 ptarmica pale purple 30cm 212 82 carinatum white-pink mix 40cm 171 12 tomentosa 'Aurea' deep yellow 20-30cm 246 83 carinatum ssp pulchellum pink 40cm 31 13 Acis autumnalis white w/pink base 16cm 31 84 carinatum ssp pulchellum purple 30-50cm 56 100 307 14 nicaeensis white 10cm 181 85 carinatum ssp pulchellum rose lavender 30-50cm 71 15 nicaeensis white/green 5-18cm > 86 carinatum ssp pulchellum f album white 40cm 31 16 rosea pink 4-12cm 139 87 cernuum mix 30-45cm > 17 Aconitum delphiniifolium blue-purple to 1m 60 88 cernuum pink 30-45cm 8 18 gmelinii cream-yellow to 60cm 229 89 cernuum pink/white 30cm 201 19 'Ivorine' ivory 45-60cm 121 90 cernuum wine red 20cm 262 20 lycoctonum ssp vulparia pale yellow to 1m > 91 chinense pale violet 30cm 150 21 lycoctonum ssp vulparia (cf) white
    [Show full text]