Species Description
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
General Disclaimer One Or More of the Following Statements May Affect
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) I Acv j ..a °" "^ i^e!<►)e ^r^}er Rim ^^^ the 1Q*re*t of wly arel w* d ►s- ,9*W,Ratieie of Wh Reaouries Survey ProgMM iobrmaiion and without liability ^CH00 #or Mry M Fade o thereof," ^ atK , !t4 O 'er E7.6- 1 0.1 9.9. s. z \IS74 GEOLOGIC INTERPRETATION OF SKYLAB PHOTOGRAPHS by Keenan Lee and Robert J. Weimer Remote Sensing Report 75-6 EREP Investigations 380 Contract NAS9-13394 National Aeronautics and Space Administration 8618 ON OF N /b-1 (E76 - 10199) GEOLOGIC INTERPRETATI SKYLAB PHOTOGRAPHS (Cclorado School CSCL 086 Mines) 85 p HC $5.00 Unclas G3/43 00199 December 1975 044: G: O ^d ci b C!] r4y ^ ^ x Frontispiece. View eastward from Island in the Sky area of Canyonlands National Park, across the canyon of the Colorado River, to the La Sal Mountains. -
Species Concepts and the Evolutionary Paradigm in Modern Nematology
JOURNAL OF NEMATOLOGY VOLUME 30 MARCH 1998 NUMBER 1 Journal of Nematology 30 (1) :1-21. 1998. © The Society of Nematologists 1998. Species Concepts and the Evolutionary Paradigm in Modern Nematology BYRON J. ADAMS 1 Abstract: Given the task of recovering and representing evolutionary history, nematode taxonomists can choose from among several species concepts. All species concepts have theoretical and (or) opera- tional inconsistencies that can result in failure to accurately recover and represent species. This failure not only obfuscates nematode taxonomy but hinders other research programs in hematology that are dependent upon a phylogenetically correct taxonomy, such as biodiversity, biogeography, cospeciation, coevolution, and adaptation. Three types of systematic errors inherent in different species concepts and their potential effects on these research programs are presented. These errors include overestimating and underestimating the number of species (type I and II error, respectively) and misrepresenting their phylogenetic relationships (type III error). For research programs in hematology that utilize recovered evolutionary history, type II and III errors are the most serious. Linnean, biological, evolutionary, and phylogenefic species concepts are evaluated based on their sensitivity to systematic error. Linnean and biologica[ species concepts are more prone to serious systematic error than evolutionary or phylogenetic concepts. As an alternative to the current paradigm, an amalgamation of evolutionary and phylogenetic species concepts is advocated, along with a set of discovery operations designed to minimize the risk of making systematic errors. Examples of these operations are applied to species and isolates of Heterorhab- ditis. Key words: adaptation, biodiversity, biogeography, coevolufion, comparative method, cospeciation, evolution, nematode, philosophy, species concepts, systematics, taxonomy. -
Western Tiger Salamander,Ambystoma Mavortium
COSEWIC Assessment and Status Report on the Western Tiger Salamander Ambystoma mavortium Southern Mountain population Prairie / Boreal population in Canada Southern Mountain population – ENDANGERED Prairie / Boreal population – SPECIAL CONCERN 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Western Tiger Salamander Ambystoma mavortium in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xv + 63 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 33 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Schock, D.M. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada, in COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-33 pp. Production note: COSEWIC would like to acknowledge Arthur Whiting for writing the status report on the Western Tiger Salamander, Ambystoma mavortium, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Kristiina Ovaska, Co-chair of the COSEWIC Amphibians and Reptiles Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Salamandre tigrée de l’Ouest (Ambystoma mavortium) au Canada. -
Loggerhead Shrike, Migrans Subspecies (Lanius Ludovicianus Migrans), in Canada
PROPOSED Species at Risk Act Recovery Strategy Series Recovery Strategy for the Loggerhead Shrike, migrans subspecies (Lanius ludovicianus migrans), in Canada Loggerhead Shrike, migrans subspecies © Manitoba Conservation 2010 About the Species at Risk Act Recovery Strategy Series What is the Species at Risk Act (SARA)? SARA is the Act developed by the federal government as a key contribution to the common national effort to protect and conserve species at risk in Canada. SARA came into force in 2003, and one of its purposes is “to provide for the recovery of wildlife species that are extirpated, endangered or threatened as a result of human activity.” What is recovery? In the context of species at risk conservation, recovery is the process by which the decline of an endangered, threatened or extirpated species is arrested or reversed, and threats are removed or reduced to improve the likelihood of the species’ persistence in the wild. A species will be considered recovered when its long-term persistence in the wild has been secured. What is a recovery strategy? A recovery strategy is a planning document that identifies what needs to be done to arrest or reverse the decline of a species. It sets objectives and broad strategies to attain them and identifies the main areas of activities to be undertaken. Detailed planning is done at the action plan stage. Recovery strategy development is a commitment of all provinces and territories and of three federal agencies — Environment Canada, Parks Canada Agency and Fisheries and Oceans Canada — under the Accord for the Protection of Species at Risk. -
The White Rim — East to West 4 Days/3 Nights
The White Rim — East to West 4 days/3 nights DAY 1 Needles districts of Canyonlands and beyond. We will shuttle from our shop in Moab to the TOTAL MILEAGE: 27 miles Island in the Sky District of Canyonlands National Park where we begin our ride with a DAY 3 dramatic descent of the Shafer Trail switchbacks. This 1,200 foot downhill lasts for three miles and We begin the day with a fun but technical brings us down to the White Rim sandstone layer. descent off the Hogback down to the White Points of interest include: the Colorado River Rim layer. Points of interest include Overlook, Musselman Arch, Little Bridge Canyon Candlestick Tower and Holeman Canyon, where we (prime Bighorn Sheep habitat) and Lathrop Canyon. may take a short hike. Hiking into this canyon is very The route continues with a downhill trend and then tricky and requires some interesting moves. The rolls gently to camp. After Lathrop Canyon, we will hanging gardens, pools of water and narrow canyon ride to our camp at Airport Tower and enjoy views of walls make this hike one of our favorites on the White the La Sal and Abajo mountains. Rim. We will then continue along in a downhill mode along the rim of the sheer canyon to Potato Bottom TOTAL MILEAGE: 18 miles where the White Rim sandstone layer disappears into the Green River. We’ll camp here under the DAY 2 cottonwoods on the bank of the Green River. Today, as we approach Monument Basin, we TOTAL MILEAGE: 21 miles will continue riding around the beautifully eroded canyons of the Colorado Plateau. -
Geologic Story of Canyonlands National Park
«u GEOLOGICAL SURVEY BULLETIN 1327 JUL 1 7 1990 Dacus Library Wmthrop College Documents Department -T7 LOOKING NORTH FROM EAST WALL OF DEVILS LANE, just south of the Silver Stairs. Needles are Cedar Mesa Sandstone. Junction Butte and Grand View Point lie across Colorado River in background. GEOLOGICAL SURVEY BULLETIN 1327 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 74-600043 Reprinted 1977 and 1990 U.S. GOVERNMENT PRINTING OFFICE : 1974 For sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225 . Contents Page A new park is born 1 Major Powell's river expeditions 4 Early history 9 Prehistoric people 9 Late arrivals 14 Geographic setting 17 Rocks and landforms 20 How to see the park 26 The high mesas 27 Island in the Sky 27 Dead Horse Point State Park 30 North entrance 34 Shafer and White Rim Trails 34 Grand View Point 36 Green River Overlook 43 Upheaval Dome 43 Hatch Point 46 Needles Overlook 47 Canyonlands Overlook 48 U-3 Loop 49 Anticline Overlook 50 Orange Cliffs 54 The benchlands 5g The Maze and Land of Standing Rocks 58 The Needles district 60 Salt, Davis, and Lavender Canyons _ 64 The Needles and The Grabens 73 Canyons of the Green and Colorado Rivers 85 Entrenched and cutoff meanders 86 Green River 87 Colorado River _ 96 Summary of geologic history H2 Additional reading H7 Acknowledgments H8 Selected references n% Index 123 VII Illustrations Page Frontispiece . -
Towards a Global Names Architecture: the Future of Indexing Scientific Names
A peer-reviewed open-access journal ZooKeys 550: 261–281Towards (2016) a Global Names Architecture: The future of indexing scientific names 261 doi: 10.3897/zookeys.550.10009 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Towards a Global Names Architecture: The future of indexing scientific names Richard L. Pyle1 1 Bernice Pauahi Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA Corresponding author: Richard L. Pyle (email address) Academic editor: Ellinor Michel | Received 19 May 2015 | Accepted 20 May 2015 | Published 7 January 2016 http://zoobank.org/AD5B8CE2-BCFC-4ABC-8AB0-C92DEC7D4D85 Citation: Pyle RL (2016) Towards a Global Names Architecture: The future of indexing scientific names. In: Michel E (Ed.) Anchoring Biodiversity Information: From Sherborn to the 21st century and beyond. ZooKeys 550: 261–281. doi: 10.3897/zookeys.550.10009 Abstract For more than 250 years, the taxonomic enterprise has remained almost unchanged. Certainly, the tools of the trade have improved: months-long journeys aboard sailing ships have been reduced to hours aboard jet airplanes; advanced technology allows humans to access environments that were once utterly inacces- sible; GPS has replaced crude maps; digital hi-resolution imagery provides far more accurate renderings of organisms that even the best commissioned artists of a century ago; and primitive candle-lit micro- scopes have been replaced by an array of technologies ranging from scanning electron microscopy to DNA sequencing. But the basic paradigm remains the same. Perhaps the most revolutionary change of all – which we are still in the midst of, and which has not yet been fully realized – is the means by which taxonomists manage and communicate the information of their trade. -
Hibbett Et Al 2011 Fung Biol
fungal biology reviews 25 (2011) 38e47 journal homepage: www.elsevier.com/locate/fbr Plenary Paper Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences David S. HIBBETTa,*, Anders OHMANa, Dylan GLOTZERa, Mitchell NUHNa, Paul KIRKb, R. Henrik NILSSONc,d aBiology Department, Clark University, Worcester, MA 01610, USA bCABI UK, Bakeham Lane, Egham, Surrey TW20 9TY, UK cDepartment of Plant and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Goteborg,€ Sweden dDepartment of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., 51005 Tartu, Estonia article info abstract Article history: Fungal taxonomy seeks to discover, describe, and classify all species of Fungi and provide Received 14 December 2010 tools for their identification. About 100,000 fungal species have been described so far, but it Accepted 3 January 2011 has been estimated that there may be from 1.5 to 5.1 million extant fungal species. Over the last decade, about 1200 new species of Fungi have been described in each year. At that Keywords: rate, it may take up to 4000 y to describe all species of Fungi using current specimen-based Biodiversity approaches. At the same time, the number of molecular operational taxonomic units Classification (MOTUs) discovered in ecological surveys has been increasing dramatically. We analyzed Environmental sequences ribosomal RNA internal transcribed spacer (ITS) sequences in the GenBank nucleotide data- Molecular ecology base and classified them as “environmental” or “specimen-based”. We obtained 91,225 MOTU sequences, of which 30,217 (33 %) were of environmental origin. Clustering at an average Taxonomy 93 % identity in extracted ITS1 and ITS2 sequences yielded 16,969 clusters, including 6230 (37 %) clusters with only environmental sequences, and 2223 (13 %) clusters with both envi- ronmental and specimen-based sequences. -
When Mycologists Describe New Species, Not All Relevant
A peer-reviewed open-access journal MycoKeys 72: 109–128 (2020) Mycological species descriptions over time 109 doi: 10.3897/mycokeys.72.56691 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research When mycologists describe new species, not all relevant information is provided (clearly enough) Louisa Durkin1, Tobias Jansson1, Marisol Sanchez2, Maryia Khomich3, Martin Ryberg4, Erik Kristiansson5, R. Henrik Nilsson1 1 Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden 2 Department of Forest Mycology and Plant Pathology, Uppsala Biocentre, Swedish University of Agricultural Sciences, Uppsala, Sweden 3 Nofima – Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, 1431 Ås, Norway 4 Department of Organismal Biology, Uppsala University, Uppsala, Sweden 5 Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden Corresponding author: R. Henrik Nilsson ([email protected]) Academic editor: T. Lumbsch | Received 19 July 2020 | Accepted 24 August 2020 | Published 10 September 2020 Citation: Durkin L, Jansson T, Sanchez M, Khomich M, Ryberg M, Kristiansson E, Nilsson RH (2020) When mycologists describe new species, not all relevant information is provided (clearly enough). MycoKeys 72: 109–128. https://doi.org/10.3897/mycokeys.72.56691 Abstract Taxonomic mycology struggles with what seems to be a perpetual shortage -
Describing Species
DESCRIBING SPECIES Practical Taxonomic Procedure for Biologists Judith E. Winston COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1999 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data © Winston, Judith E. Describing species : practical taxonomic procedure for biologists / Judith E. Winston, p. cm. Includes bibliographical references and index. ISBN 0-231-06824-7 (alk. paper)—0-231-06825-5 (pbk.: alk. paper) 1. Biology—Classification. 2. Species. I. Title. QH83.W57 1999 570'.1'2—dc21 99-14019 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 98765432 p 10 98765432 The Far Side by Gary Larson "I'm one of those species they describe as 'awkward on land." Gary Larson cartoon celebrates species description, an important and still unfinished aspect of taxonomy. THE FAR SIDE © 1988 FARWORKS, INC. Used by permission. All rights reserved. Universal Press Syndicate DESCRIBING SPECIES For my daughter, Eliza, who has grown up (andput up) with this book Contents List of Illustrations xiii List of Tables xvii Preface xix Part One: Introduction 1 CHAPTER 1. INTRODUCTION 3 Describing the Living World 3 Why Is Species Description Necessary? 4 How New Species Are Described 8 Scope and Organization of This Book 12 The Pleasures of Systematics 14 Sources CHAPTER 2. BIOLOGICAL NOMENCLATURE 19 Humans as Taxonomists 19 Biological Nomenclature 21 Folk Taxonomy 23 Binomial Nomenclature 25 Development of Codes of Nomenclature 26 The Current Codes of Nomenclature 50 Future of the Codes 36 Sources 39 Part Two: Recognizing Species 41 CHAPTER 3. -
Global Trends in the Description of Aquatic and Semiaquatic Heteroptera Species, 1758–2004
Global trends in the description of aquatic and semiaquatic Heteroptera species, 1758–2004 John T. Polhemus & Dan A. Polhemus Species description trends for the 4782 species of aquatic and semiaquatic Heteroptera (Gerromorpha, Nepomorpha, and Leptopodomorpha) named during the 246 year interval from 1758 through 2004 are analyzed in regard to number of species descriptions per year and cumulative number of species. These data are graphed both on a world basis, and for seven major zoogeographic regions (Palearctic, Nearctic, Neotropical, Afrotropical, Oriental, Australian and Pacific). This analysis reveals that our taxonomic knowledge of aquatic and semiaquatic Heteroptera, as measured by species descriptions, has accumulated at a progressively faster rate over time when assessed on a world basis, albeit in an episodic and uneven fashion, with peaks of high activity interspersed with periods of relatively low output. When examined at the level of individual zoogeographic regions, the accumulation of taxonomic descriptions is seen to be pronouncedly episodic, and contingent upon the productivity of particular regional experts during the courses of their careers, with just ten authors accounting for over 40 percent of all currently accepted species descriptions. Species accumulation curves, based on published descriptions, indicate that description of extant aquatic and semiaquatic Heteroptera species is nearly complete for the Palearctic and Nearctic regions, and well advanced for the Neotropical region. The Oriental and Australian (including New Guinea) regions show continuing sharp upward trends, indicating that these regions are still far from completely documented. The flattening of the description accumulation curves in the Afrotropical and Pacific regions is interpreted to be an artifact produced by a relative paucity of recent taxonomic work in these regions, and thus not truly indicative of well documented biotas in these areas. -
California Tiger Salamander (Ambystoma Californiense)
U.S. Fish & Wildlife Service Recovery Plan for the Central California Distinct Population Segment of the California Tiger Salamander (Ambystoma californiense) California tiger salamander at Jepson Prairie, Solano County. Photograph by Adam Clause. Used with permission. Disclaimer Recovery plans delineate such reasonable actions as may be necessary, based upon the best scientific and commercial data available, for the conservation and survival of listed species. Plans are published by the U.S. Fish and Wildlife Service (Service), sometimes prepared with the assistance of recovery teams, contractors, State agencies, and others. Recovery plans do not necessarily represent the view, official positions or approval of any individuals or agencies involved in the plan formulation, other than the Service. They represent the official position of the Service only after they have been signed by the Regional Director. Recovery plans are guidance and planning documents only; identification of an action to be implemented by any public or private party does not create a legal obligation beyond existing legal requirements. Nothing in this plan should be construed as a commitment or requirement that any Federal agency obligate or pay funds in any one fiscal year in excess of appropriations made by Congress for that fiscal year in contravention of the Anti-Deficiency Act, 31 U.S.C. 1341, or any other law or regulation. Approved recovery plans are subject to modification as dictated by new finding, changes in species status, and the completion of recovery actions. Literature Citation should read as follows: U.S. Fish and Wildlife Service. 2017. Recovery Plan for the Central California Distinct Population Segment of the California Tiger Salamander (Ambystoma californiense).