Title Institution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
General Disclaimer One Or More of the Following Statements May Affect
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) I Acv j ..a °" "^ i^e!<►)e ^r^}er Rim ^^^ the 1Q*re*t of wly arel w* d ►s- ,9*W,Ratieie of Wh Reaouries Survey ProgMM iobrmaiion and without liability ^CH00 #or Mry M Fade o thereof," ^ atK , !t4 O 'er E7.6- 1 0.1 9.9. s. z \IS74 GEOLOGIC INTERPRETATION OF SKYLAB PHOTOGRAPHS by Keenan Lee and Robert J. Weimer Remote Sensing Report 75-6 EREP Investigations 380 Contract NAS9-13394 National Aeronautics and Space Administration 8618 ON OF N /b-1 (E76 - 10199) GEOLOGIC INTERPRETATI SKYLAB PHOTOGRAPHS (Cclorado School CSCL 086 Mines) 85 p HC $5.00 Unclas G3/43 00199 December 1975 044: G: O ^d ci b C!] r4y ^ ^ x Frontispiece. View eastward from Island in the Sky area of Canyonlands National Park, across the canyon of the Colorado River, to the La Sal Mountains. -
Evolution of a Highly Dilatant Fault Zone in the Grabens of Canyonlands
Solid Earth, 6, 839–855, 2015 www.solid-earth.net/6/839/2015/ doi:10.5194/se-6-839-2015 © Author(s) 2015. CC Attribution 3.0 License. Evolution of a highly dilatant fault zone in the grabens of Canyonlands National Park, Utah, USA – integrating fieldwork, ground-penetrating radar and airborne imagery analysis M. Kettermann1, C. Grützner2,a, H. W. van Gent1,b, J. L. Urai1, K. Reicherter2, and J. Mertens1,c 1Structural Geology, Tectonics and Geomechanics Energy and Mineral Resources Group, RWTH Aachen University, Lochnerstraße 4–20, 52056 Aachen, Germany 2Neotectonics and Natural Hazards, RWTH Aachen University, Lochnerstraße 4–20, 52056 Aachen, Germany anow at: COMET; Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Cambridge, UK bnow at: Shell Global Solutions International, Rijswijk, the Netherlands cnow at: ETH Zürich, Zürich, Switzerland Correspondence to: M. Kettermann ([email protected]) Received: 20 February 2015 – Published in Solid Earth Discuss.: 17 March 2015 Revised: 18 June 2015 – Accepted: 22 June 2015 – Published: 21 July 2015 Abstract. The grabens of Canyonlands National Park are 1 Introduction a young and active system of sub-parallel, arcuate grabens, whose evolution is the result of salt movement in the sub- Understanding the structure of dilatant fractures in normal surface and a slight regional tilt of the faulted strata. We fault zones is important for many applications in geoscience. present results of ground-penetrating radar (GPR) surveys Reservoirs for hydrocarbons, geothermal energy and fresh- in combination with field observations and analysis of high- water often contain dilatant fractures (e.g., Ehrenberg and resolution airborne imagery. -
The White Rim — East to West 4 Days/3 Nights
The White Rim — East to West 4 days/3 nights DAY 1 Needles districts of Canyonlands and beyond. We will shuttle from our shop in Moab to the TOTAL MILEAGE: 27 miles Island in the Sky District of Canyonlands National Park where we begin our ride with a DAY 3 dramatic descent of the Shafer Trail switchbacks. This 1,200 foot downhill lasts for three miles and We begin the day with a fun but technical brings us down to the White Rim sandstone layer. descent off the Hogback down to the White Points of interest include: the Colorado River Rim layer. Points of interest include Overlook, Musselman Arch, Little Bridge Canyon Candlestick Tower and Holeman Canyon, where we (prime Bighorn Sheep habitat) and Lathrop Canyon. may take a short hike. Hiking into this canyon is very The route continues with a downhill trend and then tricky and requires some interesting moves. The rolls gently to camp. After Lathrop Canyon, we will hanging gardens, pools of water and narrow canyon ride to our camp at Airport Tower and enjoy views of walls make this hike one of our favorites on the White the La Sal and Abajo mountains. Rim. We will then continue along in a downhill mode along the rim of the sheer canyon to Potato Bottom TOTAL MILEAGE: 18 miles where the White Rim sandstone layer disappears into the Green River. We’ll camp here under the DAY 2 cottonwoods on the bank of the Green River. Today, as we approach Monument Basin, we TOTAL MILEAGE: 21 miles will continue riding around the beautifully eroded canyons of the Colorado Plateau. -
Geologic Story of Canyonlands National Park
«u GEOLOGICAL SURVEY BULLETIN 1327 JUL 1 7 1990 Dacus Library Wmthrop College Documents Department -T7 LOOKING NORTH FROM EAST WALL OF DEVILS LANE, just south of the Silver Stairs. Needles are Cedar Mesa Sandstone. Junction Butte and Grand View Point lie across Colorado River in background. GEOLOGICAL SURVEY BULLETIN 1327 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 74-600043 Reprinted 1977 and 1990 U.S. GOVERNMENT PRINTING OFFICE : 1974 For sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225 . Contents Page A new park is born 1 Major Powell's river expeditions 4 Early history 9 Prehistoric people 9 Late arrivals 14 Geographic setting 17 Rocks and landforms 20 How to see the park 26 The high mesas 27 Island in the Sky 27 Dead Horse Point State Park 30 North entrance 34 Shafer and White Rim Trails 34 Grand View Point 36 Green River Overlook 43 Upheaval Dome 43 Hatch Point 46 Needles Overlook 47 Canyonlands Overlook 48 U-3 Loop 49 Anticline Overlook 50 Orange Cliffs 54 The benchlands 5g The Maze and Land of Standing Rocks 58 The Needles district 60 Salt, Davis, and Lavender Canyons _ 64 The Needles and The Grabens 73 Canyons of the Green and Colorado Rivers 85 Entrenched and cutoff meanders 86 Green River 87 Colorado River _ 96 Summary of geologic history H2 Additional reading H7 Acknowledgments H8 Selected references n% Index 123 VII Illustrations Page Frontispiece . -
Middle Salt Creek Canyon Access Plan Canyonlands National Park, Utah
Utah State University DigitalCommons@USU Canyonlands Research Bibliography Canyonlands Research Center 2002 Environmental Assessment : Middle Salt Creek Canyon Access Plan Canyonlands National Park, Utah National Park Service, U.S. Department of the Interior Canyonlands National Park Follow this and additional works at: https://digitalcommons.usu.edu/crc_research Part of the Environmental Indicators and Impact Assessment Commons Recommended Citation National Park Service, U.S. Department of the Interior and Canyonlands National Park, "Environmental Assessment : Middle Salt Creek Canyon Access Plan Canyonlands National Park, Utah" (2002). Canyonlands Research Bibliography. Paper 226. https://digitalcommons.usu.edu/crc_research/226 This Report is brought to you for free and open access by the Canyonlands Research Center at DigitalCommons@USU. It has been accepted for inclusion in Canyonlands Research Bibliography by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ENVIRONMENTAL ASSESSMENT MIDDLE SALT CREEK CANYON ACCESS PLAN CANYONLANDS NATIONAL PARK, UTAH _______________________________________________________________________ Summary Salt Creek is the largest drainage in the Needles district of Canyonlands National Park. The creek supports one of the most important riparian ecosystems in the park. It is also the heart of the Salt Creek National Register Archeological District, the area with the highest recorded density of archeological sites in the park. A tributary canyon contains the spectacular Angel Arch, a well-known geologic formation that for many years has been a destination point for park visitors. In 1998 the U.S. District Court for the State of Utah ruled, in a lawsuit filed by the Southern Utah Wilderness Alliance, that the National Park Service violated the NPS Organic Act (16 U.S.C. -
GEOLOGY of the MOAB REGION Introduction
GEOLOGY OF THE MOAB REGION (Arches, Dead Horse Point and Canyonlands) Annabelle Foos Geology Department, University of Akron Introduction The geology of Arches National Park, porphyry laccolith that was intruded during the Dead Horse Point State Park and the “Island in Oligocene, 30 million years ago and the Sky” section of Canyonlands National Park experienced glaciation during the Pleistocene. is very similar. They occur in the Canyonlands Melting snow which accumulates in the section of the Colorado Plateau, in the vicinity mountains during winter months, replenishes of the confluence between the Green and streams and recharges bedrock aquifers Colorado Rivers. The same stratigraphic units providing a valuable source of fresh water to outcrop in all three parks (figure 1) plus salt this region. (Doelling and others, 1987) tectonic features can be found in both Arches and Canyonlands. While in the Moab region you will become familiar with some of the stratigraphic units we will see throughout the Colorado Plateau, observe salt tectonic features, arch formation and in the distance you can view the La Sal Mountains. Cryptogamic Soils While in these three parks (and throughout this trip) you will be required to STAY ON THE DESIGNATED TRAILS. This rule is especially important at these parks in order to preserve the fragile cryptogamic soils (figure 2). Cryptogamic soils are a complex of lichens, algae, moss and fungus that occurs as a black coating on the ground surface and as small mounds where it is well developed. It plays an extremely important role in the desert ecology. It binds the soil together and inhibits wind erosion and erosion by sheet wash. -
Manti-La Sal National Forest Visitor Guide
anti-La Sal National Forest M VISITOR GUIDE Ancient Lands Modern Get-away Dark Canyon Wilderness La Sal Pass Maple Canyon (© Jason Stevens) he deep sandstone canyons, mountaintops, meadows, lakes and streams of the Manti-La Sal National Forest have What’s Inside T beckoned people for ages. Evidence of prehistoric and historic Get to Know Us .................... 2 life is found throughout the four islands of the forest. From Wilderness ........................... 3 the Abajos and La Sals in southeastern Utah to the Wasatch Scenic Byways ..................... 4 Plateau and Sanpitch Mountains hundreds of miles away in Map ...................................... 6 Campgrounds ..................... 10 central Utah, the diverse and scenic landscapes are rich with Cabins ................................. 11 fossils, cliff dwellings, historic waterways, and old mines. Activities ............................. 12 Know Before You Go........... 15 Today the forest offers people Contact Information ........... 16 Fast Forest Facts a retreat from the hurry of modern life. Those who seek solitude and Acres: 1.4 million quiet can find it here. Intrepid adventurers Mining: Source of 85% of coal mined will discover mountains to scale, trails to in Utah; important source of uranium explore, waters to fish, and woods where in the 1940s-1970s they can hunt. Scenic byways and backways Aberts Amazing Feature: Forest habitat summon motorists looking for stunning vistas, squirrel provides for the densest black bear and abundant camping areas are perfect for and -
Canyon Country
CANYONLANDS TRAVEL REGION ANYONANYON OUNTRYOUNTRY CCA Land Of EnchantmentCC his vast rock desert in southeastern Utah showcases deep, colorful T canyons, majestic natural monuments pictured in western movies, a fantasy land of towering pinnacles and slot canyons, rock arches and ANYONANYON OUNTRYOUNTRY bridges, and breathtaking vistas atop mesas. Much can be seen by car, and more of this endlessly intriguing country is accessible by foot, mountain Explanation CC CC bike, four-wheel-drive vehicle, or watercraft. Collapsed salt anticline You do not have to be a geologist to enjoy or interpret the scenery, for the Arches rocks easily divulge their stories of forming in seas or on land, in deserts or in deltas, in rivers or along beaches. What a fascinating heritage: dinosaurs Bridges once sauntered through lush lowlands leaving huge footprints in mud that Petroglyphs has now turned to rock, vast sand dunes that drifted across the area are Dinosaur tracks preserved as large sweeping lines in sandstone walls, and oceans that once Indian ruins covered this region left fossilized corals and seashells embedded in lime- Paradox basin salt boundary stone. Parks, monuments, recreation areas This guide introduces you to the rocks’ stories, to enhance your travels and Indian reservations your appreciation of the region. Along designated scenic byways, which are portrayed at the end of this pamphlet, look for the specific features Scenic byways described here and learn what their journey has been as you make yours. During your visit, tread lightly on this delicate land so that the pristine and 0 10 20 miles unique landscape remains unchanged. -
Canyonlands National Park
Unpaved Overlook/ Rapids Boat launch Self-guiding trail Drinking water 2-wheel-drive road Paved road Ranger station Campground Drink one gallon of water per person per Unpaved Trail Locked gate Picnic area Primitive campsite day in this semi-desert 4-wheel-drive road environment. Horseshore Canyon Unit to 70 Moab to 70 and Green River Island in the Sky Visitor Center to 70 30mi 49mi 48km North 79km 45mi ARCHES NATIONAL PARK 73km 191 Visitor L Center A B Moab Y Moab to Areas in the Park R via SR 313 128 0 1 5 Kilometers BOWKNOT I Island in the Sky Visitor Center 32mi/51km N Needles Visitor Center 76mi/121km BEND T N Horseshoe Canyon Unit via I-70 101mi/162km 0 1 5 Miles O H Y 313 Horseshoe Canyon Unit via State 24 119mi/191km N 279 A Hans Flat 133mi/74km C T N G N Moab D I I E O R T Information A A N D P I M N O Center A R O P L L N E L Y O H A MOAB N R 4025ft A E Petroglyphs 1227m C N I Canyonlands M National Park The Headquarters Knoll C A N Y O N G N O L 191 N N Y O Y O N A N Pucker Pass A k C C ree L C A E E R I N O M H ier S arr BIG FLAT Moab to Monticello E B 53mi S Mineral Bottom rail) 85km thief T R (Horse Potash O T R Road I N H U Mineral P O P E F S H I DEAD HORSE POINT E T R S Potash H O STATE PA RK W O N L N Visitor Center O O Horseshoe Y Y Canyon N Unit to 24 A N C RED SEA 32mi Moses and A T A Y L O R FLAT Road C 51km Zeus S Potash F 5920ft C H E Island in the Sky A A I C 1804m N F A Y ER H N Visitor Center O Dead Horse Point Overlook R T B Y N Anticline E U U O 5680ft E S PH N Overlook Upheaval EA C 1731m D R VAL K A il No river access along this 5745ft O S Tra Gooseneck Great Gallery Bottom M E afer portion of Potash Road. -
Late Quaternary Eolian and Alluvial Response to Paleoclimate, Canyonlands, Southeastern Utah
Late Quaternary eolian and alluvial response to paleoclimate, Canyonlands, southeastern Utah Marith C. Reheis† Richard L. Reynolds Harland Goldstein U.S. Geological Survey, MS-980, Federal Center, Box 25046, Denver, Colorado 80225, USA Helen M. Roberts Institute of Geography and Earth Sciences, University of Wales, Aberystwyth SY23 3DB, Wales, UK James C. Yount U.S. Geological Survey, MS-980, Federal Center, Box 25046, Denver, Colorado 80225, USA Yarrow Axford Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80309, USA Linda Scott Cummings Paleo Research Institute, 2675 Youngfi eld Street, Golden, Colorado 80401, USA Nancy Shearin Bureau of Land Management, Monticello Field Offi ce, Monticello, Utah 84535, USA ABSTRACT began at ca. 6 ka and ended by ca. 3–2 ka, fol- sheets and dunes are common features of semi- lowed by a shift to drier modern conditions; arid regions, and their deposits and intercalated In upland areas of Canyonlands National localized mobilization of dune sand has per- paleosols potentially contain a long-term record Park, Utah, thin deposits and paleosols show sisted to the present. These interpretations of landscape response to climate fl uctuations. late Quaternary episodes of eolian sedimen- are similar to those of studies at the Chaco Mineral dust may strongly infl uence land- tation, pedogenesis, and climate change. dune fi eld, New Mexico, and the Tusayan scapes and ecosystems by adding materials to Interpretation of the stratigraphy and opti- dune fi eld, Arizona, and are consistent with soils that change their properties (e.g., Reheis cally stimulated luminescence ages of eolian paleoclimate interpretations of pollen and et al., 1995; Simonson, 1995; Herrmann et al., and nearby alluvial deposits, their pollen, packrat middens in the region. -
Geologic Resource Evaluation Report, Capitol Reef National Park
National Park Service U.S. Department of the Interior Natural Resource Program Center Capitol Reef National Park Geologic Resource Evaluation Report Natural Resource Report NPS/NRPC/GRD/NRR—2006/005 Capitol Reef National Park Geologic Resource Evaluation Report Natural Resource Report NPS/NRPC/GRD/NRR—2006/005 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 September 2006 U.S. Department of the Interior Washington, D.C. The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. Natural Resource Reports are the designated medium for disseminating high priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. Examples of the diverse array of reports published in this series include vital signs monitoring plans; "how to" resource management papers; proceedings of resource management workshops or conferences; annual reports of resource programs or divisions of the Natural Resource Program Center; resource action plans; fact sheets; and regularly-published newsletters. Views and conclusions in this report are those of the authors and do not necessarily reflect policies of the National Park Service. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service. -
CANYONLANDS GEOLOGY INFORMATION Canyonlands
CANYONLANDS GEOLOGY INFORMATION Canyonlands National Park offers the visitor a grand spectacle of what earth forces can do to once flat and uniform rock layers. The different rock for mations here all have two things in common. One, they are all sedimentary rocks, and two, they have all been subjected to natural forces such as weath ering, erosion, and faulting. A major shaping force in Canyonlands has been a 3,000 foot thick deposit of salt and gypsum, known as the Paradox member of the Hermosa formation. The Paradox salts were left behind when the water evaporated from a large basin of sea water that once covered this area. The salt deposits provide an un stable platform for the countless millions of tons of rock that overly them. In the Needles district of Canyonlands is a series of parallel canyons known as the Grabens. Graben is a geological term for a canyon formed by a block of earth subsiding in relation to the rest of the area. The Grabens in Canyon lands formed as a result of the salt beneath the sandstone flowing away to areas of less pressure. The sandstone settled along pre-existing fault lines to create the Grabens. The Needles themselves result from weathering and erosion along joint and fault lines. The Needles area is crisscrossed with such fractures in the rocks. You can hike right through one such crack on the Joint Trail, which leaves from the four-wheel drive parking area near Chesler Park and ends up at the edge of Chesler Park. At the present time the joint through which the trail runs is only a couple of feet wide, but in the not too distant geologi cal future it will be many feet wide due to the constant work of weathering and erosion.