PHASE 2 REPORT - REVIEW COPY FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2D - BASELINE MODELING REPORT PCBs REASSESSMENT RI/FS

MAY 1999

U.S. Environmental Protection Agency Region 2 and U.S. Army Corps of Engineers Kansas City District

Volume 2D - Book 2 of 4 Fate and Transport Models

Limno-Tech, Inc. Menzie-Cura & Associates, Inc. Tetra Tech, Inc. PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS Volume 2D - BASELINE MODELING REPORT HUDSON RIVER PCBs REASSESSMENT RI/FS

BOOK 2 of 4 LIST OF TABLES

TABLE TITLE

3-1 Comparison of Manning’s ‘n’ from Previous Studies 3-2 Modeled Hudson River Flows at the Upstream Boundary of the TIP 3-3 Comparison of Model Results with Rating Curve Data 3-4 Effect of Manning’s ‘n’ on Model Results for 100-Year Flow Event 3- 5 Effect of Turbulent Exchange Coefficients on Model Results 4- 1 Summary of Inputs for Depth of Scour Model at Each High Resolution Core 4-2 Predicted Depth of Scour Range for 100 Year Flood at Each High Resolution Core Location 4- 3 TIP Cohesive Sediment Expected Values of Solids Erosion and Mean Depth of Scour for 100- Year Flood, from Monte Carlo Analysis 5- 1 a HUDTOX Water Column Segment Geometry in Thomspon Island Pool (2-Dimensional Segmentation). 5-1 b HUDTOX Water Column Segment Geometry Below Thomspon Island Pool (1-Dimensional Segmentation). 5-2 a HUDTOX Sediment Segment Geometry in Thomspon Island Pool for Surficial Sediment Segments (2-Dimensional Segmentation). 5- 2 b HUDTOX Sediment Segment Geometry Downstream of Thomspon Island Pool for Surficial Sediment Segments (1-Dimensional Segmentation). 6- 1 Sediment Data Sets Used in Development and Application of the HUDTOX Model 6-2 Sediment Areas Used for Computing HUDTOX Sediment PCB Calibration Targets 6-3 USGS Gauge Information for Gauges Used in Flow Estimation 6-4 Drainage Areas and Reference Tributaries Used in the LTI Tributary Flow Estimation 6-5 Mean Seasonal USGS Flows for the Selected Flow Gauges in the Study Area for the Period 3/1/77 - 6/30/92 6-6 Seasonal Tributary Flow Adjustment Factors Applied to Tributaries between Fort Edward and Stillwater, and between Stillwater and Waterford 6-7 Summary of Available Solids Data for Mainstem Stations; Number of Samples and Sources of SS Sample Data by Station 6-8 Summary of Available Solids Data for Tributaries; Number of Samples and Source of SS Sample Data by Station 6-9 Reference Tributaries for Unmonitored Tributaries 6-10 Cumulative Mainstem SS Loads and Yields

Limno-Tech, Inc. PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS Volume 2D - BASELINE MODELING REPORT HUDSON RIVER PCBs REASSESSMENT RI/FS

BOOK 2 of 4 LIST OF TABLES (cont.)

TABLE TITLE

6-11 Cumulative SS Loads and Corresponding Yields by Reach (10/1/77 - 9/30/97) 6-12 Tributary Drainage Areas Used in Tributary Load Adjustment 6-13 Inputs to SS Trapping Efficiency Calculations 6-14 SS Trapping Efficiency Estimates for Specific Reaches 6-15 Final Tributary SS Concentration Equations, Considering Deposition 6-16 Estimated Average Annual Tributary SS Loads to HUDTOX (10/1/77 - 12/31/97) 6-17 Seasonal Suspended Solids Load Difference by Reach Based on Preliminary Load Estimates for the period 10/1/77 to 12/31/96 6-18 Number of Days on which PCB Data were Available for , , and 6-19 Percent of PCB Transport Past Mainstem Upper Hudson River PCB Sampling Stations Under High and Low Flow (4/1/91 - 9/30/97) 6-20 Percent of PCB Load at Fort Howard for Suspended Solids Concentration Above and Below 10 mg/1 (4/1/91 - 9/30/97) 6- 21 Comparison of Annual Tri-t- PCB Loads Estimates at Fort Edward, Schuylerville, Stillwater and Waterford Presented in the DEIR (TAMS 1997) and this Report 7- 1 HUDTOX Solids Model Calibration Parameter Values 7-2 Transition Levels by Reach for Flow-dependent Settling in HUDTOX 7-3 HUDTOX Sediment Resuspension and Armoring Parameters 7-4 HUDTOX Fraction Organic Carbon and Dissolved Organic Carbon Parameterization by Reach 7-5 HUDTOX PCB Model Calibration Parameter Values

Limno-Tech, Inc. PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS Volume 2D - BASELINE MODELING REPORT HUDSON RIVER PCBs REASSESSMENT RI/FS

BOOK 2 of 4 LIST OF FIGURES

FIGURE TITLE

1-1 Location Map for Hudson River Watershed 1- 2 Upper Hudson River Watershed 1 -3 Thomspon Island Pool 2- 1 Upper Hudson Reassessment Modeling Framework 3- 1 Thomspon Island Pool Study Area 3-2 Thomspon Island Pool RMA-2V Model Mesh 3-3 Thomspon Island Pool Velocity Vectors 100-year Flow Event 3- 4 Shear Stress Computed from Vertically Averaged Velocity 4- 1 Erosion versus Shear Stress 4-2 Armoring Depth versus Shear Stress 4-3 Armoring Depth versus Shear Stress Above 5 dynes/cm^ 4-4 Core HR-19: Likelihood of PCB Scour 4-5 Core HR-20: Likelihood of PCB Scour 4-6 Core HR-23: Likelihood of PCB Scour 4-7 Core HR-25: Likelihood of PCB Scour 4-8 Core HR-26: Likelihood of PCB Scour 4-9 Cumulative Percent versus Mean Depth of Scour 4- 10 Cumulative Percent versus Total Solids Scoured 5- 1 Conceptual Framework for the HUDTOX PCB Model 5-2 Illustration of Sediment Scour in the HUDTOX Model 5-3 Illustration of Sediment Burial in the HUDTOX Model. 5-4 (a-b) HUDTOX Model Water Column Segmentation Grid for Upper Hudson River 5-4 (c-d) HUDTOX Model Water Column Segmentation Grid for Upper Hudson River 5-5 Thomspon Island Pool Study Area 5-6 Schematic of the HUDTOX Water Column Segmentation Grid 5-7 HUDTOX Water Column Segment Depths by River Mile 5- 8 Percent Cohesive Sediment Area Represented in HUDTOX by River Mile 6- 1 Upper Hudson River Basin USGS Flow Gage Stations Used in HUDTOX Modeling

I Limno-Tech, Inc. I PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS Volume 2D - BASELINE MODELING REPORT HUDSON RIVER PCBs REASSESSMENT RI/FS

BOOK 2 of 4 LIST OF FIGURES (cont.)

FIGURE TITLE

6-2 Comparison of Sources of Flow as a Percentage of the Flow at the Federal Dam 6-3 Estimated Daily Average Mainstem and Tributary Flows for the Upper Hudson River between Fort Edward and Federal Dam (1/1/97 - 9/30/97) Upper Hudson River Basin Primary Long-Term Sampling Locations for Solids used in HUDTOX Modeling 6-5 Subwatersheds Monitored for Solids between Fort Edward and Waterford 6-6 Log Flow vs. Log TSS Concentration at Fort Edward, Stillwater, and Waterford 6-7 Mainstem and Tributary Suspended Solids Watershed Yield based on HUDTOX Suspended Solids Loading Estimates (10/1/77 - 9/30/97) 6-8 Relative Contribution of Estimated External Suspended Solids Loads to the Upper Hudson River 1/1/77 to 9/30/97 6-9 Upper Hudson River Basin Primary Long-Term Sampling Locations for PCB Data Used in HUDTOX Modeling 6-10 Available Mainstem Upper Hudson River PCB Data from The Hudson River Database, Release 4.1 6-11 Estimated Annual Tri-i- PCB Load at Historical PCB Sampling Stations on the Upper Hudson River 6-12 Estimated Annual Load of Total PCB, BZ#4, and BZ#52 past Fort Edward 4/1/91 to 9/30/97 6-13 Relative Contribution of Estimated External PCB Loads to the Upper Hudson River 1/1/77 to 9/30/97 6-14 Estimated Cumulative Tri+ PCB Load passing Fort Edward, Schuylerville, Stillwater, and Waterford compared to DEIR Estimates 6- 15 Estimated Annual Tri-t- PCB Load at Fort Edward, Stillwater, and Waterford compared to DEIR Estimates 7- 1 Flow Transition Levels for Gross Settling in the Thompson Island Pool Specified for HUDTOX Calibration 7-2 Spring 1994 High Flow Event Settling and Resuspension Rates in HUDTOX 7-3 Monthly Air Temperature at Glens Falls, for 1977-1997 7-4 Monthly Average Water Temperature by Reach in the Upper Hudson River 7-5 Specification of Historical Atmospheric Gas-Phase PCB Boundary Concentrations for the 1977 - 1997 HUDTOX Calibration Period 7.6a HUDTOX Annual Surficial Sediment Porewater Diffusive Mass Transfer Rates for Cohesive and Noncohesive Sediment

Limno-Tech, Inc. PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS Volume 2D - BASELINE MODELING REPORT HUDSON RIVER PCBs REASSESSMENT RI/FS

BOOK 2 of 4 LIST OF FIGURES (cont.)

FIGURE TITLE

7.6b HUDTOX Reach-Specific Annual Paniculate Chemical Mass Transfer Rates 7-7 (a-c) Spring 1994 Total Suspended Solids HUDTOX Calibration Results 7-8 Spring 1994 HUDTOX-Computed versus Estimated Cumulative TSS Flux 7-9 (a-c) 1977 - 1997 Total Suspended Solids HUDTOX Calibration Results 7-10 (a-c) 1993 Total Suspended Solids HUDTOX Calibration Results 7-11 1991-1997 HUDTOX-Computed versus Estimated Cumulative TSS Flux 7-12 1977 - 1997 Cumulative HUDTOX-Computed versus Estimated Solids Transport at High and Low Flows* past Mainstem Hudson River Sampling Stations 7-13 1991 - 1997 HUDTOX-Computed versus Observed Total PCB Concentrations 7-14 1991 - 1997 HUDTOX-Computed versus Observed BZ#4 Concentrations 7-15 1991 - 1997 HUDTOX-Computed versus Observed BZ#5 2 Concentrations 7-16 Observed versus Computed Water Column BZ#4 to BZ#52 Concentration Ratios 7-17a Computed versus Observed Total PCB Concentrations through TIP during the GE September 24, 1996 Time of Travel Survey 7-17b Computed versus Observed Total PCB Concentrations through TIP during the GE September 25, 1996 Time of Travel Survey 7-17c Computed versus Observed Total PCB Concentrations through TIP during the GE June 4, 1997 Time of Travel Survey 7-17d Computed versus Observed Total PCB Concentrations through TIP during the GE June 17, 1997 Time of Travel Survey 7-18 HUDTOX-Computed vs. Data-Estimated Total PCB Load Gain across Thompson Island Pool 1/1/91 to 9/30/97 7-19 Cumulative Total PCB In-River Fluxes Past Mainstem Hudson River Sampling Stations from 4/1/91 to 9/30/97 7-20 Percent of Total PCB Transport Occurring at High* and Low Flow at Mainstem Hudson River Sampling Stations 7-21 Cumulative Tri-t- PCB Flux at Schuylerville 1977 - 1984 with and without Additional External PCB Load Specified at Fort Edward 7-22 Calibration Results of Total Suspended Solids 21-Year Cumulative Mass Flux in the Hudson River 7-23 (a-b) 1977 - 1997 Computed versus Observed Water Column Tri+ Concentrations

Limno-Tech, Inc.

318226 PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS Volume 2D - BASELINE MODELING REPORT HUDSON RIVER PCBs REASSESSMENT RI/FS

BOOK 2 of 4 LIST OF FIGURES (cont.)

FIGURE TITLE

7-24 1977 -1997 HUDTOX Computed versus Estimated Cumulative Tri+ Flux past Schuylerville, Stillwater, and Waterford 7-25 (a-b) 1977-1997 HUDTOX-Computed versus Observed Surficial (0 - 4 cm) Bulk Tri+ Concentrations in Cohesive Sediments 7-25 (c-d) 1977-1997 HUDTOX-Computed versus Observed Surficial (0 - 4 cm) Bulk Tri+ Concentrations in Non-Cohesive Sediments 7-26 Computed (HUDTOX) TSS Mass Balance by Reach for 1977-1997 7-27 HUDTOX-Computed Long-Term Average Burial Velocity for Cohesive and Noncohesive Sediment in Thompson Island Pool for 1977-1997 7-28 HUDTOX-Computed Cumulative Bed Elevation Change in Thompson Island Pool during 1977- 1997 7-29 Computed (HUDTOX) Total PCB Mass Balance by Reach for Period from 4/1/91 to 9/30/97 7-30 Cumulative HUDTOX-Computed Contribution of Sediment-Water Total PCB Flux to Cumulative PCB Load Gain between Mainstem Hudson River Sampling Stations from 4/1/91 to 9/30/97 7-31 Cumulative HUDTOX-Computed Sediment Contribution to Load Gain across Thompson Island Pool from 1991-1997 for TSS, Tot-PCB, BZ#4 and BZ#52 8-1 Water Column PCB Concentrations at Thompson Island Dam and Waterford (Lock 1) for the No Action Forecast Simulations (1998 - 2018) 8-2 1998 - 2018 Summer Average (June through September) Total PCB Concentrations at Thompson Island Dam and Waterford for the No Action Forecast Simulations 8-3 Annual Total PCB Flux at Thompson Island Dam and Waterford for the 1998 - 2018 No Action Forecast Simulations 8-4 Predicted Reach Average Surficial Sediment Total PCB Concentrations for the No Action Forecast Simulations (1998-2018) 8-5 Adjustment of 1977 Fort Edward Hydrograph to Include the 100-Year Peak Flow (47,330 cfs) 8-6 HUDTOX-Computed PCB Concentrations at Thompson Island Dam for the 100-Year Flow and 1977 Flow Forecast Simulations 8-7 Cumulative Total PCB Flux over Thompson Island Dam for the 1 st Year of the 1998-2018 Forecast Simulations with the 100-Year Flow and 1977 Flow

Limno-Tech, Inc.

318227 PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS Volume 2D - BASELINE MODELING REPORT HUDSON RIVER PCBs REASSESSMENT RI/FS

BOOK 2 of 4 LIST OF PLATES

PLATE TITLE

3-1 Thompson Island Pool Bottom Shear Stress 100-year Flow Event

Limno-Tech, Inc. I Table 3-1 Comparison of Manning’s ‘n’ from Previous Studies

Source Main Channel Floodplain ‘n’ ‘n’

Zimmie, 1985 0.027 0.065

FEMA, 1982 0.028 - 0.035 0.075

Limno-Tech, Inc.

Table 3-2 Modeled Hudson River Flows at the Upstream Boundary of the TIP

River Discharge, Flow Description (cfs) Peak flow during spring and fall surveys, 1991 8,000 Peak flow for GE high flow survey, April 23-24, 1992 19,000 Peak flow for TAMS Phase 2 survey, April 12, 1993 20,300 Peak flow for spring 1994 (Bopp, 1994) 28,000 Peak flow in 1983 35,000 5-year high flow 30,126 25-year high flow 39,883 100-year high flow 47,330

Source: USGS Gaging Records, Butcher, 1993

Limno-Tech, Inc. Table 3-3 Comparison ot Model Results with Rating Curve Data

Rating Curve Downstream Model Predicted Gauge 119 Flow Boundary Upstream (Upstream) (cfs) Condition feet Elevations Elevations (NGVD) feet (NGVD) feet (NGVD) 10,000 120.6 121.5 121.2

20,000 122.2 123.8 123.6

30,000 123.8 126.1 126.1

Limno-Tech, Inc.

Table 3-4 Effect of Manning's 'n' on Model Results for TOO-Year Flow Event

Main River Elevation Floodplain Channel at Roger's Island Manning's 'n' Manning's 'n' feet (NGVD) Baseline 0.020 0.060 129.1

High 'n' 0.035 0.075 131.1

Low 'n' 0.015 0.060 128.6 Main Channel

Low 'n' 0.020 0.040 128.9 Floodplain

High 'n' 0.020 0.080 129.3 Floodplain

Limno-Tech, Inc.

318231 Table 3-5 Effect of Turbulent Exchange Coefficients on Model Results

River Elevation Turbulent Exchange Roger's Island Coefficients (Ib-sec/ft2) feet (NGVD) Baseline 100 129.1

Low Turbulent 50 128.8 Exchange Coefficients

High Turbulent 200 129.7 Exchange Coefficients

Limno-Tech, Inc.

318232 Table 4-1 Summary of Inputs for Depth of Scour Model at Each High Resolution Core

Core Name 100 Year Flood Surficial Dry Bulk Density Shear Stress (dynes/cm2) (g/cm2) HR-19 12.7 0.369 HR-20 29.8 0.207 HR-23 19.1 0.619 HR-25 53.1 0.590 HR-26 31.7 0.276

Source: Hudson River Database Release 4.1 Thompson Island Pool Hydrodynamic Model results

Limno-Tech, Inc.

Table 4-2 Predicted Depth of Scour Range for 100 Year Flood at Each High Resolution Core Location

Core Name Depth of Scour (cm) Median 5th Percentile 95th Percentile Depth of PCB Peak (cm) HR-19 0.074 0.016 0.356 20-24 HR-20 1.820 0.311 7.695 24-28 HR-23 0.158 0.030 0.819 28-32 HR-25 3.714 0.500 21.789 2.5 HR-26 1.643 0.275 8.262 12-24

Source: Hudson River Database Release 4.1

Limno-Tech, Inc.

Table 4-3 TIP Cohesive Sediment Expected Values of Solids Erosion and Mean Depth of Scour for 100-Year Flood, from Monte Carlo Analysis

Erosion Type Expected Value Depth (cm) 0.317 Solids (kg) 1,740,000 |

Limno-Tech, Inc.

318233 Table 5-la HUDTOX Water Column Segment Geometry in Thompson Island Pool (2-dimensional segmentation)

HUDTOX Cross- Segment Location Downstream Surface sectional Adjacent Segments Number Description River Mile Length Depth Area Volume Area (m) (m) (m^) (m^) (m") Below Downstream 1 West R. Island 194.11 721 1.66 111,167 184,239 256 48 3 2 East R. Island 194.11 721 1.33 124,233 164,924 229 49 4 3 West R. Island 193.59 845 1.66 179,319 301,100 357 50 5,6 4 East R. Island 193.59 845 2.19 100,373 219,502 260 51 7 5 west 193.00 942 1.55 93,705 145,320 154 53 52 8 6 center 193.00 942 4.77 69,641 331,926 353 54 - 9 7 east 193.00 942 1.60 51,501 82,167 87 55 - 10 8 west 192.25 1,219 1.25 135,968 170,143 140 57 56 11 9 center 192.25 1,219 3.68 118,933 437,877 359 58 - 12 c 1,219 1.47 72,249 106,095 87 60 59 13 o 10 east 192.25 ra 11 west 191.69 896 1.63 116,614 190,137 212 62 61 14 0) 12 center 191.69 896 3.60 104,141 374,750 418 63 15 E - U) 191.69 896 0.72 88,892 65,047 73 65 64 16 0) 13 east lA 14 west 190.99 1,125 1.67 108,820 181,319 161 67 66 17 ro c o 15 center 190.99 1,125 4.82 98,464 481,381 428 69 68 18 l/i 16 east 190.99 1,125 1.62 89,519 145,283 129 71 70 19 c0> E 17 west 190.33 1,054 1.71 77,285 132,461 126 73 72 20 JD 439,168 CN 18 center 190.33 1,054 4.34 101,114 417 74 - 21 19 east 190.33 1,054 2.00 66,975 133,699 127 76 75 22 20 west 189.81 848 1.71 66,786 113,979 134 77 - 23 21 center 189.81 848 4.29 78,114 335,126 395 79 78 24 22 east 189.81 848 2.04 88,884 181,045 214 - 80 25 23 west 189.22 941 2.07 76,079 157,460 167 82 81 26 24 center 189.22 941 5.62 63,745 358,258 381 83 - 27 25 east 189.22 941 2.01 60,339 121,202 129 85 84 28 26 west Tl Dam 188.50 1,160 1.92 106,532 200,215 173 86 - 29 27 center Tl Dam 188.50 1,160 3.58 146,361 517,870 446 87 - 29 28 east Tl Dam 188.50 1,160 1.48 157,473 232,375 200 89 88 29 Table 5- 1b HUDTOX Water Column Segment Geometry Below Thompson Island Pool (1-dimensional segmentation)

HUDTOX Cross- Segment Location Downstream Surface sectional Adjacent Segments Number Description River Mile Length Depth Area Volume Area 2 3 2 (m) (m) (m ) (m ) (m ) Below Downstream 29 Lock 6 186.20 3,757 1.95 837,947 1,634,430 435 91 90 30 30 184.85 2,178 3.49 557,155 ^1,946,807 894 93 92 31 31 Lock 5 183.41 2,317 3.86 474,625 1,832,981 791 95 94 32

32 182.30 1,767 3.92 L 468,521 1,835,130 1,039 96 33 33 181.40 1,446 3.12 229,378 715,684 495 97 34 34 179.73 2,699 2.84 572,753 1,628,112 603 99 98 35 35 178.08 2,647 3.76 501,225 1,882,175 711 101 100 36 36 175.08 4,833 4.20 948,752 3,985,892 825 103 102 37 37 170.98 6,597 4.24 1,377,869 5,844,528 886 105 104 38 38 169.79 1,918 3.69 558,975 2,064,033 1,076 107 106 39 39 Stillwater Dam 168.19 2,566 2.99 408,394 1,222,268 476 109 108 40 40 166.67 2,454 1.93 952,848 1,835,070 748 111 110 41 41 Lock 3 Dam 165.99 1,087 4.18 417,298 1,743,711 1,605 113 112 42 1 -dimensiona l segmentatio n 42 164.31 2,715 3.18 623,849 1,982,413 730 115 114 43 43 Lock 2 Dam 163.49 1,309 2.47 563,621 1,390,352 1,062 117 116 44 44 160.87 4,214 2.89 1,090,832 3,148,431 747 119 118 45 45 Lock 1 Dam 159.39 2,384 4.15 682,251 2,831,358 1,188 121 120 46 46 156.41 4,795 4.56 1,280,753 5,841,577 1,218 122 47 47 Federal Dam 153.89 4,056 5.77 1,282,972 7,405,588 1,826 123 0 Limno-Tech, Inc. U) H CO M Cd cn Table 5-2a HUDTOX Sediment Segment Geometry in Thompson Island Pool for Surficial Sediment Segments (2-dimensional segmentation) Layer thickness = 2 cm

HUDTOX HUDTOX Segment Sediment Surface Sediment Adjacent Segments Number Type Area Volume Layer (m2) (m3) Above Below 48 N 86,468 1,729 1 1 124 49 N 64,616 1,292 1 2 125 50 N 104,029 2,081 1 3 126 51 N 66,458 1,329 1 4 127 52 C 9,251 185 1 5 128 53 N 25,142 503 1 5 129 54 N 69,532 1,391 1 6 130 55 N 34,250 685 1 7 131 56 C 67,706 1,354 1 8 132 57 N 22,071 441 1 8 133 58 N 102,034 2,041 1 9 134 59 C 5,886 118 1 10 135 60 N 32,421 648 1 10 136 61 C 16,475 329 1 11 137 62 N 33,064 661 1 11 138 63 N 103,509 2,070 1 12 139 64 C 28,928 579 1 13 140

segmentatio n 65 N 19,719 394 1 13 141 66 C 34,407 688 1 14 142 67 N 23,202 464 1 14 143 68 C 17,791 356 1 15 144 69 N 71,668 1,433 1 15 145 2-dimension a 70 C 36,064 721 1 16 146 71 N 24,256 485 1 16 147 72 C 22,973 459 1 17 148 73 N 22,891 458 1 17 149 74 N 84,520 1,690 1 18 150 75 C 8,939 179 1 19 151 76 N 13,685 274 1 19 152 77 N 31,066 621 1 20 153 78 C 12,148 243 1 21 154 79 N 53,177 1,064 1 21 155 80 C 58,927 1,179 1 22 156 81 C 22,523 450 1 23 157 82 N 23,873 477 1 23 158 83 N 50,643 1,013 1 24 159 84 C 19,342 387 1 25 160 85 N 4,315 86 1 25 161 86 N 64,343 1,287 1 26 162 87 N 138,185 2,764 1 27 163 88 C 63,742 1,275 1 28 164 89 N 31,981 640 1 28 165 Limno-Tech, Inc.

318236 Table 5-2b HUDTOX Sediment Segment Geometry Downstream of Thompson Island Pool for Surficial Sediment Segments (1-dimensional segmentation) Layer thickness = 2 cm

HUDTOX HUDTOX Segment Sediment Surface Sediment Adjacent Segments Number Type Area Volume Layer (m2) (m3) Above Below 90 C 79,269 1,585 1 29 166 91 N 449,376 8,988 1 29 167 92 C 189,009 3,780 1 30 168 93 N 160,637 3,213 1 30 169 94 C 268,967 5,379 1 31 170 95 N 145,117 2,902 1 31 171 96 N 468,567 9,371 1 32 172 97 N 229,401 4,588 1 33 173 98 C 68,901 1,378 1 34 174 99 N 503,907 10,078 1 34 175 100 C 97,432 1,949 1 35 176 101 N 403,842 8,077 1 35 177 102 C 89,073 1,781 1 36 178 103 N 859,771 17,195 1 36 179 104 C 346,399 6,928 1 37 180 105 N 1,031,605 20,632 1 37 181 106 C 295,637 5,913 1 38 182 107 N 263,392 5,268 1 38 183 108 C 34,953 699 1 39 184 109 N 373,481 7,470 1 39 185 1 -dimensiona l segmentatio n 110 C 213,454 4,269 1 40 186 111 N 739,487 14,790 1 40 187 112 C 171,255 3,425 1 41 188 113 N 246,085 4,922 1 41 189 114 C 18,739 375 1 42 190 115 N 605,171 12,103 1 42 191 116 C 51,928 1,039 1 43 192 117 N 511,748 10,235 1 43 193 118 C 3,092 62 1 44 194 119 N 1,087,846 21,757 1 44 195 120 C 64,524 1,290 1 45 196 121 N 617,793 12,356 1 45 197 122 N 1,280,878 25,618 1 46 198 123 N 1,283,097 25,662 1 47 199 Limno-Tech, Inc.

318237 Table 6-1 Sediment Data Sets Used in Development and Application of the HUDTOX Model

Year Agency Program Description Purpose of Study Parameters* Use in HUDTOX Sediment core and grab Assess extent of PCB Aroclor PCBs, visual Specification of sediment Tri+ PCB 1977 NYSDEC sampling pollution in the UHR texture initial conditions for the 1977-1997 calibration. Sediment core and grab Confirm locations of PCB Aroclor PCBs, visual Specification of sediment Tri+ PCB 1984 NYSDEC sampling hotspots in TIP texture, bulk density calibration targets. Composite sediment Provide sufficient data to PCB congeners, Specification of Total PCB, BZ#4, sampling calculate mean PCB porewater PCB BZ#52, and Tri+ PCB initial concentrations over 1 to 2 congeners, DOC, bulk conditions for the 1 991 -1 997 General 1991 mile intervals of the UHR density, texture, grain size calibration. Specification of Electric sediment Tri+ PCB calibration targets. Specification of sediment DOC levels. High resolution core Investigation of long-term PCB congeners, Assesment of model-computed sampling trends in PCB transport, porewater PCB sediment burial rates in calibration. 1994 USEPA release and degradation via congeners, DOC, bulk the sediment record density, texture, grain size, radionuclides Low resolution sediment Investigation of PCB levels PCB congeners, bulk Specification of sediment Tri+ and core sampling in selected hotspots of the density, texture, grain size, Total PCB calibration parameters. 1994 USEPA UHR organic carbon Specification of sediment organic carbon levels.

Confirmatory sediment Calibration of the side scan Texture, grain size, bulk Specification of mean cohesive anc 1992 USEPA sampling sonar signal to sediment density, total carbon noncohesive bulk density values. properties Sediment type mapping Side scan sonar survey of Areal distribution of fine Establishment of cohesive and between Fort Edward and bottom sediments and coarse sediment noncohesive sediment 1992 USEPA Northumberland Dam segmentation

Sediment type mapping Qualitative sediment type Qualitative sediment type Establishment cohesive and General between Northumberland determinations based on determination at specific noncohesive sediment 1997 Electric Dam and Federal Dam at visual inspection of grab points segmentation. 77 transects samples or by probing oa *The list of parameters is not comprehensive and only presents those of interest to the development and calibration of HUDTOX. H oo to Limno Tech, Inc. U) oo Table 6-2 Sediment Areas Used for Computing HUDTOX Sediment PCB Calibration Targets

Total Total Non- Areal-Average Upstream Downstream Cohesive cohesive Reach Area Description Group No. RM RM Area Area 1 194.5 192.5 82,841 607,025 Ft. Edward to bend above Snook Kill 2 192.5 191.5 133,664 275,421 Bend above Snook Kill to bend below Snook Kill 3 191.5 190.5 31,913 121,096 Thompson Bend below Snook Kill to Griffin Island 4 190.5 189.8 71,073 84,242 Island Pool Griffin Island to below hotspot14 5 189.8 189.4 41,865 78,834 Hotspot14 to Moses Kill 6 189.4 188.5 63,740 234,511 Moses Kill to T.l. Dam 7 188.5 183.4 537,245 755,125 T.l. Dam to Northumberland Dam 8 183.4 168.2 932,393 4,133,925 Northumberland Dam to Stillwater Dam 9 168.2 159.4 458,471 3,872,660 Stillwater Dam to Lock 2 Lock 2 to Federal Dam 10 159.4 154.9 - 2,564,000 Table 6-3 USGS Gauge information for Gauges Used in Flow Estimation

USGS Drainage Period of USGS gaging station Station No. Area (mi^) Operation

Hudson River at Fort Edward, NY 01327750 2817 1/1/77 - 9/30/97 Hudson River at Stillwater, NY 01331095 3773 1/1/77 - 9/30/97^ Hudson River above Lock 1 near 01335754 4611 3/1/77 - 9/30/97^ Waterford, NY Glowegee Creek at West Milton, NY 10/1/90- 01330000 26 9/30/97 Creek near West 01330500 90 1/1/77 - 9/30/96 Milton, NY Hoosic River near Eagle Bridge, NY 01334500 510 1/1/77 - 9/30/97 Mohawk River at Cohoes, NY 01357500 3450 1/1/77 - 9/30/97 Mohawk River Diversion at Crescent 01357499 N/A 1/1/77 - 9/30/97 Dam, NY

Source: USGS

’ Due to construction, many of the flows recorded after 6/30/92 were rated as “poor” by the USGS. “Poor” means that “about 95 percent of the daily discharges have less than “fair” accuracy. “Fair” means that about 95 percent of the daily discharges are within 15 percent.

Limno-Tech, Inc. I

I Table 6-4 Drainage Areas and Reference Tributaries Used I in the LTI Tributary Flow Estimation

Reach into I Drainage Gaged Reference Tributary which Tributary Area (mi*) Tributary Enters I Snook Kill 75 DAR to Kayaderosseras Moses Kill 55 Creek for the period 1/1/77 - 9/30/96 and I Thompson Island 31 DAR to Glowegee Pool direct runoff Creek for the period Batten Kill 431 9/30/96 - 9/30/97. I Fish Creek 245 (Kayaderosseras Creek Fort Edward- flow data are Stillwater unavailable after I 6/30/96 so Glowegee Creek was used.)

f Flatey Brook 8 Schuylerville- 80 Stillwater direct I runoff Hoosic River 720 DAR to Hoosic River at 1 Anthony Kill 63 Eagle Bridge, NY Deep Kill Stillwater - 16 Waterford Stillwater- 39 I Waterford direct runoff I Mohawk River 3,450 USGS gage at Cohoes + Diversion at Crescent Dam I Source: LTI GIS ’The Mohawk River stations are near the Mohawk-Hudson confluence so no drainage area t adjustment was required. I Limno-Tech, Inc. I I I Table 6-5 Mean Seasonal USGS Flows for Selected Flow Gauges in the Study Area for the Period 3/1/77 to 6/30/92

Season Fort Stillwater Waterford Glowegee Kay. Creek Hoosic River Edward Creek @ West @ Eagle Milton Bridge Winter 5274.1 6582.5 8283.7 36.1 133.6 1042.9 Spring 7773.6 10052.9 12866.1 56.0 254.3 1770.4 Summer 3267.2 4000.1 4579.9 16.5 80.2 545.1 Fall 4489.8 5582.4 6579.0 31.5 106.1 743.5 Source: Hudson River Database Release 4.1 Limno-Tech, Inc.

Table 6-6 Seasonal Tributary Flow Adjustment Factors applied to Tributaries between Fort Edward and Stillwater, and between Stillwater and Waterford

Fort Edward - Stillwater Stillwater - W'aterford

Season ^ QFE-Still A Ostill-Watfd ttsw (Cfs) (Cfs) Winter 1175 0.88 658 0.98 Spring 2025 0.81 1043 0.92 Summer 653 0.83 35 0.10 Fall 986 0.94 253 0.53 Limno-Tech, Inc. Table 6-7 Summary of Available Solids Data for Mainstem Stations; Number of Samples and Source of SS Sample Data by Station

Ft. Edward TID Stillwater Waterford Year Phase GE Phase 2 GE USGS Phase GE USGS Phase GE uses 2 2 2 1977 1 33 47 1978 30 30 31 1979 52 34 32 1980 55 27 37 1981 55 29 24 1982 49 43 32 1983 40 126 134 1984 34 209 247 1985 17 82 129 1986 27 306 295 1987 15 49 85 1988 38 68 101 1989 23 157 334 1990 3 275 242 1991 19 65 373 60 251 120 1992 21 67 390 28 390 34 1993 27 58 56 78 387 410 288 1 1994 30 47 31 40 386 405 89 1995 68 68 303 299 1996 2719 71 4 30 66 1997 155 19 19 25 Source; Hudson River Database Release 4.1

Limno-Tech, Inc. Table 6-8 Summary of Available Solids Data for Tributaries; Number of Samples and Source of SS Sample Data by Station

Snook Kill Year Batten Kill Hoosic River Mohawk River Moses Kill uses Phase GE uses Phase GE USGS Phase Phase GE Phase GE 2 2 2 2 2 1988 6 2 1989 4 2 1990 1 10 1991 25 4 24 5 1992 28 28 2 1993 5 1 9 6 1 9 6 1994 32 12 32 18 31 32 31 1995 3 25 1996 10 1997 115 117 Source: Hudson River Database Release 4.1

Limno-Tech, Inc. Table 6-9 Reference Tributaries for Unmonitored Tributaries

Reference Unmonitored Tributaries Tributary TIP Direct Drainage Area, Flately Brook, TID-Schuylerville Direct Moses Kill Drainage Area, Schuylerville-Stillwater Direct Drainage Area

Batten Kill Fish Creek

Hoosic River Anthony Kill, Deep Kill, Stillwater- Waterford Direct Drainage Area Limno-Tech, Inc.

Table 6-10 Cumulative Mainstem SS Loads and Yields

Yield Cumulative SS Cumulative SS Drainage (MT/mi^*yr) Station Load (MT) (1/1/77 Load (MT) (10/1/77 Area (mi^) (10/1/77- - 9/30/97) - 9/30/97) 9/30/97)

Fort Edward 539,119 510,564 2,817 9.06 Stillwater 1,596,085 1,506,198 3,773 20.0 Waterford 3,519,798 3,159,690 4,611 34.3 Loads estimated from data in Hudson River Database Release 4.1 Limno-Tech, Inc. Table 6-11 Cumulative SS Loads and Corresponding Yields by Reach (10/1/77 - 9/30/97)

Cumulative SS Load (MT) Average Annual Yield by Reach (MT/ml^*yr)

Reach Load increment Sum of Yield increment Yield delivered by between tributary between tributaries using mainstem stations SS loads mainstem stations rating curve

Fort Edward - 995,634 601,061 52.1 31.4 Stillwater Stillwater 1,653,492 924,948 98.7 55.2 Waterford Limno-Tech, Inc. Table 6-12 Tributary Drainage Areas Used in Tributary Load Adjustment

Drainage Area (mi^) Tributary Drainage used to estimate soiids ioads Snook Kill 75 Moses Kill 55 TIP Direct Drainage Area^ 8 Batten Kill 431 TID-Schuylerville Direct Drainage Area 31 Fish Creek^ 90 Flately Brook 8 Schuylerville-Stillwater Direct Drainage Area 80 Hoosic River 720 Deep Kill 16 Anthony Kill 63 Stillwater - Waterford Direct Drainage Area 39 Mohawk River 3,450

Source: LTI GIS Analysis

' The TIP direct drainage area includes the which is highly regulated. Tributaries draining into the Champlain Canal have a drainage area of 23 square miles. The TIP direct drainage area was therefore reduced by this amount (from 31 to 8 square miles), because the SS contribution from tributaries draining into the Champlain Canal is assumed to settle out before reaching the Hudson River.

^The Fish Creek drainage includes which has a surface area of 16.3 km^, a mean depth of 7.7 meters, and a retention time of 0.4 years. As such, this large lake is expected to greatly reduce the solids load in Fish Creek. In the absence of monitoring data, it was assumed that 80% of the solids upstream of Saratoga Lake are trapped in the lake. All of the drainage downstream of the lake outlet was assumed to contribute solids to the Hudson River. In all, the drainage area used in the SS load estimation was reduced from 245 to 90 square miles.

Limno-Tech, Inc. Table 6-13 Inputs To SS Trapping Efficiency Calculations

Cohesive Non-cohesive

Assumed lower-bound, reach-wide, average burial velocity 0.003 0.000 (m/yr)

Assumed upper-bound, reach-wide, average burial velocity 0.015 0.003 (m/yr) Assumed long-term average reach-wide burial velocity by 0.009 0.0015 sediment type (m/yr)

Sediment solids specific weight (g/cc) 0.84 1.38 TIP bed area (m^) 480,935 1,345,284 TID to Stillwater Dam bed area (m^) 1,339,399 4,965,377 Stillwater Dam to Lock 1 Dam bed area (m^) 522,991 6,032,086 Limno-Tech, Inc.

Table 6-14 SS Trapping Efficiency Estimates for Specific Reaches

Lower Bound Upper Bound Selected Reach Trapping Trapping Trapping Efficiency (%) Efficiency (%) Efficiency Estimate (%) TIP 9 28 15 TID-Stillwater 19 48 25 Stillwater-Federal Dam 8 15 10 Limno-Tech, Inc. Table 6-15 Final Tributary SS Concentration Equations, Considering Deposition Cutpoint Tributary Name Low and High Flow Equations flow (cfs) = 6.9 when Q < outpoint Snook Kill 105 = 0.007*0^^® when Q > cutpoint = 8.9 when Q < cutpoint Moses Kill 77 = 0.04*Q'^® when Q > cutpoint = 8. 9 when Q < cutpoint TIP Direct Drainage 43 = o.oro'^^ when Q > cutpoint = 6.1 when Q < cutpoint Batten Kill 602 = 0.011 when Q > cutpoint TID to Schuylerville Direct = 8.9 when Q < cutpoint 42 Drainage = 0.04*Q^ when Q > cutpoint = 6.1 when Q < cutpoint Fish Creek 357 = 0.011*Q^’® when Q > cutpoint = 8.9 when Q < cutpoint Flately Brook 12 = 0.04*Q’ ® when Q > cutpoint

II Schuylerville to Stillwater 00 b when Q < cutpoint

M O) » 117 II Direct Drainage Area O b when Q > cutpoint = 8.15 when Q < cutpoint Hoosic River 1,328 = 0.002*Q’ when Q > cutpoint = 8.15 when Q < cutpoint Deep Kill 24 = 0.002*Q^^® when Q > cutpoint = 8.15 when Q < cutpoint Anthony Kill 94 = 0.002*Q’ when Q > cutpoint Stillwater to Waterford Direct = 8.15 when Q < cutpoint 58 Drainage = 0.002*Q’ when Q > cutpoint = 13.89 when Q < cutpoint Mohawk River 5,661 = 0.0002*0’ when Q > cutpoint Limno-Tech, Inc. Table 6-16 Estimated Average Annual Tributary SS Loads to HUDTOX (10/1/77 - 12/31/97)

Tributary Average Annual SS Load (MT/yr)

Snook Kill 4,222 Moses Kill 2,619 TID Direct Drainage 198 Batten Kill 48,740 TID-Schuylerville Direct Drainage 3,506 Fish Creek 10,178 Flatelv Brook 905 Schuylerville-Stillwater Direct Drainage 9,047 Hoosic River 86,115 Deep Kill 1,914 Anthony Kill 7,535 Stillwater - Waterford Direct Drainage 4,665 Mohawk River 246,674 Limno-Tech, Inc.

Table 6-17 Seasonal Suspended Solids Load Difference by Reach Based on Preliminary Load Estimates for the period 10/1/77 to 12/31/96

T D-Stillwater Stillwater - Waterford % of Load % of Load % of Load Increment % of Load Increment btwn. Season from btwn. Mainstem from Mainstem Tributaries Stations Tributaries. Stations

Dec. - Feb. 23% 18% 23% 21%

Mar. - May 59% 63% 69% 70%

Jun. - Aug. 6% 6% 2% 4%

Sept. - Nov. 12% 13% 6% 5% Limno-Tech, Inc. Table 6-18

Number of Days on which PCB Data were Available for Batten Kill, Hoosic River, and Mohawk River

Year Batten Kill Hoosic River Mohawk River

Tri+ Total BZ#4 BZ#52 Tri+ Total BZ#4 BZ#52 Tri+ Total BZ#4 BZ#52

1991 25 8 8 i"”i 24 10 10

1992 28 6 6 28 14 14 1 1 1993 5 7 1 1 6 6 5 5 6 6 5 5 i 1 i Total 5 60 15 15 6 58 29 29 6 6 5 6 Source: Hudson River Database Release 4.1 Limno-Tech, Inc. Table 6-19 Percent of PCB Transport Past Mainstem Upper Hudson River PCB Sampling Stations Under High and Low Flow (4/1/91 - 9/30/97)

Mainstem Station Flow Range (cfs) Tri+ PCB Total PCB BZ#4 BZ#52

Q< 11,000 81% 86% 94% 88% Fort Edward Q> 11,000 19% 14% 6% 12% Q< 11,000 78% 77% 90% 75% TID Q > 11,000 22% 23% 10% 25% Q< 13,000 64% Stillwater Q> 13,000 36% Q< 16,000 64% Waterford Q> 16,000 36% Source: Load estimates based on data in Hudson River Database Release 4.1

Limno-Tech, Inc. Table 6-20 Percent of PCB Load at Fort Edward for Suspended Solids Concentration Above and Below 10 mg/L (4/1/91-9/30/97)

Fort Edward Water Tri+ PCB Total PCB BZ#4 BZ#52 Column Solids Concentration (mg/I)

SS< 10 83% 91% 94% 91% SS^IO 17% 9% 6% 9%

Limno-Tech, Inc. Table 6-21 Comparison of Annual Trl+ PCB Loads estimates at Fort Edward, Schuylerville, Stillwater and Waterford presented in the DEIR (TAMS 1997) and this report

Fort Edward Schuylerville Stillwater Waterford Year DEIR LTI DEIR LTI DEIR LTI DEIR LTI 1977 1,414 858 2,519 2,496 2,926 3,076 2,439 2,581 1978 544 530 2,747 2,043 2,138 2,026 2,260 2,148 1979 1,272 1,290 4,635 4,047 3,008 4,030 2,963 3,524 1980 439 482 760 934 899 839 1,007 919 1981 354 324 962 1,383 922 1,114 1,299 1,140 1982 374 351 528 535 635 767 818 833 1983 657 530 997 1,138 1,612 1,677 1,191 1,307 1984 477 638 830 479 826 682 702 529 1985 294 209 324 194 299 202 432 187 1986 423 238 320 200 358 158 366 168 1987 197 270 213 226 235 207 300 295 1988 119 98 83 85 105 109 100 107 1989 445 179 195 199 200 198 151 168 1990 398 357 363 220 373 115 428 1991 185 349 457 208 281 212 274 1992 825 680 866 411 541 317 496 1993 310 223 322 420 559 229 334 1994 90 157 258 153 143 1995 138 188 121 131 1996 67 297 240 234 1997 32 179 98 171 Source: DEIR, Tams 1997, and load estimates based on Hudson River Database Release 4.1 Limno Tech, Inc. Table 7-1 HUDTOX Solids Model Calibration Parameter Values

Parameter Definition Units Value Comments Constant at low and high flow, the settling rate is Vs Gross solids settling velocity D flow-dependent linearly interpolated in between these conditions. (see Fiaure 7-1 for rates in Tl Pool) Gross solids settling velocity 1.0 (to RM 182.3); VSL m/day Batten Kill enters the Upper Hudson at RM 182.3 at lov\/ flow 0.8 (downstreami The base Fort Edward flow threshold (148.0 cms) Flow threshold for low-flow settling qCTL cms 148.0-423.3 was adjusted according to cumulative drainage area velocity in downstream reaches (see Table 7-2) Gross solids settling velocity 8.0 (to RM 182.3): VSH m/day Model calibration at hiah flow 6.0 (downstream) The base Fort Edward flow trigger (370.6 cms) was Flow threshold for high-flow settling qCTH cms 370.6- 1,060 adjusted according to cumulative drainage area in velocity downstream reaches (see Table 7-2). Background solids resuspension 0.2 (cohesive): Vrt. mm/year Model calibration velocitv 0.4 (non-cohesive) See Table 7-3 for coefficients used to control flow and sediment type High flow solids resuspension m/day resuspension and sediment armoring during events V,H dependent velocity in cohesive and non-cohesive sediments 1.0E-05 (layer1-2); Same rate in both cohesive and non-cohesive Particle mixing rate between m^/day 1.0E-06 (layer 2-3); sediments sediment layer i and j 1.0E-07(laver3-4) 18.8-37.2; Estimates based on USGS dye survey results Dl m^/sec Longitudinal dispersion 0.0 at dam interfaces (USGS, 1969) 0.84 (cohesive) g/cm^ Estimated using Phase 2 and NYSDEC 1984 data Cs Sediment solids bulk density (dry) 1.38 (non-cohesive) o/cm^ 2.65 D Solid density - Table 7-2 Transition Levels by Reach for Flow-dependent Settling in HUDTOX

HUDTOX Low to High Flow fransition Levels for Settling Upper Hudson Upper Hudson River Water DA Low Flow High Flow Low Flow High Flow Increase' River Miles Reach Description Segment(s) qcTL (cms) qcTL (cfs) qcTH (cms) qCTH (cfs) VsL (m/d) VsH (m/d)

194.7- 188.5 Fort Edward - TID 1 -28 1 146.0 5,157 370.6 13,090 1.0 8.0 188.5 - 182.3 TID - Batten Kill 29-32 1.07 156.2 5,518 396.5 14,006 1.0 8.0 182.3 Batten Kill confluence 32 1.22 178.1 6,291 452.1 15,969 1.0 8.0 181.4 - 178.1 Fish Creek - Hoosic River 33-39 1.34 195.6 6,910 496.6 17,540 0.8 6.0 178.1 - 168.2 Hoosic River - Mohawk River 40-41 0.16 23.4 825 59.3 2,094 0.8 6.0 156.4 - 153.9 Mohawk River - Federal Dam 47 0.16 23.4 825 59.3 2,094 0.8 6.0 ’ UHR drainage area ratio at downstream of reach to UHR drainage area at Thompson Island Dam Limno-Tech, Inc. Table 7-3 HUDTOX Sediment Resuspension and Armoring Parameters

Cohesive Sediment' 1 Non-cohesive Sediment^ II e = 0 Flow Segment «i «2 «3 P. P2 Pa P4 Ps P6 (1,000 cfs) Above Thomi:ison Island Dam 1 ______^ 1 1.15396 0.92966 0.004 1.0 6.0 0.03 2 .Itf ■ 2.15954 0.71805 0.004 1.0 6.0 0.03 3 1.32400 0.81022 0.004 1.0 6.0 0.03 4 ._...... iiiiiiiltSsSi 0.98969 0.76338 0.004 1.0 6.0 0.03 5 -5.33 0.00221500 3.294 10.63 0.46405 1.16126 0.004 1.0 6.0 0.03 6 -40.00 0.07454000 2.909 8.68 0.67817 1.08553 0.004 1.0 6.0 0.03 7 0.89857 1.02312 0.004 1.0 6.0 0.03 II 8 1 -1.30 1 0.00334178 I 2.716 I 8.99 0.58399 0.99892 0.004 1.0 6.0 0.03 9 0.59242 1.07995 0.004 1.0 6.0 0.03 10 -32.03 0.03929738 2.950 9.70 0.64118 1.10696 0.004 1.0 6.0 0.03 11 -0.67 0.00323573 2.480 8.60 0.46651 0.98090 0.004 1.0 6.0 0.03 12 0.53138 1.02711 0.004 1.0 6.0 0.03 .... l""654 13 -11.02 0.27144876 9.39 0.45752 1.03921 0.004 1.0 6.0 0.03 14 -2.18 0.00061881 3.440 10.74 0.24462 1.16511 0.004 1.0 6.0 0.03 15 -3.00 0.00471263 2.833 9.76 0.34730 1.13571 0.004 1.0 6.0 0.03 16 -7.05 0.02144044 2.501 10.14 0.25874 1.09311 0.004 1.0 6.0 0.03 17 -1.83 0.00663035 2.491 9.55 0.28690 1.09322 0.004 1.0 6.0 0.03 18 iii 0.44469 1.07877 0.004 1.0 6.0 0.03 II 19 1 -12.39 1 ,. 0.02901571 I 2.524 I 11.02 I 0.55993 j 1.02401 0.004 1.0 6.0 0.03 20 0.18296 1.19690 0.004 1.0 6.0 0.03 21 -7.84 0.01900183 2.557 10.54 0.29332 1.15543 0.004 1.0 6.0 0.03 22 -15.71 1.40936058 1.160 7.99 0.43626 1.11088 0.004 1.0 6.0 0.03 23 -7.05 0.01277475 2.618 11.15 0.26723 1.16320 0.004 1.0 6.0 0.03 24 0.43582 1.12535 0.004 1.0 6.0 0.03 25 -68.42 2.16242877 1.562 9.14 1.23705 0.79648 0.004 1.0 6.0 0.03 26 -0.55 0.00534900 2.352 7.19 0.65699 0.84558 0.004 1.0 6.0 0.03 27 0.52736 1.01628 0.004 1.0 6.0 0.03 28 li 0.95554 0.90227 0.004 1.0 6.0 0.03 Downstream of Thompson Island Pool 29 - 47 1 -7.84 1 0.02144044 I 2.501 1 10.59 0.52937 1 1.05899 1 0.004 I 1.0 1 2.0 1 0.03 II ' Cohesive sediment: E = a + b*(Q/1000)'^, units of mg/cm^ ^ Non-cohesive sediment: Tb = c • (Q / 1000)“^, units of dynes/cm^ Table 7-4 HUDTOX Fraction Organic Carbon and Dissolved Organic Carbon Parameterization by Reach

HUDTOX foe' DOC (mg|/L)" Upper Hudson Upper Hudson River Water Cohesive Non-cohesive Cohesive Non-cohesive River Miles Reach Description Segment(s) Water Sediment Sediment Water Sediment Sediment 194.7- 188.5 Fort Edward - TID 1 -28 25% 2.2% 1.7% 4.86 50.0 38.6 188.5- 182.3 TID - Batten Kill 29-32 18% 2.6% 2.4% 4.72 59.1 54.5 182.3-181.4 Batten Kill - Fish Creek 33 16% 1.8% 0.8% 4.72 40.9 18.2 181.4-178.1 Fish Creek - Flately Brook 34-35 16% 1.8% 0.8% 4.89 40.9 18.2 178.1 - 168.2 Flatoly Brook - Hoosic River 36-39 16% 1.8% 0.8% 4.89 40.9 18.2 168.2- 166.0 Hoosic River - Anthony Kill 40-41 16% 2.8% 0.9% 4.30 63.6 20.5 166.0- 163.5 Anthony Kill - Deep Kill 42-43 16% 2.8% 0.9% 4.30 63.6 20.5 163.5 - 156.4 Deep Kill - Waterford 44-46 16% 2.1% 1.0% 4.30 47.7 22.7 156.4- 153.9 Waterford - Federal Dam 47 16% 2.1% 1.0% 4.05 47.7 22.7 ' Fraction organic carbon on particulates were developed for: a) Water, based on the Phase2 water column data (TAMS et al., 1997 ). b) Sediment, using the Phase2 low-resolution core data and the 1991 GE composite sediment sampling data (O’Brien and Gere, 1993b). ^ Dissolved organic carbon (DOC) concentrations were developed for: a) Water, using data from Vaughn, 1996. b) Sediment, based on the 1991 GE composite sediment sampling data (O'Brien and Gere, 1993b).______

Limno-Tech, Inc. Table 7-5 HUDTOX PCB Model Calibration Parameter Values Calibration Value Parameter Definition Units Total PCB BZ#4 BZ#52 Tri+ PCB Comments Estimated based on congener g/mole 268.0’ 223.1 292.0 279.0’ MW Molecular Weight; chemical specific distribution

Henry’s Law Constant; chemical specific, and Estimated based on congener H25 atm m^/mole 2.26E-04’ 0.00023 ^ 0.0002 2.26E-04’ temperature dependent distribution or literature values Partition coefficient for sorbafe on POC, based Congener-specific Kpoc’s are logKpoc on three-phase equilibrium partitioning model; log (L/kg C) 5.6’ 4.76 5.91 5.821’ theoreticai. DEIR chemical specific Partition coefficient for sorbate on DOC, based log Kdoc on three-phase equiiibrium partitioning model; log (L/kg C) 4.6 3.76 4.91 4.216 Set at 10% of Kpoc chemical specific (Chapra, 1997); k/ m/day O'Connor - Dobbins formuiation Air-water liquid film mass transfer rate (Thomann and Muelier, 1987) WASP5 User Guide (Ambrose Air-water gas exchange mass transfer rate m/day 100.0 K et ai, 1993) Surficial sediment-water mass transfer rate of V mm/yr 6.5 - 0.125 (See Figure 7-6b) Model calibration particulate phase PCB Arrenhius temperature correction for air-water dimension­ (Chapra, 1997); 6/ 1.024 mass transfer rate less (Thomann and Mueller, 1987) kb PCB dechlorination rate day’ 0 0 0 0 Dechlorination not simulated Temperature slope factor constant affecting 1195.7 tsf °K DEIR (TAMS, 1997) oartitionino: chemical specific (representative across all PCB forms) Particle concentration effect constant; dimension­ inactive Ux DEIR (TAMS, 1997) chemical specific. less (data analysis suggests minimal effect) Cohesive sediment-water mass transfer 1.5-6.5 Vcoi cm/day Model calibration coefficient for dissolved and DOC-bound PCB. (see Figure 7-6a for seasonai variation) Set to 1/10th of sediment-water Vci2 Shallow (0-4 cm) cohesive sediment mass cm/day 0.15-0.65 transfer for dissolved and DOC-bound PCB. mass transfer Non-cohesive sediment-water mass transfer 0.5-2.167 Set to 1/3rd of cohesive Vnoi cm/day coef. for dissolved and DOC-bound PCB (see Figure 7-6a for seasonal variation) sediment mass transfer Shallow (0-4 cm) non-cohesive sediment mass Set to 1/10th of sediment-water Vn12 cm/day 0.05-0.2167 transfer for dissoived and DOC-bound PCB mass transfer 2.00E-10 (dissolved); Set approximately to molecular Ddeep Deep (>4 cm) sediment porewater diffusion m^/sec coefficient for dissolved and DOC-bound PCB 1.00E-10 (DOC-bound) diffusion rate 0.25 - 0.16 in water DEIR (TAMS, 1997); dimension­ 0.028 - 0.018 in cohesive sediment ^OC Fraction organic carbon in particulate solids 1991 GE data (O'Brien and less 0.024 - 0.008 in non-cohesive sediment Gere, 1993b) (see Table 7-4 for spatial variation) ’Estimated beised on apparent PCB congener distribution. ^Brunner et a1.1990 Limno-Tech, Inc. FIGURE 1-1 LOCATION MAP FOR HUDSON RIVER WATERSHED

I

1

New York

Connecticut Pennsylvania I

FIGURE 1-2 I UPPER HUDSON RIVER WATERSHED

I WARREN Hudson/ I Falls 7 Falls I Fort Edward I RM220

I ompson Is } Dam WASHINGTON I Fore Milh I Schuylervill I SARATOGA 1 I I

Mechanicvfllo I RENNSELAER I

I SCHENECTADY '^UOhOBS Federa/vam I ALBANY Qr09D Island I I FIGURE 1-3 THOMPSON ISLAND POOL

Bakers Falls

GE Hudson Falls

GE Fort Ed wan

Former Fort Rpqers Edward Dam Lock No. 7

McDonald Dock

Thompson Thompson Is. Dam Island

Fort Miller Dam Lock No. Figure 2-1 Upper Hudson River Reassessment Modeling Framework

Bathymetry Hydrodynamic Fluvial Plain Sediment Flows Properties Model

bo tom shear

Off-Line DOSM Linkage

^------J PCB Concentration HUDTOX Profiles PCB Loads Solids Loads Sediment Properties Sediment PCB Concentration Process Kinetics

PCB Exposure Field

Bivariate Food Chain BAF Model Model

Limno-Tech, Inc. . -A ■....-i___ &' ' I'//// : \ / isagl:? 1 / Wne L\

Fo!rEdward ^'' a ' Dam- ^ " ^ li' w ' miiiiis ....

Biiiia jiiiiilBfi__ I,

— ""

I '

tM-M

.< i.i RMm

Wi..liiiiliiiliiiill , ' \' 'MU illillSiilll'liilSiiiliiil iv.ii.-elyJ.l-i.SSi.i.*!'.':,;;:!,'.:liiiS'J ^yJyyyyiyiiJSfyyyiyi iyaf:;

ii

Thompson Island i Dam Snook "line A M V \!

1/2 mile Thompson Island Pool

500 meters Study Area

Hudson Falls Ft Edward

Schuylervllle Figure 3-1 Limno-Tech, Inc. Wm FortEilwanl Dam BSli 1-

J

i»l! iiliiiillSSS

r ■ mi9o

mrnmSi

mmi

mr189 iili

M iiini pliiSB kI^h Thompson Island Snook Dam B V

1/2 mile Thompson Island Pool

500 meters RMA-2V Model Mesh

Figure 3-2 Limno-Tech, Inc. V A A A A . ^ V watt" hV4,ava AA**^*^^,>.^>a'.a.^ v^:;>':, •;■• .:h:'::v;aaa.-a::a/a*;i P I ► ..H,‘Ai.A:A'A'->^

'.Vr'Y-Ar’^'-A'A

V- A H'H 'AA4

Dam Y V V H H'HAa H > V H HH H V H H A A.'.' 'VA' -A: A 'A'.A A' .A. ■H; A''AiAAA.1: AvA .-a- A':A;A- A'.H: A..>~-A. A A' ,h: ■■■*■ ,H. A- Hf A"* A- A: H-: ..... >1. "‘V

H A H H •;•■ A; A A^'C'A:;, , : , •< •< ■• 1 1 ^ ^ ■'*'■'<

. ;■ ■ : ■ V V » , , , 1 1 1 tr, I, MU ;:A''"H; a, a A^A'^I' .' -.A’- .A- A’ A'-.AA.'V '' SW ■•■;' A A A'A •'‘•r■ * f t* liil SHBJJi ...... : "■"••uu/j

V> f r mm m B

RMI90

»t '< haa ,

ii ilii» J • >r * < ^ A K >A A A A » A. -A-A>,

YU' >>’ 'cTp yvvv fefeS ^>*AAW.VVVirri'fj AAA AAV> wmmAfc V H t .Hi , 1 ■».>i:» , PP* » * h : » »i

H > •* >'•* A A y.A H A : g i0 m Thompson ■■’tr-* A .A: „.>■ > a a *■1 Island ■’'■ •* •* .' ;^:^ Wlate" K''' V-A' -A Hi H-A:.*.., Dam Snook H A' Hi.>.:>>A.A„'. r'^nev H V-A.A'A ^H-^A;vfei B A >.>.'••>.■>.; >bA‘'a;a!a'a.x V \

Centimeters / second too mile 150 Thompson Island Pool 200 250 500 meters Velocity Vectors IfO-year Flow Event

Figure 3-3 Limno-Tech, Inc. Figure 3-4 Shear Stress Computed from Vertically Averaged Velocity

■*-Manning ^ Rough -♦—Smooth •—Gailani

£ 60

Velocity (ft/s)

Limno-Tech, Inc. Figure 4-1 Erosion versus Shear Stress

• Data

-2

ln(Dlmenslonless Shear Stress) Limno-Tech, Inc.

Figure 4-2 Armoring Depth versus Shear Stress

s i

0 1 2 ln(Shear Stress, dynes/cm^) Limno-Tech, Inc. Figure 4-3 Armoring Depth versus Shear Stress Above 5 dynes/cm^

♦4 ♦

ln(Shear Stress, dynes/cm‘) Limno-Tech, Inc.

Figure 4-4 Core HR-19: Likelihood of PCB Scour

Medan

95th Percertile I

O.OE+00 5.0E+05 1.0E+06 1.5E+06 2.0E+06 Z5E+06 Total PCBs (ug/kg)

Limno-Tech, Inc. Figure 4-5 Core HR-20: Likelihood of PCB Scour

5th Percentile

E ^ Median o

Q. 95th Percentile O O 10

100 O.OE+00 2.5E+05 5.0E+05 7.5E+05 Total PCBs (ug/kg)

Limno-Tech, Inc.

Figure 4-6 Core HR-23: Likelihood of PCB Scour

0.01 5th Percentile

Median E 95th Percentile £ <4-1 o. o a

O.OE+00 5.0E+05 1.0E+06 1.5E+06 2.0E+06 Total PCBs (ug/kg)

Limno-Tech, Inc. Figure 4-7 Core HR-25: Likelihood of PCB Scour

5th Percentile

? o Median

Va Q 10 -- 95lh Percentile

100 4.0E+03 6.0E+03 8.0E+03 1.0E+04 Total PCBs (ug/kg)

Limno-Tech, Inc.

Figure 4-8 Core HR-26: Likelihood of PCB Scour

5th Percentile

E ^ Median a

95th Percentile 0)a Q 10 -

100 O.OE+00 2.0E+05 4.0E+05 6.0E+05 Total PCBs (ug/kg)

Limno-Tech, Inc. Figure 4-9 Cumulative Percent versus Mean Depth of Scour

1 00

O 50

0.4 Mean Depth of Scour (cm) Limno-Tech, Inc.

Figure 4-10 Cumulative Percent versus Total Solids Scoured

u 50

1000000 1500000 2000000 2500000 3000000 3500000 40000C Total Solids Scoured (kg) Limno-Tech, Inc. Figure 5-1

Conceptual Framework for the HUDTOX PCB Model

Tributary Ungaged Tributary Atmospheric Air-Water Loading and Runoff Loading Deposition Exchange

Bound (Sorbed) PCB Unbound PCB TSS-bound DOC-bound Dissolved Upstream Loading Advection out

Dispersion

Bound (Sorbed) PCB Unbound PCB

Sediment-bound Sed DOC-bound Dissolved

Surface Mixed Sediment Layer (0-2 cm)

Groundwater^ DOC-bound Advection Truly Diss. Advection Su'^rface Diffusion Difliision (2 cm resolution) //^ /"X

Limno Tech, Inc. Figure 5-2 Illustration of Sediment Scour in the HUDTOX Model Model Time to t2 t2 ’ V V V Water Segments W, I ..... !

Sediment Segments

(constant "m" layers) 51 52

Archive Sediments An (variable "n" layers) An-1 An-2 SM r... A3 hh■ A2 MH A2 Ai Ai

Initial Surface sediment Upon reaching a user-specified condition of volume depletes minimum surfice sediment sediment as resuspension volume upward movement from bed. occurs. the archive sediment layers is triggered and segments are renumbered. Vertical gradients Legend are maintained below the surface Chemical Concentration layer, but the remaining surface sediment is mixed with the segment below to form the new surface sediment segment.

1*t2 =- time when minimum surface sediment volume is reached. Limno-Tech, Inc. Figure 5-3 Illustration of Sediment Burial in the HUDTOX Model Model Time to t2 ^ t2

V V V 1 V Water Segments ? 1 : J .....t ...... •••» I i 1 i i I I

Sr

Sediment Segments 52 (constant "m" layers) 53 mm

n ♦ 1 Archive Sediments A „ (variable "n" layers) A „., An-2

Ai

Initial Surface sediment Upon a doubling of surface condition of concentration may sediment volume the bottom sediment bed. change as settling model segment is moved to the occurs. archive layers and renumbering of the computational segments is Legend triggered. Vertical gradients Chemical Concentration through the bed are maintained because no mixing occurs between sediment layers.

1 t2* =- time when a doubling of the surface sediment volume is reached. Limno-Tech, Inc. FORT / EDWARD ' ■liiiB RM1B4

RM194 Slfilli

■ ;!*Saisig»pf ■;|!|iii^,..

RM1B3

See detailed Thompson Island ^ >■ Pool map. RM1B2 33 SCHUYLERVILLE RM192

- - r'-.y--

'' \ ■ ■■■'■. X

RM17D

...... 5*,,-.

: -- .5: RM178

J,...... : Flately B^V "..r

' -'J: RM177 .Ahii ' f'' ;

‘ '"SSiilfis

, 'iSgigy."' jj|giili|f ...... : 'V r RM17B

/

- -'■■■it • i'.,- A

Cohesive Segment boundary below Thompson Is. Dam sediments HUDTOX Model Noncohesive Segment boundary sediments above Thompson Is. Dam Water Column Segmentation Grid ------Dam -o HUDTOX segment number Ruisa River miie for Upper Hudson River 1 miie Parts A and B 1 km Figure 5-4 A, B Limno-Tech, Inc. ' * . ■ ;>v RM174y(« 'C4A

.v;r ■■;■ ./;’•■ ." ■•"■.-'-...... -V'-" >S;Sv--- -

■' ■.. ' ■ '

......

RM172 i!iaga;liii|||:.

RM171 Deep Kill '';v.^I

RM170 'mmy

- ' t-v..:>. , V-’ • STILLWATER '■Lp

RM167

WATERFORD

RM1S6

^■iilllliii '&■ ..t>Jr":'

RM1BS ' :;'■: '

' ■

.,•, ,.;-f ^ ■ '

/ ,'*■ : ■ - mm LoekZ i.- - > -^ ill®" P)

Cohesive Segment boundary beiow Thompson Is. Dam sediments HUDTOX Model Noncohesive Segment boundary sediments above Thompson s. Dam Water Column Segmentation Grid ------Dam -Q HUDTOX segment number RMT88 River miie for Upper Hudson River 1 mile Parts C and 0 1 km Figure 5-4 C, D Limno-Tech, Inc. Vine Lv:; ^aaia -i T - Former

Fort Edward '‘■,3 , . ' Dam iX,:,, , a"" 'f ,... .1 ^ : V.

.Xa: P'

a '‘1 iiliiMiiiliiia

S-l.-l.r ■- ■■illMllli.'.sxy;,!-r , ;r. ..iaiHli; '',.:f‘.r''- ''yj_____ :

■...... ’ -.'iliu., : " ..... ^

'r’--"a^ ' A.:;v i

^ a,- ...... k\j ' f.„.h . . RM 190 '‘■vja

.’ji: iv'i. ■ ■:,ai|g: piiiiii "mmmiii::

•faaxat 4M u

..X..sa^,.-i'Xi'..'' ....V

swiiRii

■ ^iHi'r'm.afc. ; <, . .^cr :>'‘,’':a.... iillllli

an a?!'-' XX:

. . l,:L..::aaa'.... ^ Thompson / Island nxiialia Dam Snook

1/2 mile Cohesive Roads Thompson Island Pool sediments Noncohesive Raiiroad sediments 500 meters '2 s«m™nun,b» Study Area

Glens Falls _ . Hudson Falls _ FI Edward AT B

0 6 ml Schuylervllle Figure 5-5 Limno-Tech, Inc. Figure 5-6 Schematic of the HUDTOX Water Column Segmentation Grid

• Ft. Edward

Champlain Canal

Lesend

M------Flow input

•City

Snook Kill 28 Segment number

------Segment boundary

------Lock or dam

Moses Kill

Thompson Island Dam Northumberland Dam

Stillwater Dam I----- Batten Kill Schuylerville Fish Creek —

Flately Brook

Stillwater Lock 4 Dam I Hoosic River

Lock 3 Dam Anthony Kill

Lock 2 Dam

Deep Kill Locki Dam Waterford • Mohawk River ----- 1 47 T Federal Dam Limno-Tech, Inc. Figure 5-7 HUDTOX Water Column Segment Depths by River Mile

0 T.l. Dam Stillwater Dam 1 Dam Lock 3 Lock Dam 2 Lock Dam Northumber­ 1 land Dam I Dam Federal E 3 Dam

0)a 4^ Q r

r.*::; r..i' rx: a:i cc £

River Mile

■center channel segments in TIP, 1-d segmentation below Tl Dam -west bank segments in TIP •east bank segments in TIP I

Limno-Tech, Inc. Figure 5-8 Percent Cohesive Sediment Area Represented in HUDTOX by River Mile

70% Lock 6 Dam Stillwater « 60% Dam Thompson Island Dam Lock 3 g 50% Dam E Lock 2 Dam I 40% Lock 1 Dam Northumber­ .1M 0) 30% land Dam Federal £ 0 Dam U - 20% 1 « E S. 10%

0% J -JUl 193 191 189 187 185 183 181 179 177 175 173 171 169 167 165 163 161 159 157 155 River Mile Note; 1. Percent cohesive area = (cohesive sediment area) / (cohesive sediment area + noncohesive sediment area) 2. Fort Edward to Northumberland Dam cohesive and noncohesive sediment areas were determined from USEPA Phase 2 side scan sonar study (DEIR, TAMS, 1997) 3. Northumberland Dam to Federal Dam at Troy cohesive and noncohesive sediment areas were determined from the Sediment Bed Mapping Study of the Upper Hudson River from Northumberland Dam to Troy Dam (QEA, 1998).

Limno-Tech, Inc. Figure 6-1 Upper Hudson River Basin USGS Flow Gage Stations Used in HUDTOX Modeling

Fort EdwardTI

Thompson Isiand Dam

Schuylerville

Saratoga _ Stillwater

Federal Dam / Jfoy

1 Hudson River at Fort Edward 2 Hudson River at Stillwater 3 Hudson River above Lock 1 near Waterford 4 Glowegee Creek at West Milton 5 Kayaderosseras Creek near West Milton 6 Hoosic River near Eagle Bridge 7 Mohawk River Diversion at Crescent Dam 8 Mohawk River at Cohoes 10 km

Limno-Tech, Inc. Figure 6-2 Comparison of Sources of Flow as a Percentage of the Flow at the Federal Dam

Percent of Event and Non-Event Flow by Source as Compared to Total Flow at Federal Dam

E 100% g 90% Event n 80% Non-event 5 70% ^^“Cumulative % Flow at Federal Dam ? 60% t 50% ® 40% I 30% 20% o 10% ^ 0%

ra c

55 Source

Limno Tech, Inc. Figure 6-3 Estimated Daily Average Mainstem and Tributary Flows for the Upper Hudson River between Fort Edward and Federal Dam (1/1/77 - 9/30/97)

FORT EDWARD (5,248 cfs) Moses Kill ◄——(77 cfs) Snook Kill i —► (105 cfs) THOMPSON ISLAND DAM TIP Direct ◄— (5,473 cfs) (43 cfs)

1 TID - Schuylerville Fish Creek ◄— (357 cfs) Direct (42 cfs)

Batten Kill ◄— (602 cfs) Schuylerville- Stillwater Direct ——► (117 cfs) Flately Brook ◄——(12 cfs) STILLWATER (6,603 cfs)

Anthony Kill V Hoosic River (94 cfs) T (1,328 cfs)

Stillwater - Deep Kill Waterford Direct— —► (24 cfs) WATERFORD (8,106 cfs) (58 cfs)

Mohawk River (5,661 cfs) FEDERAL DAM (13,767 cfs)

Limno Tech, Inc. Figure 6-4 Upper Hudson River Basin Primary Long-Term Sampling Locations for Solids Used in HUDTOX Modeling

Edward

Thompson Island

Schuyleiville

Saratoga LaRe Stillwater

Federal Dam

Hudson River at Fort Edward Hudson River at Thompson Island Dam Hudson River at Schuylerville Hudson River at Stillwater Hudson River at Waterford Snook Kill Moses Kill Batten Kill - downstream Batten Kill - upstream Hoosic River - downstream Hoosic River - upstream Mohawk River 10 km

Limno-Tech, Inc. Figure 6-5

Subwatersheds Monitored for Solids between Fort Edward and Waterford

Moses Kill Snook hompson Kland r—7 Jam _ ) Kill Batten Kill

SCHUYLERVIU1 I ' A Fish Creek Hudson Difect \---- V

\ Anthony Hoosic River

WATERFORD

Federal Dam

Monitored

Not monitored

Not monitored, direct drainage

10 km

Limno-Tech, Inc. Figure 6-6 Log Flow vs. Log TSS Concentration at Fort Edward, Stillwater, and Waterford

Fort Edward

Specified flow 2.5 -- cutpojpt

1-5

o> 1.0 - + .+ 0.5 --

Log Flow, cfs

Stillwater

Specified : 2.5 flow cutpoirit 2.0 -- W 15

§> 1-0 + -I 0.5 - 0.0 2.5 3.5 5.0 Log Flow, cfs

Waterford 3.0 : Specified flow ; outpoint I 2.0 +

+ ^ o> 1.0 - -1- . o 0.5 + aiiiSiBiiiSlilii 0.0 3.5 4.0 4.5 5.0 Log Flow, cfs

Source: Hudson River Database Release 4.1 Limno Tech, Inc. Figure 6-7 Mainstem and Tributary Suspended Soiids Watershed Yieid based on HUDTOX Suspended Solids Loading Estimates (10/1/77 - 9/30/97)

FORT EDWARD (9.06 MT/mi2*yr) Moses Kill M------(47.6 MT/mi2»yr) Snook Kill (56.3 MT/mi2«yr)‘ THOMPSON ISLAND DAM TIP Direct I (9.3 MT/mi2-yr) ■(6.4 MT/mi^yr)

^------TID - Schuylerville Fish Creek (41.5 MT/mi2«yr)' Direct (113 MT/mi2-yr)

Batten Kill ■(113 MT/mi2»yr) Schuylerville- Stillwater Direct- (113 MT/mi2«yr) Flately Brook ■(113 MT/mi2»yr) STILLWATER (20 MT/mi*«yr)

Anthony Kill Hoosic River (119.6 MT/mi2«yr)' I "(119.6 MT/mi^yr)

Stillwater - Deep Kill Waterford Direct- WATERFORD ■(119.6 MT/mi2«yr) (119.6 MT/mF*yr) (34.3 MT/mi*«yr)

Mohawk River (71.5MT/mi2-yr) ------H federalRAL dam (56 MT/mi2«yr) J Limno Tech, Inc. Figure 6-8 Relative Contribution of Estimated External Suspended Solids Loads to the Upper Hudson River 1/1/77 to 9/30/97

Sources of Solids Loads as a Percentage of Total Load at Federal Dam

100% 90% - iH Event 80% - r~^ Non-event ..— Cumulative % Load at Federal Dam S 60%

40% - 30% - 20% - 10% -

= T3

Source w

Limno-Tech, Inc. I

I Figure 6-9 Upper Hudson River Basin Primary Long-Term Sampling Locations I for PCB Data Used in HUDTOX Modeling I I I

Thompson Island I 0am I Schuylerville

Saratoga I Lake Stillwater I 4 I

Federal I Dam

I 1 Hudson River at Fort Edward 2 Hudson River at Thompson Island Dam 3 Hudson River at Schuylerville I 4 Hudson River at Stillwater 5 Hudson River at Waterford 6 Batten Kill - downstream I 7 Batten Kill - upstream 8 Hoosic River - downstream 5 mi I 9 Hoosic River - upstream 10 Mohawk River 10 km

I Limno-Tech, Inc. I I Figure 6-10 Available Mainstem Upper Hudson River PCB Data from Hudson River Database Release 4.1

Fort Edward

+ +

1 ‘C T w +“Hr + + + 0.001

Thompson Island Dam

10 I ' g 0-1 ± 0.01 0.001

Schuylerville

I 0.1 + + + 0.01 0.001

Stillwater

+..-V + ♦ 0.01 + +++• 0.001

Waterford

"S + 3^ 1 ■«»■ ® 0.1 0.01 I- 0.001

Year Limno-Tech, Inc. Figure 6-11 Estimated Annual Trl+ PCB Load at Historical PCB Sampling Stations on the Upper Hudson River

Comparison of Total Annual LTI Tri+ PCB Loads by Station and Year

4500

4000 Fort Edward TID 3500 □ Schuylerville B Stillwater 3000 Waterford

■2 2500 g 2000

:= 1500

5

Year

Limno-Tech, Inc. Figure 6-12 Estimated Annuai Load of Total PCB, BZ#4, and BZ#52 past Fort Edward 4/1/91 to 9/30/97

700 - 650 a Total PCB Annual Load 600 - ■ BZ#4 Annual Load 550 il BZ#52 Annual Load 500 450 400 - 350 300 250 - 200 150 100

Limno-Tech, Inc. Figure 6-13 Relative Contribution of Estimated External PCB Loads to the Upper Hudson River 1/1/77 to 9/30/97

Sources of PCB Loads as a Percentage of Total Load at Federal Dam

100%

I Percent of Tri+ ■ Cumulative Load

W TJ o o 0> •o w '2 2 H 3 O i2 £ ks S) > ra (0 til £ DC Q. £ra c U CD C>. ■o$ o 0) (0 o O o (0 u. £ O o Ul XI 0) 3> W £ I S Q c o O OT 0> I £ I C 5 cQ s O) m H IT O o 3 « < ■o u. ■o u. (/> X 0) ra V "D O) o> O) 0) c 3 3 O) ra 3 ra 3 □> ra c c o> 3 Z) c 3 Source

Limno-Tech, Inc. Figure 6-14 Estimated Cumulative Trl+ PCB Load passing Fort Edward, Schuylerville, Stillwater, and Waterford compared to DEIR Estimates

Fort Edward 1977-1994

10000

■DIER Estimates (TAMS 1997) HUDTOX Estimates (This Report)

Schuylerville 1977-1989 20000

■o 15000 ; 10000

Stillwater 1977-1993

20000 15000 10000 0. 5000

Waterford 1977-1993

•3 20000 V 15000 o 0 o 10000

O. 5000

Year

Limno Tech, Inc. Figure 6-15 Estimated Annual Tri+ PCB Load at Fort Edward, Stillwater, and Waterford compared to DEIR Estimates

Fort Edward

4500 4000 -: g 3500 HDEIR Estimates (TAMS 1997) 3000 - i ■ BMR Estimates (This report) 2500 - r 2000 -; 1500

500

Schuylerville

4500 4000 -i 3000 -; O 2500 -; 2000 -; 1500 1000 -i 500

Stillwater

5000

^ 2000 •= 1500

Waterford 5000 4500 ■3 4000 i 3500 m 3000 O 2500 “■ 2000 + 1500 H 1000 500

N GO O) in 00 05 CM U5 (D h- O t- C\J CO GO GO

Limno Tech, Inc. Figure 7-1 Flow Transition Levels for Gross Settling In the Thompson Island Pool Specified for HUDTOX Calibration

Settling Rate Low Flow Transition High Flow Transition

o) 4 • ■ w 3..

10,000 15,000 20,000 25,000 30,000 Hudson River Flow at Fort Edward (cfs)

Limno Tech, Inc. Figure 7-2 Spring 1994 High Flow Event Settling and Resuspension Rates in HUDTOX

30,000 ““Gross Settling Velocity (0.10 m/doy)

^“Cohesive Resuspension - - 25,000 0.8 - -- Velocity (cm/doy) Non-cohesive Resuspension Velocity (cm/doy) - - 20,000 e— Fort Edward Flow (cfs) 0.6

-■ 15,000 I 0.4 -- 10,000

-- 5,000

Limno Tech, Inc. Figure 7-3 Monthly Air Temperature at Glens Falls. NewYork for 1977-1997

Long-Term Monthly Average Monthly Average______

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 Year

Source: NOAA-NCDC Summary of the Day for Glens Falls / Warren County

Limno-Tech, Inc. Figure 7-4 Monthly Average Water Temperature by Reach in the Upper Hudson River

Glens Falls - TID 25 TID - Schuylerville -A— Schuylerville - Stillwater —®—Stillwater - Waterford

« 10

Month

Source: Hudson River Database Release 4.1 Limno Tech, Inc. Figure 7-6 Specification of Historicai Atmospheric Gas-Phase PCB Boundary Concentrations for the 1977 - 1997 HUDTOX Caiibration Period

atmospheric total PCB concentrations used to specify

HUDTOX boundary conditions 1978 1068

(see inserted table for Tri+, BZ#4, BZ#52) 985.6 958.2 809.7 684.2

MacKay, 1989 488.5 412.8 348.8 294.8 Buckley and Tofflemire, 1983 210.5 177.8 10.06 150.3

1,000 Estimates scaled to lADN, Point Petre value of 170

Range of ambient concentrations measured at Rensselaer, by season (NYSDEC)

Year

Limno-Tech, Inc. Figure 7-6a HUDTOX Annual Surficial Sediment Porewater Diffusive Mass Transfer Rates for Cohesive and Non-cohesive Sediment

cohesive sediment non-cohesive sediment

^ 6 Month

Figure 7-6b HUDTOX Reach-Specific Annual Particulate Chemical Mass Transfer Rates

Thompson Island Pool T.l. Dam to Stillwater Stillwater to Waterford

1 •

Month

Limno-Tech, Inc. Figure 7-7a Spring 1994 Total Suspended Solids HUDTOX Calibration Results

Upstream Boundary Condition at Fort Edward at RM 194.5

------model 30 -- ■ GE_data A P2_data O USGS_data

3/29/94 4/1/94 4/4/94 4/7/94 4/10/94 4/13/94 4/16/94 4/19/94 4/22/94 4/25/94 4/28/94

Thompson Island Pool at RM 193

30.....

3/29/94 4/1/94 4/4/94 4/7/94 4/10/94 4/13/94 4/16/94 4/19/94 4/22/94 4/25/94 4/28/94

McDonalds Dock in Thompson Island Pool at RM 190

30 -

20 -

3/29/94 4/1/94 4/4/94 4/7/94 4/10/94 4/13/94 4/16/94 4/19/94 4/22/94 4/25/94 4/28/94

Data Source: Hudson River Database Release 4.1 Limno Tech, Inc. Figure 7-7b Spring 1994 Totai Suspended Soiids HUDTOX Calibration Results

West Thompson Island Dam at RM 188.5

------model 70 - ■ GE_data ▲ P2_data O USGS_data

3/29/94 4/1/94 4/4/94 4/7/94 4/10/94 4/13/94 4/16/94 4/19/94 4/22/94 4/25/94 4/28/94

Schuylerville at RM 183.4

160 - 140..... 120 - 100 - so­ ls 60 - 40

4/1/943/29/94 4/4/94 4/7/94 4/10/94 4/13/94 4/16/94 4/19/94 4/22/94 4/25/94 4/28/94

Stillwater at RM 168.2

160 - 140 - 120 - 100 - 80...... A 60 -...... 40 -- A Q fi o

3/29/94 4/1/94 4/4/94 4/7/94 4/10/94 4/13/94 4/16/94 4/19/94 4/22/94 4/25/94 4/28/94

Data Source: Hudson River Database Release 4.1 Limno Tech, Inc. Figure 7-7c Spring 1994 Totai Suspended Soiids HUDTOX Caiibration Resuits

Mechanicville at RM 164

----- model ■ GE_data A P2_data e USGS_data

3/29/94 4/1/94 4/4/94 4/7/94 4/10/94 4/13/94 4/16/94 4/19/94 4/22/94 4/25/94 4/28/94

Waterford at RM 159.4 (Lock 1)

180 -

140 -

100 - 80 •

e 2 A Q e

3/29/94 4/1/94 4/4/94 4/7/94 4/10/94 4/13/94 4/16/94 4/19/94 4/22/94 4/25/94 4/28/94

Green Island Bridge at RM 154

180 -- 160 -- 140 •-

52 80 .

3/29/94 4/1/94 4/4/94 4/7/94 4/10/94 4/13/94 4/16/94 4/19/94 4/22/94 4/25/94 4/28/94

Data Source: Hudson River Database Release 4.1 Limno Tech, Inc. Figure 7-8 Spring 1994 HUDTOX-Computed versus Estimated Cumuiative TSS Flux

Thompson Island Dam at River Mile 188.5 1.4E+07 ^ 1.2E+07 •model 1) 1.0E+07 •Data-based estimate

w 8.0E+06 •a § 6.0E+06 W 4.0E+06 2.0E+06 O.OE+00

Stillwater Dam at River Miie 168.2 5.0E+07 4.5E+07 ^ 4.0E+07 -- model » calculated 0> 3.5E+07 - 3.0E+07 -- 2.5E+07 - 5 2.0E+07 -- « 1.5E+07 h- 1.0E+07-- 5.0E+06 -- O.OE+00

Waterford at River Mile 154.9 (Lock 1) 8.0E+07 j- 7.0E+07 - ■model •calculated ^ 6.0E+07 -- 5.0E+07 -- 0) ■g 4.0E+07 -■ -> 3.0E+07 -- (0 {2 2.0E+07 -- 1.0E+07 -- O.OE+00

Data Source: Hudson River Database Release 4.1 Limno-Tech, Inc. Figure 7-9a 1977-1997 Total Suspended Solids HUDTOX Calibration Results

Upstream Boundary Condition at Fort Edward River Mile 194.5 Note: Fort Edward values shown here are daily average values of all available data. 100 GE_data A P2_data • USGt_data i s 10 (/> H - -o - wd------»

Thompson Island Pool at River Mile 193 100

McDonalds Dock in Thompson Island Pool at River Mile 190 100 i w 10 - = M ill* CO o> O C\J CO lO (D CO N h- 00 00 00 oo 00 00 00 O) O) O) O) a> O) s05 CJ5 05 05 05 Date

Data Source:' Hudson River Database Release 4.1 Limno Tech, Inc. Figure 7-9b 1977-1997 Total Suspended Solids HUDTOX Calibration Results

West Thompson Island Dam at River Mile 188.5 1000

- model GE_data a P2_data o USGS_data 100 - Ei

(A«

Schuylerville at River Mile 183.4 1000

Stillwater at River Mile 168.2 1000

Date

Data Source;Hudson River Database Release 4.1 Limno Tech, Inc. Figure 7-9c 1977-1997 Total Suspended Solids HUDTOX Calibration Results

Mechanicville at River Mile 164

model ■ GE_data A P2_data o USGS_data

H 10

Waterford at River Mile 159.4 (Lock 1) 1000

« 10

Green Island Bridge at River Mile 154 1000

« 10 I

Date

Data Source: Hudson River Database Release 4.1 Limno Tech, Inc. Figure 7-10a 1993 Total Suspended Solids HUDTOX Calibration Resuits

- model UDStream Boundary Condition at Fort Edward River Mile 194.5 Note the Fort Edward values shown here are 100 GE data dally averages of all available data. ■A P2_data O USGS_data " ■

Thompson Island Pool at River Mile 193

McDonalds Dock in Thompson Island Pool at River Mile 190

Data Source; Hudson River Database Release 4.1 Limno-Tech, Inc. Figure 7-10b 1993 Total Suspended Solids HUDTOX Calibration Results

West Thompson Island Dam at River Mile 188.5

model ■ GE_data A P2_data O USGS_data

A

Schuylerville at River Mile 183.4

Stillwater at River Mile 168 .2 1000

EEEEEEE = = 5£^555E

Data Source: Hudson River Database Release 4.1 Limno-Tech, Inc. Figure 7-10c 1993 Total Suspended Solids HUDTOX Calibration Results

Mechanicville at River Mile 164 1000 model ■ GE_data A P2_data o USGS_data

Waterford at River Mile 159.4 (Lock 1) 1000

*2

Green Island Bridge at River Mile 154

Data Source; Hudson River Database Release 4.1 Limno-Tech, Inc. Figure 7-11 1991-1997 HUDTOX-Computed versus Estimated Cumuiative TSS Fiux

Thompson Island Dam at RM 188.5 1.8E+08 1.6E+08 •HUDTOX-computed 1.4E+08 D) 1.2E+08 ■o 1.0E+08 J 8.0E+07 (0 6.0E+07 f2 4.0E+07 2.0E+07 O.OE+00 1991 1992 1993 1994 1995 1996 1997

Stillwater at RM 168.2 5.0E+08 ----- 4.5E+08 - “ ■HUDTOX-computed ^ 4.0E+08 ■ data-based estimate ■o "S) 3.5E+08 ^ 3.0E+08 ■o 2.5E+08 m o 2.0E-I-08 (/) (0 1.5E+08 I- 1.0E+08 5.0E+07 O.OE+00 1991 1992 1993 1994 1995 1996 1997

Waterford at RM 159.4 (Lock 1) 1.0E+09 •HUDTOX-computed 9.0E+08 - 8.0E-I-08 -data-based estimate o> 7.0E-H08 J 6.0E-h08

■o (B 5.0E-H08 4.0E+08 w 3.0E+08 12 2.0E-I-08 1.0E-I-08 O.OE+00 1991 1992 1993 1994 1995 1996 1997 Year

Data Source: Hudson River Database Release 4.1 Limno-Tech, Inc. Figure 7-12 1977-1997 Cumulative HUDTOX-computed Versus Estimated Solids Transport at High and Low Flows* Past Mainstem Hudson River Sampling Stations

High-flow (Q > 2»Qavg) cumulative TSS transport

1.0E+10 @ Data-based estimate Mode

1.0E+09

1.0E+08

1.0E+07 Ft. Edward Tl Dam Stillwater Waterford

Low-flow (Q < 2»Qavg) cumulative TSS transport

^ 1.0E+10

1.0E+09

fl) 1.0E+08

1.0E+07 Ft. Edward Tl Dam Stillwater Waterford

'High flow is defined as flow greater than 2 times the average flow at each station. Data Source: Hudson River Database Release 4.1 Limno-Tech, Inc. Figure 7-13 1991-1997 HUDTOX-Computed versus Observed Total PCB Concentrations

Upstream Boundary Condition at Fort Edward at River Mile 194.5 i

sS gilsij as §i| sS si si gig;? sS si gp fef&J s;

Thompson Island Dam at River Mile 188.5

10000 |, , . , , „ , . „ .. , . . ., ...... : , , , ., , .. , . :: , , , ; ■ . . : : , ^ ■ ' ------——

|2 a. i I s| g|g| a| g| g|g7 g| g| slsl so g| g^g7 go g| ^<^2 &< &3 fe A ^

Stillwater at River Mile 168.2

~ 10000 I; 1000

100

I CM CM CM CM CO 05 05 05 05 S S S m ir> u5 in if) <0 CO 05 05 05 05^ k05 ~305 05t I <0 I k ? I o 7 ”<29 ^ < -? o CO 5 1 I M^ CM CMi «M ^ t g ~ f!j Si S S g t

Waterford at River Mile 159.4 (Lock 1)

^ 10000 ■S' 1000

100

HI I 57 s| s| g|-g7 as g| S

Data Source: Hudson River Database Release 4.1 Limno Tech, Inc. Figure 7-14 1991-1997 HUDTOX-Computed versus Observed BZ#4 Concentrations

Upstream Boundary Condition at Ft. Edward at River Mile 194.5

1000

0.01 SI Si ^ ^ ^ ^ ^ g I I ? gWMMMwM .1 CVl n n in ®

Thompson Island Dam at River Mile 188.5

1000

■S- 10

8iS!S!8SSS5SSSSS?SS;SSSSS; ® 9 ! I g g ligilggW^gl^ggwggi S: 3 ! 1 CO

Stillwater at River Mile 168.2

1000

s

0.1 in cv 0 CM CM CM Oi lO V) cn ^ ^ g S § 5; o o> o> o> o> o> s s s 0 0 0)0) o o 1 ^ -5 ^ 3 k <70§. 3 B I g g W g g I -p g I I g g i I I k g g ci .1 ~ CO .o « Si SI s ~ s s s 1

Waterford at River Mile 159.4 (Lock 1)

^ 1000 100 f 10

N m g g g S S; & fe o o o ? § • a I <705. 3 3 1 S: g gwggilggllggwggit 5 ^ ^ m U) “> i Data Source: Hudson River Database Release 4.1 Limno Tech, Inc. Figure 7-15 1991-1997 HUDTOX-computed versus observed BZ#52 concentrations

Upstream Boundary Condition at Ft. Edward at River Mile 194.5

1000

§! Si Si ^ ^ ^ ■n g g S g S; O) O) 0) G) ^ 3 B A -1 -L <29 ^ ^ 6 " - ? § I in ® ri - S S

Thompson island Dam at River Mile 188.5

1000 i 100

%

< ”(S si^g| as si| so s?l s< s| so si so al si si fels;| s; I Stillwater at River Mile 168.2 1000

100 - 41a^

Si Si ■»t S ^ ^ S S 0> 0> O) O) A i -L I < ^ 9 CVJ lO ^ h-

Waterford at River Mile 159.4 (Lock 1) 1000

100 -- 3i M in §

< SS s| S< Si| SiS Si| S< gf so g| g< §9 si gf gj sl S< s| SO g| S;< CM CM CM CM Data Source: Hudson River Database Release 4.1 Limno Tech, Inc. Figure 7-16 Observed versus Computed Water Column BZ#4 to BZ#52 Concentration Ratios

Upstream Boundary Condition at Fort Edward at River Mile 194.5 CM in % c 25 20 model 15 • data IIV u 10 -- •I 8 5 cc 0 0>0)0>00)0>000)ir)ir)ir)(Oto

I I I a ■ I • ,1 a I a I I I I a a a. 6 ii 3 Z3 a> (1) ffi m » & S I “Sg-S|gg-S|§3C/)Q2“5C0Q2-5 j ^ I ^ i CO O CO o ^ CO o S

Thompson Island Dam at River Mile 188.5 CM in ^ c 25 -

CD CD (D (D r~ O) O) 0> 0> O) 9> >L a a a a Q. 3 % i 4 (0 “§3 § §• g < ^ CO& Qs SI CO D 2 CO Q 2 QS I2 g->

Stillwater at River Mile 168.2

S a> a> S ir> lo ? 9 . « g & S CO& os ^I g- s «

Waterford at River Mile 159.4 (Lock 1)

CVJ S § 25 j- E9 g 20 §3 15 + N ® CD O g -

CM CM CM CM CO CO CO CO in in in (£> CO CO CO O) Oi O) CD CD CD m O) O) CD CD CD O) o> o> sa CD 9 o> o5 k 3 5 5 C C Q. 9 7 C Q. C & (0 D & 3 ® CD c3 & ?Qo (D c3 & 3 ® M Qg —3 g n “0 Qg Q ”3 Qg “3 Qg < ^ CO 2 CO o 2 CO *3 CO CO 2 CO 2 —)

Data Source: Hudson River Database Release 4.1 Limno Tech, Inc. Figure 7-17a Computed versus Observed Total PCB Concentrations through TIP during the GE September 24,1996 Time of Travel Survey

flow = 4,600 cfs TIP west shore

model H data

194.5 193.5 192.5 191.5 190.5 189.5 188.5 River mile

TIP center channel

194.5 193.5 192.5 191.5 190.5 189.5 188.5 River Mile

TIP east shore

J 120

O 60

194.5 193.5 192.5 191.5 190.5 189.5 188.5 River Mile

Data Source: Hudson River Database Release 4.1 Limno Tech, Inc. Figure 7-17b Computed versus Observed Total PCB Concentrations through TIP during the GE September 25,1996 Time of Travel Survey

flow = 5,200 cfs TIP west shore

model ^ data

194.5 193.5 192.5 191.5 190.5 189.5 188.5 River Mile

TIP center channel

194.5 193.5 192.5 191.5 190.5 189.5 188.5 River Mile

TIP east shore

m o Q. 2 .2 I 194.5 193.5 192.5 191.5 190.5 189.5 188.5 River Mile

Data Source: Hudson River Database Release 4.1 Limno Tech, Inc. Figure 7-17c Computed versus Observed Total PCB Concentrations through TIP during the GE June 4,1997 Time of Travei Survey

flow = 4,500 Cfs TIP west shore

model @ data

194.5 193.5 192.5 191.5 190.5 189.5 188.5 River mile

TIP center channel

194.5 193.5 192.5 191.5 190.5 189.5 188.5 River Mile

TIP east shore

J 300 250 M. m 200 O 150 ^0°

194.5 193.5 192.5 191.5 190.5 189.5 188.5 River Mile

Data Source: Hudson River Database Release 4.1 Limno Tech, Inc. Figure 7-17d Computed versus Observed Total PCB Concentrations through TIP during the GE June 17, 1997 Time of Travel Survey

flow = 5,200 Cfs TIP west shore

model

194.5 193.5 192.5 191.5 190.5 189.5 188.5 River mile

TIP center channel

■S) 100

194.5 193.5 192.5 191.5 190.5 189.5 188.5 River Mile

1 TIP east shore

194.5 193.5 192.5 191.5 190.5 189.5 188.5 River Mile

Data Source: Hudson River Database Release 4.1 LimnoTech, Inc. Figure 7-18 HUDTOX-Computed versus Data-Estimated Total PCB Load Gain across Thompson Island Pool 1/1/91 to 9/30/97

5.0 -- Estimated load gain (kg/d) 4.0 - HUDTOX-computed load gain (kg/d) 3.0 - « 2.0 -

-1.0 ---

-2.0 ---

2 -3.0 - - approximate Average load gain from Mar-1993 to Sept-1997 i time of Allen Mill < -4.0--- gate structure Estimated = 0.43 kg PCB/day failure -5.0 -- HUDTOX-computed = 0.50 kg PCB/day

0 0 0)0)0 0 0 0 0 0)0)0)0 0)0)0till 0) CO 9 CO 9 6 cb 9 o> ® ?> 9 S

' HUDTOX Delta load = Flux across Thompson Island Dam + Volatilization Loss - Load at Fort Edward Data-based delta load = Flux over Thompson Island Dam - Load at Fort Edward. Note that the Tl Dam load gain represented here is based on a bias correction for west shore samples that is being revised in ongoing work (See Chapter 6). The data-based estimate here under-estimates actual load gain from the pool.

Source: Hudson River Database Release 4.1 Limno-Tech, Inc. Figure 7-19 Cumulative Total PCB In-River Fluxes Past Mainstem Hudson River Sampiing Stations from 4/1/91 to 9/30/97

Thompson Island Dam at River Mile 188.5

4000 ----- g 3500 75 3000 --- -: O 2500 ----- ^ 2000 ----- 2 1500 ----- ; Data-based estimate a 1000 ----- TID HUDTOX V 500 -----

0)0>0)0)^^d)^0) 0> O) O) 0> O) o> o> o> ^ A A A A A ^ I i I ( I I I I

Stillwater Dam at River Mile 168.2 o> m 4000 -p- ^ 3500 - - 75 3000 - O 2500 - r ^ 2000 - - 2 1500 - ® 1000 - - S 500---

0)0)0)0)00)0)00)0)0 0 0)0)0)0) o11(111 o o o o o I I I I I J ' JL -• J • JL J_ ' JL

Waterford at Lock 1, River Mile 154.9 (0 m

3000 -- 2500 -- 3 2000 -- 1500 - 1000 - 500 --

00)000)0)0)000000 3) O O O O O C Cl I I I 1 II

Limno-Tech, Inc. Figure 7-20 Percent of Total PCB Transport Occuring at High* and Low Flow at Mainstem Hudson River Sampling Stations

Percent Cumulative PCB Transport Occuring at Low-Flow (Q<2*Qavg)

100% I Model ^Data 80% -

Ft. Edward Thompson Island Stillwater Waterford Dam

Percent Cumulative PCB Transport Occuring at High-Flow (Q > 2 • Qavg)

100% 90% 80% 70% 60% 50%

Ft. Edward Thompson Island Stillwater Waterford Dam

* High flow is defined as flow greater than 2 times the average flow at each station. Data Source:' Hudson River Database Release 4.1 fi Limno-Tech, Inc. I Figure 7-21 Cumulative Trl+ PCB Flux at Schuylerville 1977 - 1984 with and without Additional External PCB Load Specified at Fort Edward

14000

O 12000 -

10000 -

8000 -

6000 -

4000 -

2000 - --

HUDTOX with dala-based estimate of Fort Edward PCB load data-based estimate of flux at Schulyerville HUDTOX with added load added at Fort Edward

Limno-Tech, Inc. Figure 7-22 Calibration Results of Total Suspended Solids 21 - Year Cumulative Mass Flux in the Hudson River

Stillwater Dam at River Mile 168.2 2.0E+09 1.8E+09 -- HUDTOX 1.6E+09 Data-based estimate 1.4E+09 1.2E+09 -- ■g 1.0E+09 ° 8.0E+08 -- eti « 6.0E+08 4.0E+08 2.0E+08 -■ O.OE+00

Waterford, Lock 1 at River Mile 154.9 4.0E+09

3.5E+09 -- HUDTOX

3.0E+09 -- Data-based estimate

2.5E+09 --

2.0E+09 -■

1.5E+09 --

*- 1.0E+09

5.0E+08 -- O.OE+00

Limno Tech, Inc.

I I Figure 7-23a 1977 - 1997 Computed versus Observed Water Column Tri+ Concentrations

Upstream Boundary Condition at Fort Edward at River Mile 194.5 -model GE_data 10000 ■ A P2_data O USGS_data

E EO«3 EPQOW E 3>950Rd E E E ECF H E M E OE

Thompson Island Dam at River Mile 188.5 -model GE_data A P2_data 10000

1000

■S.i 100

--H ! ^ h—t-H H-+—H h-t f-H 1 1 HH 1 I I i ^^ 1 I I I 1 1 ^^ 1—H ^ 1 }—I 1 H NOOOJOt- -i -> -i -> -3

-model Schuylerville at River Mile 183.4 GE_data A P2_data o USGS_data 10000

r^cooOt-cvjcoTt h>r^f^opQpcocoop <0 1^ CO CD O CVi 00 00 00 00 o o o> m cccccccc (ocococotdconsco CCO “ “ “ ~ ~ “ “3-3-5“>~D-5-5-3

Data Source: TAMS/Gradient Database/Release 4.1b Limno Tech. Inc. Figure 7-23b 1977 - 1997 Computed versus Observed Water Column Tri+ Concentrations

Stillwater at River Mile 168.2 -model ■ GE_data ^ P2_data o USGS_data 10000

10 -O

CO r^oooof- CM CO h- 00 o lO CO 52 JS hj- h|. cp Op op op op op op op op op cp O) cp cp cp cp cp C c c c c c c c CO CO CO CO c c c c c~ c c cCO COc CO COc COc cCO (d (0 (Q CO “3 “3 CO CO CO CO CO CO CO ”3 -3 -5 -3 -3 “3 “3 “3 “3 “3

Waterford at River Mile 159.4 -model ■ GE data l P2 data o USGS data 10000 —------—------

eg n 5 S g O) O) s> c c c c c c c c (Q (Q (Q (Q (0 n} (6 (Q -i “5 “5 ")

Green Island Bridge at River Mile 154 -model ■ GE data a P2 data o USGS data 1000 ------

O O CM CO IT) CO Oi COCOCOCOOOCOCOCOCOCOO)_ cMco‘^mcor^oo. _ h«. h- cp Cp cp cp cp C 9 I I I I t I « I I I c cococococococococococococococccccccccccccc COc COc COc cCO CO CO “^-3-3“3-3“3“3-0-3“3“3“3“3“3 -3 -3 “3 “3

Data Source: TAMS/Gradient Database/Release 4.1b LImno Tech, Inc. Figure 7-24 1977-1997 HUDTOX-Computed versus Estimated Cumulative Tri+ Fiux past Schuylerville, Stillwater, and Waterford

•HUDTOX-computed Schuylerville at River Mile 183.4 ■data-based estimate 25,000 * 20,000 -

m 15,000 - I 10,000 -

E 5,000 ■ - -

Stillwater at River Mile 168.2 25,000

20,000 --

00 15,000 -- I 10,000-

5,000 - - -

Waterford at River Mile 159.4 (Lock 1) 25,000

20,000 -

OO 15,000 -- I 10,000 -- <0 I 5,000 -

s s s s s 0)0>0>0>0>00)00)0

Data Source: TAMS/Gradient Database/Release 4.1b Limno Tech, Inc. Figure 7-25a 1977-1997 HUDTOX-Computed versus Observed Surficial (0-4 cm) Bulk Tri+ Concentrations in Cohesive Sediments

1 C - TIP River Mile 194.5 -192.5 ““model ■ GE data A EPA data S 100 9 NYDEC data

2 C - TIP River Mile 192.5 -191.5

& 100 -

Q. 50

3 C - TIP River Mile 191.5 -190.5

100 -

50 -- .

4 C - TIP River Mile 190.5 -189.9

S 100 -

0- 50 -

5 C - TIP River Mile 189.9 -189.4

S 200 - ® 150 : Q- 100 ;

Data Source; TAMS/Gradient Database/Release 4.1b Limno Tech, Inc. Figure 7-25b 1977-1997 HUDTOX-Computed versus Observed Surficial (0-4 cm Bulk Tri+ Concentrations in Cohesive Sediment

6 C - TIP River Mile 189.4 -188.5 model ■ GE data A ERA data 0 DEC data

S 150 ’ 100 ? I- 50

7C-River Mile 188.5 -183.4

100 -

8 C - River Mile 183.4 -168.2

100 -

9 C - River Mile 168.2 -159.4

CO O) o CO CO O)

Data Source: TAMS/Gradient Database/Release 4.1 b Limno Tech, Inc. Figure 7-25c 1977-1997 HUDTOX-Computed versus Observed Surficial (0-4 cm) Bulk Tri+ Concentrations in Non-Cohesive Sediments

-----model 10 NC - TIP River Mile 194.5 -192.5 ■ GE data A EPA data O DEC data 30

11 NC - TIP River Mile 192.5 -191.5

40 -- . A - ^ 20 - ■± 10 -

12 NC - TIP River Mile 191.5 -190.5

± 10 -

13 NC - TIP River Mile 190.5 -189.9

.± 10 --

14 NC - TIP River Mile 189.9 • 189.4

a. 40 -

+ 10-

Data Source: TAMS/Gradient Database/Release 4.1b Limno Tech, Inc. Figure 7-256 1977-1997 HUDTOX-Computed versus Observed Surficial (0-4 cm) Bulk Tri+ Concentrations in Non-Cohesive Sediments

15 NC - TIP River Mile 189.4 -188.5 -model GEdata 100 ■ A ERA data O DEC data

16 NC - River Mile 188.5 -183.4 ^ 50 I 40 ■ -+A--- -- i 1 : ffl 30 . : . L. . : . : g 20 . ... ± 10 1 i i : : ...... i ■ A ; [ i...... i' .. r- • •• ; 1______1______i______i______1______1___ _J___ _J___L ______1______1______1______1______1______1______1_____ 1 1 1____

17 NC - River Mile 183.4 -168.2 50 1 40 m 30 2 20

H------^------1- H------^------h H------i------h-A—i------i------H

18 NC - River Mile 168.2 -159.4 _ 50 1 40 + J 30 + 2 20 +

19 NC - River Mile 159.4 -154.9 ^ 50 I. 40

CDm 30 o 20 + 10 H o 00 O) O OJ CO Tj-tocor^cooo^CNjco^iocDN t'- N GO O00000c0c0c00)0>0>0)0>0)0)0) O)F: O) S SS OiS 0)0)cn0)0>0)0)0>0>0)0>0)0)0) O) a o o>

Data Source: TAMS/Gradient Database/Release 4.1b Limno Tech, Inc. Figure 7-26 Computed (HUDTOX) TSS Mass Balance by Reach for 1977-1997

(Mass balance results in kilograms TSS x 10 )

Thompson Island Pool T.l. Dam to Schuylerville Schuylerville to Stillwater Stillwater to Lock 1 at Waterford RM 194.5-RM 188.5 RM 188.5-RM 183.4 RM 183.4-RM 168.2 RM 168.2-RM 159.4

Tributaries Tributaries Tributaries Tributaries 150\ 153T 2171-

539 613 2021 1830 3674 ------► O) Dispersion Dispersion CO Settiing 0 — Settling -2 — Settling Settling -1226 .>

"D> < iW

Distance: 6 miles Distance; 5.1 miles Distance: 15.2 miles Distance: 8.8 miles

Note that the mass balance output does not include deep burial because the entire sediment bed is simulated and represented by the sediment compartment in this diagram.

Limno-Tech, Inc. Figure 7 - 27 HUDTOX-Computed Long-term Average Burial Velocity for Cohesive and Noncohesive Sediment in Thompson Island Pool for 1977-1997

Limno Tech, Inc. Figure 7-28 HUDTOX-Computed Cumulative Bed Elevation Change in Thompson Island Pool during 1977-1997

3.4 3.2 3.0 o 2.8 - 0) 2.6 c 2.4 2.2 c 2.0 1.8 > 1.6 uj 1.4 -

“1.0 0.8 0.6 -

Limno Tech, Inc. Figure 7-29 Computed (HUDTOX) Total PCB Moss Balance by Reach for Period from 4/1/91 to 9/30/97

(Mass Balance Results in kilograms Total PCB)

Thompson Island Pool T.l. Dam to Schuylerville Schuylerville to Stillwater Stillwater to Waterford RM 194.5-RM 188.5 RM 188.5-RM 183.4 RM 183.4-RM 168.2 RM 168.2-RM 159.4

Tributaries 0 Tributaries 25 Tributaries 0 Tributaries 79

Volatilization -100 Volatilization -153 Volatilization -115 Volatilization -181 >- Settling ^ SeHling > Settling >- Settling -248 -447 -380 -522 't---1-- 4" 312 62 389 513 43 296 124 Resusp. Diff. DOC Resusp. DHf. DOC Resusp. DIff.

Particulate PCB transfer Particulate PCB transfer Particulate PCB transfer Particulate PCB transfer

Distance: 6 miles Distance: 5.1 miles Distance: 15.2 miles Distance: 8.8 miles

Note that the mass balance output does not include deep burial losses because the entier sediment bed is simulated and reepresented by the sediment compartment in this diagram.

Limno Tech, Inc. Figure 7-30 Cumulative HUDTOX-Computed Contribution of Sediment-Water Total PCB Flux to Cumulative PCB Load Gain between Mainstem Hudson River Sampling Stations from 4/1/91 to 9/30/97

1200 - 1100 - Ft. Edward to T.l. Dam

2 1000 - (Thompson Island Pool) 900 - 800 ...... 700 -■ 600 - T.l. Dam to Northumberland Dam 500 - 400 300 ...... j 200 -- Northumberland Dam to Stillwater Dam 100 -

-100 - Stillwater Dam to Waterford Dam

•Sediment-water PCB flux by reach computed as: (downstream load + volatilization loss) - (upstream load + tributary load)

Limno Tech, Inc. Figure 7-31 Cumulative HUDTOX-Computed Sediment Contribution to Load Gain across Thompson Island Pool from 1991-1997 forTSS, Tot-PCB, BZ#4 and BZ#52

1200 1100 1000 Total PCB . 900 ^ ® 800 X 700 - c S 600 E W 500 H 400

BZ#5 O 100

-100 . TSS

-300

05 05 O) 05 C Q. 6 “? W

Net sediment to water flux computed as: (downstream load + volatilization loss) - (upstream load + tributary load)

Limno Tech, Inc. Figure 8-1 Water Column PCB Concentrations at Thompson Island Dam and Waterford (Lock 1) for the No Action Forecast Simulations (1998 - 2018)

•Fort Edward Total PCB c»nc»ntration = 9.9 ng/L Thompson Island Dam at River Mile 188.5 • Fort Edward Total PCB con(»ntration = 0.0 ng/L 1000

CO o>O) ^ ^

Waterford at River Mile 159.4 (Lock 1)

1000

100 "B) c OQ O Q. s rr

0.1 H------^^------1- 0)0)0GO 0> O 0)0)0 T- CVJ

Limno-Tech, Inc. Figure 8-2 1998 - 2018 Summer Average (June through September) Total PCB Concentrations at Thompson Island Dorn and Waterford for the No Action Forecast Simulations

Thompson Island Dam

—O—Ft. Edward Total PCB concentration = 9.9 ng/L —O—Ft. Edward Total PCB concentration = 0.0 ng/L

o 20 -i 15 10

Year

Waterford

D—Ft. Edward Total PCB concentration = 9.9 ng/L 3—Ft. Edward Total PCB concentration = 0.0 ng/L

0- 20 £ 15

Year

LimnoTech, Inc. Figure 8-3 Annual Total PCB Flux at Thompson Island Dam and Waterford for the 1998 - 2018 No Action Forecast Simulations

Thompson Island Dam

500 —O—Ft. Edward Total PCB concentration = 9.9 mg/L 450 400 —O—Ft. Edward Total PCB concentration = 0.0 ng/L 3 350 m 300 250 -■ H 200 = 150 < 100

Waterford

500 0—Ft. Edward Total PCB concentration = 9.9 ng/L ^ 450 400 a—Ft. Edward Total PCB concentration = 0.0 ng/L 3 350 m 300 250 H 200 i 150 < 100

8•»- 8CNJ 8 ^1 If)8 CD8 8

Limno-Tech, Inc. Figure 8-4 Predicted Reach Average Suficial Sediment Tot PCB Concentrations for the No Action Forecast Simulations (1998-2018)

Thompson Island Pool

Total PCB concentration at Ft. Edward = 9.9 ng/L Total PCB concentration at Ft. Edward = 0.0 ng/L

Thompson Island Dam fo Northumberland Dam

10 - a 8

Z 2-

Northumberland Dam to Stillwater Dam

Z 2

Stillwater Dam to Waterford (Lock 1)

Limno-Tech, Inc. Figure 8-5 Adjustment of 1977 Fort Edward Hydrograph to Include the 100 Year Flow (47,330 cfs)

50,000

Scaled to 100 Year Flood 45,000 - - ---USGS Daily Flow

40,000 - - ■■■“Average maximum daily spring high-flow from 1977-1997

35,000 - • The 1977 hydrograph adjusted to include the 100 year flow was used as the first year 30,000 - ■ hydrograph in the 21-year forecast simulations. 25,000 - ■

20,000 - ■

15,000 -■

10,000 ■ •

5,000 ■ ■

Limno Tech, Inc. Figure 8-6 HUDTOX-Computed PCB Concentrations at Thompson Island Dam for the 100 Year Flow and 1977 Flow Forecast Simulations

1977 uses Ft. Edward hydrograph Ft. Edward hydrograph scaled to 100 year flow

50.000 45.000 Ft. Edward hydrograph scaled to 100 year flow 40.000 35.000 ------1977 USGS Ft. Edward hydrograph 30.000 25.000 20.000 15.000 10.000 5,000 0 w O) c c .o <0 Q. CO>< c 3 a. ca (0 a> 3 ■? 3 o> o “P u. <1 ■? O -p 1 VLif < op d) CO CO CO 00 CO eo CNJ cvj C\J CM 6

Limno-Tech, Inc. Figure 8-7 Cumulative Totai PCB Fiux Over Thompson Island Dam for the 1st Year of the 1998-2018 Forecast Simulations with the 100 Year Fiow and 1977 Fiow

•1977 yr flow : Fort Edward Total PCB concentration = 0.0 ng/L •100 yr flow : Fort Edward Total PCB concentration = 0.0 ng/L "Ft. Edward hydrograph scaled to 100 year flow 50.000 100 year flow event (47,330 cfs) 45.000 300 - 40.000 ^ 250 - 35.000 ^ 30.000 g 200 -■ 25.000 "S m iT 150 20.000 5 15.000 “ 100 - 10.000 £ E 50 - 5,000

Limno-Tech, Inc. Former Fort Edward

RM 90

Thompson Island Dam

Dynes / sq. cm 1/2 mile Thompson Island Pool 200 100 50 500 meters Bottom Shear Stress 30 100-year Flow Event

Plate 3-1 Limno-Tech, Inc.