The Un-Design and Design of Insulin: Structural Evolution

Total Page:16

File Type:pdf, Size:1020Kb

The Un-Design and Design of Insulin: Structural Evolution THE UN-DESIGN AND DESIGN OF INSULIN: STRUCTURAL EVOLUTION WITH APPLICATION TO THERAPEUTIC DESIGN By NISCHAY K. REGE Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biochemistry Dissertation Advisor: Dr. Michael A. Weiss CASE WESTERN RESERVE UNIVERSITY August, 2018 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Nischay K. Rege candidate for the degree of Doctor of Philosophy*. Committee Chair Paul Carey Committee Member Michael Weiss Committee Member Faramarz Ismail-Beigi Committee Member George Dubyak Date of Defense: June 26th, 2018 *We also certify that written approval has been obtained for any proprietary material contained therein. Dedication This thesis is dedicated to my mother, Dipti, whose constant love and faith have never failed, to my father, Kiran, who taught me of the virtue of curiosity, and to my wife, Shipra, whose kindness and companionship have given me enough strength for eight lifetimes. i Table of Contents Dedication ..................................................................................................................................... i Table of Contents ......................................................................................................................... ii List of Tables ............................................................................................................................... v List of Figures ............................................................................................................................ vii Acknowledgements ...................................................................................................................... x List of Abbreviations ................................................................................................................ xiv Abstract ..................................................................................................................................... xvi Chapter 1: Introduction ................................................................................................... 1 1.1 History of insulin research ..................................................................................................... 1 1.2 Purpose of Dissertation .......................................................................................................... 3 1.3 Insulin Structure ..................................................................................................................... 6 1.4 Insulin Oligomerization and Storage ..................................................................................... 8 1.5 Insulin Biosynthesis and Secretion: ..................................................................................... 15 1.6 Proinsulin Folding:............................................................................................................... 20 1.7 Insulin Fibrillation ............................................................................................................... 23 1.8 Insulin Physiology ............................................................................................................... 32 1.9 Insulin Receptor Structure ................................................................................................... 35 1.10 Insulin-IR Complexation ................................................................................................... 37 1.11 Diabetes Mellitus ............................................................................................................... 43 1.12 Development of Clinical Insulin Analogs: ......................................................................... 46 1.13 Conclusion ......................................................................................................................... 54 Chapter 2: Toxic Protein Misfolding Constrains the Evolution of Insulin Sequences ..................................................................................................................... 58 2.1 Chapter Summary ................................................................................................................ 58 2.2 Introduction .......................................................................................................................... 59 2.3 Results: ................................................................................................................................. 67 2.4 Discussion ............................................................................................................................ 93 2.5 Methods and materials ....................................................................................................... 105 Chapter 3: Identification of a Minimal Prodomain in Insulin: A Weak Hydrogen Bond is Critical for Proinsulin Folding, but Dispensible in the Mature Hormone ....................................................................................................... 111 3.1 Chapter Summary .............................................................................................................. 111 3.2 Introduction ........................................................................................................................ 112 Results ...................................................................................................................................... 117 ii 3.4 Discussion. ......................................................................................................................... 135 3.5 Methods. ............................................................................................................................ 142 Chapter 4: Protein Evolution at the Edge of Non-Foldability: Impaired Biosynthesis of an Insulin Variant with Native Structure and Function ............. 148 4.1 Chapter Summary .............................................................................................................. 148 4.2 Introduction ........................................................................................................................ 149 4.3 Results ................................................................................................................................ 160 4.4 Discussion .......................................................................................................................... 194 4.5 Methods ............................................................................................................................. 206 Chapter 5: Structure-Based Stabilization of Insulin as a Therapeutic Protein Assembly via Enhanced Aromatic-Aromatic Interactions .................................... 211 5.1 Chapter Summary .............................................................................................................. 211 5.2 Introduction ........................................................................................................................ 212 5.3 Results ................................................................................................................................ 217 5.4 Discussion .......................................................................................................................... 262 5.5 Methods ............................................................................................................................. 292 5.6 Endnotes ............................................................................................................................. 297 Chapter 6: 4SS-Insulin ................................................................................................. 299 6.1 Chapter Summary .............................................................................................................. 299 6.2 Introduction ........................................................................................................................ 300 6.3 Results ................................................................................................................................ 305 6.4 Discussion .......................................................................................................................... 327 6.5 Methods ............................................................................................................................. 333 6.6 Endnotes ............................................................................................................................. 336 Chapter 7: Towards a Glucose-Responsive Insulin Analog ...................................... 337 7.1 Chapter Summary .............................................................................................................. 337 7.2 Summary of previous GRI Research ................................................................................. 337 7.2 Design of Glucose-Responsive Insulin Analogs Containing Internal Glucose-Sensing Motifs ....................................................................................................................................... 365 7-3 Results ............................................................................................................................... 367 7-4 Discussion .......................................................................................................................... 394 7-5 Methods. ...........................................................................................................................
Recommended publications
  • Molecular Basis of Blood Glucose Regulation Asma Ahmed and Noman Khalique
    Chapter Molecular Basis of Blood Glucose Regulation Asma Ahmed and Noman Khalique Abstract Blood glucose level is regulated by multiple pancreatic hormones, which regulate it by different pathways in normal and abnormal conditions by expressing or suppressing multiple genes or molecular or cellular targets. Multiple synthetic drugs and therapies are used to cure glucose regulatory problems, while many of them are used to cure other health issues, which arise due to disturbance in blood glucose regulations. Many new approaches are used for the development of phytochemical- based drugs to cure blood glucose regulation problems, and many of the compounds have been isolated and identified to cure insulin resistance or regulate beta cell function or glucose absorption in the guts or GLP-1 homoeostasis or two/more pathways (e.g., either cure hyperglycemia or raise insulin resistance or cure pan- creatic beta cell regeneration or augmentation of GLP-1, production of islet cell, production and increased insulin receptor signaling and insulin secretion or decreased insulin tolerance or gluconeogenesis and insulin-mimetic action or pro- duction of α-glucosidase and α-amylase inhibitor or conserve islet mass or activate protein kinase A (PKA) and extracellular signal regulated kinases (ERK) or activate AMPK and reduce insulin sensitivity or suppress α-glucosidase activity and activate AMPK and downstream molecules or prevents cell death of pancreatic β-cell and activates SIRT1 or lower blood glucose due to their insulin-like chemical structures or decrease lipid peroxidation. Keywords: genes, molecular and cellular targets, hormones, pathways 1. Introduction Blood glucose is regulated by the pancreatic hormones alone or in combination with other endocrine glands and all this is controlled by one or more gene or cellular or molecular targets.
    [Show full text]
  • Chapter 7: Monogenic Forms of Diabetes
    CHAPTER 7 MONOGENIC FORMS OF DIABETES Mark A. Sperling, MD, and Abhimanyu Garg, MD Dr. Mark A. Sperling is Emeritus Professor and Chair, University of Pittsburgh, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA. Dr. Abhimanyu Garg is Professor of Internal Medicine and Chief of the Division of Nutrition and Metabolic Diseases at University of Texas Southwestern Medical Center, Dallas, TX. SUMMARY Types 1 and 2 diabetes have multiple and complex genetic influences that interact with environmental triggers, such as viral infections or nutritional excesses, to result in their respective phenotypes: young, lean, and insulin-dependence for type 1 diabetes patients or older, overweight, and often manageable by lifestyle interventions and oral medications for type 2 diabetes patients. A small subset of patients, comprising ~2%–3% of all those diagnosed with diabetes, may have characteristics of either type 1 or type 2 diabetes but have single gene defects that interfere with insulin production, secretion, or action, resulting in clinical diabetes. These types of diabetes are known as MODY, originally defined as maturity-onset diabetes of youth, and severe early-onset forms, such as neonatal diabetes mellitus (NDM). Defects in genes involved in adipocyte development, differentiation, and death pathways cause lipodystrophy syndromes, which are also associated with insulin resistance and diabetes. Although these syndromes are considered rare, more awareness of these disorders and increased availability of genetic testing in clinical and research laboratories, as well as growing use of next generation, whole genome, or exome sequencing for clinically challenging phenotypes, are resulting in increased recognition. A correct diagnosis of MODY, NDM, or lipodystrophy syndromes has profound implications for treatment, genetic counseling, and prognosis.
    [Show full text]
  • Report of the Expert Committee on the Diagnosis and Classification Of
    COMMITTEE REPORT Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus THE EXPERT COMMITTEE ON THE DIAGNOSIS AND CLASSIFICATION OF DIABETES MELLITUS* he current classification and diagno- nosis of diabetes were warranted. The in insulin secretion, insulin action, or sis of diabetes used in the U.S. was Committee met on multiple occasions both. The chronic hyperglycemia of dia- T developed by the National Diabetes and widely circulated a draft report of betes is associated with long-term dam- Data Group (NDDG) and published in their findings and preliminary recom- age, dysfunction, and failure of various 1979 (1). The impetus for the classifica- mendations to the international diabe- organs, especially the eyes, kidneys, tion and diagnosis scheme proposed then tes community. Based on the numerous nerves, heart, and blood vessels. holds true today. That is, comments and suggestions received, in- Several pathogenic processes are in- cluding the opportunity to review unpub- volved in the development of diabetes. the growth of knowledge regarding the eti- lished data in detail, the Committee These range from autoimmune destruc- ology and pathogenesis of diabetes has led discussed and revised numerous drafts of tion of the ␤-cells of the pancreas with many individuals and groups in the diabe- a manuscript that culminated in this pub- consequent insulin deficiency to abnor- tes community to express the need for a lished document. malities that result in resistance to insulin revision of the nomenclature, diagnostic This report is divided into four sec- action. The basis of the abnormalities in criteria, and classification of diabetes.
    [Show full text]
  • Inhaled Insulin: the Solution for Suboptimal Diabetes Control?
    I EDITORIALS Inhaled insulin: the solution for suboptimal diabetes control? Stephanie A Amiel Stephanie A Amiel For nearly a century, we have been using insulin to action comparable to human soluble (regular) BSc MD FRCP, treat diabetes. Until recently, that insulin has been insulin rather than fast-acting analogues.10 In trials, RD Lawrence given by injection. In 2006, the first inhaled insulin, Exubera® is only ‘non-inferior’ to conventional (not Professor of Diabetic Exubera®, was licenced for use in Europe. The man- analogue) insulins, the latter not always used in Medicine, King’s ufacturers hoped for a warm welcome – the end of equivalent basal-bolus regimens11–14 and in type 2, College London School of Medicine injections and the dawn of a new era of enthusiastic slightly more effective than adding a second oral insulin takers with perfect diabetic control. The agent in very poorly controlled disease.15,16 It has not Clin Med National Institute for Health and Clinical Excellence been tested against fully flexible analogue regimens. 2007;7:430–2 (NICE) was more cautious and recommend that It is clear that inhaled insulin’s sole advantage over inhaled insulin only be used in the presence of diag- injected insulin is its route of delivery. nosed needle phobia (or severe intractable problems Exubera® has low bioavailability, minor and prob- with injection sites) and should be supervised by dia- ably reversible effects on lung function17 and a nat- betes specialists.1 True needle phobia is rare and ural lack of long-term safety data. Active smoking treatable by standard psychological techniques.2,3 On contraindicates its use because of increased bioavail- the NICE criteria, the market for inhaled insulin may abilty of inhaled insulin,18,19 while absorption may be small indeed.
    [Show full text]
  • Enzymatic Assay of L-METHIONINE GAMMA-LYASE (EC 4.4.1.11)
    Enzymatic Assay of L-METHIONINE GAMMA-LYASE (EC 4.4.1.11) PRINCIPLE: L-Methionine Gamma-Lyase L-Methionine > Methanethiol + 2-Ketobutyrate + NH3 2-Ketobutyrate + MBTH > Azine Derivative Abbreviation used: MBTH = 3-Methyl-2-Benzothiazolinone CONDITIONS: T = 37°C, pH = 8.0, A320nm, Light path = 1 cm METHOD: Stopped Spectrophotometric Rate Determination REAGENTS: A. 100 mM Potassium Phosphate Buffer with 25 mM L-Methionine and 0.01 mM Pyridoxal 5-Phosphate, pH 8.0 at 37°C1 (Prepare 100 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, Sigma Prod. No. P-5379, L-Methionine, Sigma Prod. No. M-9625, and Pyridoxal 5-Phosphate, Sigma Prod. No. P-9255. Adjust to pH 8.0 at 37°C with 5 M KOH.) B. 50% (w/v) Trichloroacetic Acid Solution (TCA) (Prepare 5 ml in deionized water using Trichloroacetic Acid, 6.1 N Solution, approximately 100% (w/v), Sigma Stock No. 490-10.) C. 1 M Sodium Acetate Buffer, pH 5.0 at 37°C (NaOAC) (Prepare 100 ml in deionized water using Sodium Acetate, Trihydrate, Sigma Prod. No. S-8625. Adjust to pH 5.0 at 37°C with 5 M HCl.) D. 0.1% (w/v) 3-Methyl-2-Benzothiazolinone Hydrazone (MBTH) (Prepare 10 ml in deionized water using 3-Methyl-2-Benzothiazolinone Hydrazone, Hydrochloride Hydrate, Sigma Prod. No. M-8006.) SSMETH01 Page 1 of 4 07/29/98 Enzymatic Assay of L-METHIONINE GAMMA-LYASE (EC 4.4.1.11) REAGENTS: E. 100 mM Potassium Phosphate Buffer with 1 mM Ethylenediaminetetraacetic Acid, 0.01% (v/v) 2-Mercaptoethanol and 0.02 mM Pyridoxal 5-Phosphate, pH 7.2 at 37°C (Enzyme Diluent)1 (Prepare 10 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, Sigma Prod.
    [Show full text]
  • Lyxumia Subcutaneous Injection 300 Μg [Non-Proprietary Name] Lixisenatide (JAN*) [Name of Applicant] Sanofi K.K
    Report on the Deliberation Results May 31, 2013 Evaluation and Licensing Division, Pharmaceutical and Food Safety Bureau Ministry of Health, Labour and Welfare [Brand name] Lyxumia Subcutaneous Injection 300 μg [Non-proprietary name] Lixisenatide (JAN*) [Name of applicant] Sanofi K.K. [Date of application] June 11, 2012 [Results of deliberation] In the meeting held on May 24, 2013, the First Committee on New Drugs concluded that the product may be approved and that this result should be reported to the Pharmaceutical Affairs Department of the Pharmaceutical Affairs and Food Sanitation Council. The re-examination period for the product is 8 years, and the drug substance and the drug product are both classified as powerful drugs and the product is not classified as a biological product or a specified biological product. The proposed Japanese brand name should be changed for ensuring medical safety. *Japanese Accepted Name (modified INN) This English version of the Japanese review report is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. The PMDA will not be responsible for any consequence resulting from the use of this English version. Review Report May 7, 2013 Pharmaceuticals and Medical Devices Agency The results of a regulatory review conducted by the Pharmaceuticals and Medical Devices Agency on the following pharmaceutical product submitted for registration are as follows. [Brand name] Lyxumia Subcutaneous
    [Show full text]
  • Divergent Genes in Gerbils: Prevalence, Relation to GC-Biased Substitution, and Phenotypic Relevance Yichen Dai, Rodrigo Pracana and Peter W
    Dai et al. BMC Evolutionary Biology (2020) 20:134 https://doi.org/10.1186/s12862-020-01696-3 RESEARCH ARTICLE Open Access Divergent genes in gerbils: prevalence, relation to GC-biased substitution, and phenotypic relevance Yichen Dai, Rodrigo Pracana and Peter W. H. Holland* Abstract Background: Two gerbil species, sand rat (Psammomys obesus) and Mongolian jird (Meriones unguiculatus), can become obese and show signs of metabolic dysregulation when maintained on standard laboratory diets. The genetic basis of this phenotype is unknown. Recently, genome sequencing has uncovered very unusual regions of high guanine and cytosine (GC) content scattered across the sand rat genome, most likely generated by extreme and localized biased gene conversion. A key pancreatic transcription factor PDX1 is encoded by a gene in the most extreme GC-rich region, is remarkably divergent and exhibits altered biochemical properties. Here, we ask if gerbils have proteins in addition to PDX1 that are aberrantly divergent in amino acid sequence, whether they have also become divergent due to GC-biased nucleotide changes, and whether these proteins could plausibly be connected to metabolic dysfunction exhibited by gerbils. Results: We analyzed ~ 10,000 proteins with 1-to-1 orthologues in human and rodents and identified 50 proteins that accumulated unusually high levels of amino acid change in the sand rat and 41 in Mongolian jird. We show that more than half of the aberrantly divergent proteins are associated with GC biased nucleotide change and many are in previously defined high GC regions. We highlight four aberrantly divergent gerbil proteins, PDX1, INSR, MEDAG and SPP1, that may plausibly be associated with dietary metabolism.
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Intraceuular Transport and Sorting of Mutant Human Proinsulins That Fail to Form Hexamers David Quinn,* Lelio Orci,* Mariella Ravazzola,~ and Hsiao-Ping H
    IntraceUular Transport and Sorting of Mutant Human Proinsulins that Fail to Form Hexamers David Quinn,* Lelio Orci,* Mariella Ravazzola,~ and Hsiao-Ping H. Moore* * Department of Molecular and Cell Biology, Life Sciences Addition, University of California, Berkeley, California 94720; and *Department of Morphology, University of Geneva Medical School, Geneva, Switzerland Abstract. Human proinsulin and insulin oligomerize both dimers and hexamers. The mutants were trans- to form dimers and hemmers. It has been suggested fected into the mouse pituitary AtT-20 cells, and their that the ability of prohormones to self associate and ability to be sorted into regulated secretory granules form aggregates may be responsible for the sorting was compared to wild-type insulin. We found that process at the trans-Golgi. To examine whether insulin while B10His-~p is sorted somewhat less efficiently than oligomerization is required for proper sorting into reg- wild-type insulin as reported previously (Carroll, R. J., ulated storage granules, we have constructed point R. E. Hammer, S. J. Chan, H. H. Swift, A. H. Ruben- mutations in human insulin B chain that have been stein, and D. E Steiner. 1988. Proc. Natl. Acad. Sci. previously shown to prevent formation of insulin hexa- USA. 85:8943-8947; Gross, D. J., P. A. Halban, C. R. mers (Brange, J., U. Ribel, J. E Hansen, G. Dodson, Kahn, G. C. Weir, and L. Villa-Kumaroff. 1989. Proc. M. T. Hansen, S. Havelund, S. G. Melberg, E Norris, Natl. Acad. Sci. USA. 86:4107-4111). B9Se~p is tar- K. Norris, L. Snel, A. R. Sorensen, and H.
    [Show full text]
  • The Korean Wave As a Localizing Process: Nation As a Global Actor in Cultural Production
    THE KOREAN WAVE AS A LOCALIZING PROCESS: NATION AS A GLOBAL ACTOR IN CULTURAL PRODUCTION A Dissertation Submitted to the Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY by Ju Oak Kim May 2016 Examining Committee Members: Fabienne Darling-Wolf, Advisory Chair, Department of Journalism Nancy Morris, Professor, Department of Media Studies and Production Patrick Murphy, Associate Professor, Department of Media Studies and Production Dal Yong Jin, Associate Professor, School of Communication, Simon Fraser University © Copyright 2016 by Ju Oak Kim All Rights Reserved ii ABSTRACT This dissertation research examines the Korean Wave phenomenon as a social practice of globalization, in which state actors have promoted the transnational expansion of Korean popular culture through creating trans-local hybridization in popular content and intra-regional connections in the production system. This research focused on how three agencies – the government, public broadcasting, and the culture industry – have negotiated their relationships in the process of globalization, and how the power dynamics of these three production sectors have been influenced by Korean society’s politics, economy, geography, and culture. The importance of the national media system was identified in the (re)production of the Korean Wave phenomenon by examining how public broadcasting-centered media ecology has control over the development of the popular music culture within Korean society. The Korean Broadcasting System (KBS)’s weekly show, Music Bank, was the subject of analysis regarding changes in the culture of media production in the phase of globalization. In-depth interviews with media professionals and consumers who became involved in the show production were conducted in order to grasp the patterns that Korean television has generated in the global expansion of local cultural practices.
    [Show full text]
  • Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early
    Page 1 of 93 Diabetes Genetic studies of leptin concentrations implicate leptin in the regulation of early adiposity Hanieh Yaghootkar1,2,3*&, Yiying Zhang4&, Cassandra N Spracklen5, Tugce Karaderi6,7,8,9, Lam Opal Huang10, Jonathan Bradfield11,12, Claudia Schurmann13, Rebecca S Fine14,15,16, Michael H Preuss13, Zoltan Kutalik1,17,18, Laura BL Wittemans6,19, Yingchang Lu13,20, Sophia Metz10, Sara M Willems19, Ruifang Li-Gao21, Niels Grarup10, Shuai Wang22, Sophie Molnos23,24, América A Sandoval-Zárate25, Mike A Nalls26,27, Leslie A Lange28, Jeffrey Haesser29, Xiuqing Guo30, Leo-Pekka Lyytikäinen31,32, Mary F Feitosa33, Colleen M Sitlani34, Cristina Venturini35, Anubha Mahajan6,36, Tim Kacprowski37,38, Carol A Wang22, Daniel I Chasman39,40, Najaf Amin41, Linda Broer42, Neil Robertson6,36, Kristin L Young43, Matthew Allison44, Paul L Auer45, Matthias Blüher46, Judith B Borja47,48, Jette Bork-Jensen10, Germán D Carrasquilla10, Paraskevi Christofidou35, Ayse Demirkan41, Claudia A Doege49, Melissa E Garcia50, Mariaelisa Graff43,51, Kaiying Guo4, Hakon Hakonarson11,52, Jaeyoung Hong22, Yii-Der Ida Chen30, Rebecca Jackson53, Hermina Jakupović10, Pekka Jousilahti54, Anne E Justice55, Mika Kähönen56,57, Jorge R Kizer58,59, Jennifer Kriebel23,24, Charles A LeDuc4, Jin Li60, Lars Lind61, Jian’an Luan19, David Mackey62, Massimo Mangino35,63, Satu Männistö54, Jayne F Martin Carli4, Carolina Medina-Gomez41,42, Dennis O Mook-Kanamori21,64, Andrew P Morris65,6,66, Renée de Mutsert21, Matthias Nauck67,38, Ivana Nedeljkovic41, Craig E Pennell22, Arund D Pradhan39,40, Bruce M Psaty68,69, Olli T Raitakari70,71,72, Robert A Scott19, Tea Skaaby73, Konstantin Strauch74,75, Kent D Taylor30, Alexander Teumer76,38, Andre G Uitterlinden41,42, Ying Wu5, Jie Yao30, Mark Walker77, Kari E North43, Peter Kovacs46, M.
    [Show full text]
  • Maikawa STM 2021.Pdf
    SCIENCE TRANSLATIONAL MEDICINE | REVIEW DRUG DEVELOPMENT Copyright © 2021 The Authors, some rights reserved; Engineering biopharmaceutical formulations exclusive licensee American Association to improve diabetes management for the Advancement Caitlin L. Maikawa1, Andrea I. d’Aquino2, Rayhan A. Lal3,4,5, of Science. No claim 4,5 1,2,4,5,6 to original U.S. Bruce A. Buckingham , Eric A. Appel * Government Works Insulin was first isolated almost a century ago, yet commercial formulations of insulin and its analogs for hormone replacement therapy still fall short of appropriately mimicking endogenous glycemic control. Moreover, the controlled delivery of complementary hormones (such as amylin or glucagon) is complicated by instability of the pharmacologic agents and complexity of maintaining multiple infusions. In this review, we highlight the advantages and limitations of recent advances in drug formulation that improve protein stability and pharmacokinetics, prolong drug delivery, or enable alternative dosage forms for the management of diabetes. With controlled delivery, Downloaded from these formulations could improve closed-loop glycemic control. ENGINEERING OPPORTUNITIES TO IMPROVE DIABETES tive treatment with insulin alone is already highly burdensome and MANAGEMENT costly—requiring frequent glucose monitoring, mealtime insulin Over the past century, insulin replacement therapy has been impera- boluses, basal insulin delivery through infusion pumps or long-acting http://stm.sciencemag.org/ tive to saving lives and improving diabetes treatment outcomes. The analogs, and routine carbohydrate counting—and still does not truly administration of exogenous insulin prevents ketoacidosis, which recapitulate the complexities of metabolic control in nondiabetic was once a universally fatal condition. Although insulin has histor- individuals (Fig. 1B) (7).
    [Show full text]