<<

ARIEL Enabling planetary science across light-years

Ignasi Ribas Institut d’Estudis Espacials de Catalunya (IEEC) Institut de Ciències de l’Espai (ICE, CSIC)

1st meeting of ExoNet, Granada, 22/2/2019 today: huge diversity

3800+ PLANETS, 2700 PLANETARY SYSTEMS KNOWN IN THE GALAXY Huge diversity: why?

Formation & evolution processes? Migration? Interaction with star?

Accretion Gaseous planets form here

Interaction with star Planet migration

Ices, dust, gas Key questions

• How diverse are exoplanets chemically? • Does chemical diversity correlate with other parameters?

• How do planets form?

• How do planets evolve? The Sun’s planets are cold

SOME KEY O, C, N, S MOLECULES ARE NOT IN GAS FORM

T ~ 150 K Warm/hot exoplanets

O, C, N, S (TI, VO, SI) MOLECULES ARE IN GAS FORM

Atmospheric pressure

0.01Bar H2O gas CO2 gas

CO gas CH4 gas HCN gas TiO gas

T ~ 500-2500 K Condensates VO gas H2S gas

1 Bar Gases from interior Issues with current data • Low SNR & R observations • Data are sparse, not enough wavelength coverage • Broad wavelength coverage is not simultaneous • Absolute calibration at the level of 10-4 is not guaranteed! • Instrument systematics are difficult to disentangle from the signal • Stellar activity is the largest source of astrophysical noise • We need observations on a population of objects to draw conclusions ARIEL – ESA M4 mission

• 1-m telescope, spectroscopy from VIS to IR • Satellite in orbit around L2 • ~1000 exoplanets observed (rocky + gaseous) • Launch in 2028 – 3.5-yr mission • Simultaneous coverage 0.5-7.8 micron • Payload consortium: 15 ESA countries + NASA under study The exoplanet mission timeline C

B

A 10-4 – 10-5 relative precision A B C

Sedaghati et al. 2017 A chemical survey of a large population

SCIENCE REQUIREMENTS: EXOPLANET RADIATION, MOLECULAR & CLOUD SIGNATURES, STELLAR ACTIVITY H O 2 CO 2 CH 4 CO H + 3 HCN NH 3 SO 2 SiO TiO VO C H 2 2 2

) C H

s 2 4 C H /R 2 6 p PH

(R 3 1 2 3 4 5 6 7 8 Wavelength ( m) Simultaneous observations in the VIS and IR are needed -tier approach

INDIVIDUAL PLANETS & POPULATION ANALYSIS

• Main atmospheric component • Trace gases SURVEY • Thermal structure • Cloud characterization • What fraction of planets DEEP SURVEY • Elemental composition have clouds? • Have small planets still retained H/He? BENCHMARK • Color-color diagrams • Refinement of ~ 50-100 orbital/planet parameters in IR • Atmospheric ~ 500 circulation • Spatial & temporal ~ 1000 PLANETS variability Chemical diversity

ARIEL WILL CLARIFY CORRELATION WITH THE DENSITY

–42–

Density observations Atmospheric composition through ARIEL will clarify the degeneracy ● O 3.0 / 2 3.0 T(K) K-20c H 4000 2200 K-26b % K-26c 100 1600 ▲ O 1000 2 ▲ H ● GJ1214b % 400 1200 50 O 2 ● H 2.5 100 900 K-307b HIP116454 % 2.5 ▲ 20 40 700 ● K-307c K-10c 10 500 ● ) ▲ HD97658b ● (rock 55Cnce 3 Fe Rocky Icy ) K-60d % 25 ⊕ 2.0 ▲ 2.0 R MgSiO Interior Interior ( Fe ▲ % r K-60c ● 50

K-60b K-20b ▲ K-21b ● ● HD219134b ● COROT7b Fe K-10b % 1.5 ● ● ▲ 100 1.5 K-93b K-36b H/He Water vapor ▲ Atmosphere K-105c ● Atmosphere

K-78b 1.0 ● 1.0 ● Venus 0.8 1 1.5 2 3 4 5 6 7 8 910 15 20 Same mean density – Different m (M⊕) atmospheric signatures

López-Morales et al. 2016; Valencia et al. 2013 Fig. 13.— Mass-Radius relation for planets with masses < 20 M , measured with precisions better than 20%. Circles indicate the planets with masses measured via RVs; triangles indicate planets with masses measured via TTVs (Carter et al. 2012; Jontof-Hutter et al. 2016). The plot also includes Earth and Venus, for reference. The lines show models of di↵erent compositions, with solid lines indicating single composition planets (either H2O,

MgSiO3, i.e. rock, or Fe). The dashed and dotted lines indicate Mg-silicate planets with di↵erent amounts of H2OandFe.Thedatapointsrepresentingtheplanetsarecolor-coded as a function of incident bolometric stellar flux (compared to the Earth) and equilibrium temperature (assuming circular orbit, uniform planetary surface temperature, and bond albedo A=0). For other A values, the temperature can be obtained by multiplying those values by a factor of (1 A)1/4, following the flux and temperature scale indicated in the upper-left corner of the diagram. Large population of warm/hot planets

TODAY AND IN THE NEXT DECADE

TESS yields

Sullivan et al. 2015 ARIEL sky visibility

Instantaneous Sky 100% 80% 60% 40% Survey Visibility Deep Benchmark ARIEL science working groups Spectral retrieval: Michiel Min (SRON), Joanna Barstow (UCL), Ingo Waldmann (UCL) Planet interior: Ravit Helled (Un. Zurich), Stephanie Werner (Un. Oslo) Planet formation: Diego Turrini (INAF) Disks: Mihkel Kama (Cambridge), Olja Panic (Leeds) Atmospheric chemistry: Olivia Venot (LISA), Yamila Miguel (Un. Leiden), Franck Selsis (Un. Bordeaux) Mass measurement with RV: Lars A. Buchhave (DTU), Olivier Demangeon (Un. Porto) Stellar characterisation: Camilla Danielski (CEA) Data challenges: Subi Sarkar (Un. Cardiff) and Theresa Leuftinger (Un. Vienna) (Stellar activity) Nikos Nikolaou (UCL) (Data reduction), Michel Min (SRON) (Retrievals) Stellar activity: Bart Vandenbussche (Un. Leuven), Ignasi Ribas (IEEC-CSIC), Giusi Micela (INAF) Data analysis: Ingo Waldmann (UCL), Angelos Tsiaras (UCL) ARIEL science working groups

Upper atmosphere/star-planet interaction: Antonio Garcia Muñoz (TU Berlin), Manuel Guedel (U. Vienna), Luca Fossati (U. Graz) High-cadence photometry: Davis Waltham (RH), Gyula Szabo (Un. Eötvös Loránd), Luca Borsato (Un. Padova) Ephemerides: Vincent Coudé du Foresto (Obs. Paris) Phase-curves: Benjamin Charnay (Obs. Paris), João Mendonça (DTU) Albedo and reflected light (+ synergy with other instruments): Olivier Demangeon (Un. Porto) Synergy with ELT & ground-based obs.: Enric Palle (IAC) Synergy with JWST: Pierre-Olivier Lagage (CEA) Synergy with Solar System science: Gabriella Gilli (Obs. Lisboa), Pedro Machado (Obs. Lisboa) Synergy with PLATO and CHEOPS: Isabella Pagano (INAF), Giampaolo Piotto (Un. Padova) ARIEL science working groups

Scheduling: Juan Carlos Morales (ICEE-CSIC), Andrea Moneti (IAP) Performance simulations: Enzo Pascale (La Sapienza/Cardiff), Subi Sarkar (Cardiff), Billy Edwards (UCL), Lorenzo Mugnai (La Sapienza) Spectroscopic database: Clara Sousa-Silva (MIT), Svatopluk Civiš (Heyrovsky Institute) Other science: brown dwarfs: Sarah Casewell (Un. Leicester) Other science: young stellar objects: Csaba Kiss (Konkoly Obs.), Krisztián Vida (Konkoly Obs.) Novel methods to handle high-volume, high-dimensional data: James Cho (QMUL) Synergy with NGTS, HAT: Matt Burleigh (Leicester Un.), Gaspar Bakos (Princeton) Synergy with TESS: TBA from US Synergy with amateur astronomers: Anastasia Konkori (Royal Museums Greenwich), Marco Rocchetto (Konica Minolta) ARIEL payload

+ EGSE + mission planning Our role in the ARIEL consortium

ARIEL Consortium Co-PI Italy Co-PI Co-PI Co-PI Poland Co-PI UK Co-PI Jean-Philippe Steering Committee Giusi Micela Ignasi Ribas Bart Vandenbussche Miroslaw Rataj Matt Griffin Beaulieu (MLA Mandated Member INAF - Palermo IEEC – CSIC KU Leuven SRC Warsaw CNRS IAP State Representatives)

Consortium PI Italy Co-PI France Co-PI Spain Co-PI Co-PI Co-PI USA Co-PI Pino Malaguti Pierre-Olivier Lagage Enric Palle Michiel Min Manuel Güdel Mark Swain UCL CEA CEA Saclay IAC SRON Uni of Vienna JPL

Consortium Project Czech Rep co-PI Denmark Co-PI Ireland Co-PI Norway co-PI Manager Martin Ferus Lars Buchhave Tom Ray Stephanie Warner Paul Eccleston Czech Academy of DTU Space DIAS University of Oslo RAL Space Science ARIEL Science Team Chaired by ESA ARIEL PS Co-PI Sweden co-PI Portugal Co-PI Hungary co-PI Paul Hartogh Kay Justtanont Pedro Machado Robert Szabo MPS Chalmers Uni. Uni de Lisboa Konkoly Obs

Consortium Co-PI Board

ESA ARIEL Project Team Systems Engineering Consortium Project Instrument Scientist Telescope Scientist Mission Scientist Consortium PI Lead Manager Marc Ollivier Enzo Pascale Matt Griffin Giovanna Tinetti Kevin Middleton ESA ARIEL Project ESA ARIEL Project IAS Uni di Roma Cardiff University UCL Paul Eccleston RAL Space Manager Scientist RAL Space

Italy NPM France NPM Spain NPM Belgium NPM Poland NPM ESA ARIEL Payload ESA ARIEL Emanuele Pace Michel Berthe Pep Colome Bart Vandenbussche Miroslaw Rataj Manager Project Team Uni di Firenze CEA IEEC – CSIC KU Leuven SRC Warsaw

Netherlands NPM UK NPM Ireland NPM Austria NPM USA NPM Matthijs Krijger Rachel Drummond Deirdre Coffey Manfred Steller Kirk Seaman SRON RAL Space UCD / DIAS IWF Graz JPL

Czech Rep NPM Germany NPM Denmark NPM Portugal NPM Svata Civis Norway NPM TBD Søren Møller Pedersen Manuel Abreu Czech Academy of TBD MPS DTU Space Uni de Lisboa Science TBD

Consortium Management Team Spanish consortium organization

+ M.R. Zapatero Osorio (member of ESA’s ARIEL Science Team) Conclusions

• ARIEL has been conceived to deliver the first chemical survey of ~1000 exoplanets, probing uniformly the gamut of planet and stellar parameters • The Spanish participation in the ARIEL mission science consortium and payload development is very significant • Timeline: Phase B1 (2019-2020), mission adoption (Nov 2020), phase B2 (2021-2022) • Think abut joining the science WGs!