NASA Astrophysics Update

Total Page:16

File Type:pdf, Size:1020Kb

NASA Astrophysics Update 2021 Joint PAG Meeting January 8, 2021 Paul Hertz Director, Astrophysics Division Science Mission Directorate Charts to be posted on the PAG web pages Highlights of 2020 2 EARTH SCIENCE HELIOPHYSICS PLANETARY SCIENCE ASTROPHYSICS BIOLOGICAL & NASA SCIENCE PHYSICAL SCIENCE AN INTEGRATED PROGRAM JOINT AGENCY SATELLITE 3 NASA's Mars 2020 Perseverance rover launched on the Atlas V-541 rocket from Launch Complex 41 at Cape Canaveral Air Force Station, Florida on July 30, 2020, at 7:50 a.m. ET. Perseverance (and the Ingenuity Mars helicopter tech demo) will land on Mars on February 18, 2021, around 3:30 pm ET. :4 Touch-and-Go Sample Acquisition Mechanism OSIRIS-REx (TAGSAM) Oct 22 Touch-and-Go (‘TAG’) at Nightingale Crater Oct 20 Sample stowed in Sample Return Capsule Oct 28 5 The fully assembled and folded James Webb Space Telescope on the vibration table at Northrop Grumman Space Park (September 2020). This is the configuration that Webb will be in when it is mated to the Ariane 5 launch vehicle in 2021. 6 Nancy Grace Roman SCIENCE Space Telescope HIGHLIGHT February 28, 2020 – NASA confirmed the Wide Field Infrared Survey telescope (WFIRST) for development May 20, 2020 – NASA named its Wide Field Infrared Survey Telescope (WFIRST), in honor of Nancy Grace Roman, NASA’s first chief astronomer, who paved the way for space telescopes focused on the broader universe 7 2020 Nobel Prize in Physics 2020 Black Holes (Penrose, Reinhard, & Ghez) 2019 Our Place in the Universe (Peebles, Mayor, & Queloz) 2017 Gravitational Waves (Weiss, Barish, & Thorne) 2011 Dark Energy (Perlmutter, Schmidt, Roger Penrose Reinhard Genzel Andrea Ghez & Riess) “for the discovery that "for the discovery of a "for the discovery of a black hole formation is supermassive compact supermassive compact a robust prediction of object at the centre of object at the centre of the general theory of our galaxy" our galaxy" relativity” Illustrations © Nobel Media. Ill. Niklas Elmehed 9 Building Excellent NASA Teams Requires Inclusion and Diversity • At NASA, we recognize that excellence is only achieved with inclusive and diverse teams. We are creating a multi-pronged approach. o Directorate level: Hosting incubator workshops and implementing actions from those workshops focused on short-term changes to how we are operating and how we grow our leaders. Studying barriers to inclusion in mission leadership. Standing up a long-term activity focused on sustained engagement, systemic, and lasting changes. o Division level: Division task forces working to align division-level practices with the NASA core value and SMD science strategy. Examining the R&A process for better inclusion and diversity. Adopting a Code of Conduct to improve the inclusion and process of our panels and teams. • Proposal Processes: Recognizing we have influence through our calls for proposals and what we reward in our selections. Piloting dual-anonymous peer review and seeking to expand that. Actively looking into how we can be a model for inclusivity. Enhancing Participation of Minority Serving Institutions in Space Science Monday, Jan 11 @ 6:50 pm ET 10 COVID-19 Impacts Research: NASA is focused on continuing our research programs and providing stability • Virtual review panels for ROSES solicitations and AO mission evaluations are going well; all-virtual review panels for ROSES programs will continue until at least June 1, 2021 • NASA is thinking about continuing virtual review panels, at least in part, even after in- person meetings cease to pose a health hazard NASA does not want the pandemic to derail careers of future leaders; we are focused on mitigating impacts • Given current funding constraints, NASA will prioritize up to 15% of the R&A funding available for new awards toward augmentations and funded extension requests for existing awards that: o Are in their last year (or the last year of their first no-cost-extension); o Have costed their funds in a timely manner; and o Are for the explicit support of near-finishing graduate students / post-docs (including third-year NPPs) and non-tenured / soft-money early career researchers 11 COVID-19 Impacts Missions: NASA continues to experience disruption in the development of all missions due to COVID- related restrictions • We assume these disruptions will continue for the foreseeable future Many missions are expected to stay within their cost commitments (known as the ABC or Agency Baseline Commitment, which includes HQ held reserves above project budget) • ABC is set at Confirmation Review • In astrophysics, this includes NASA contributions to Euclid and XRISM Some missions have experienced challenges that affect cost and schedule commitments • In astrophysics, this includes Webb, Roman, and IXPE • Missions that have been Confirmed since COVID began (e.g., SPHEREx), or will be Confirmed in the future (e.g., future Explorers) have assumed impacts from COVID included within their cost and schedule commitments To date, challenges to Flagships (Webb, Roman) have been accommodated with no impact to Explorers or R&A • Challenges to Explorers have been accommodated within the Explorers Program 12 The NASA Team 13 Not Pictured Paul Hertz Jeff Volosin E. Lucien Cox Ed Griego Shahid Habib Future Janet Letchworth Mark Sistilli Program Division Director Astrophysics Division Astrophysics Division SOFIA, GUSTO, Astrophysics COR, PCOS, ARIEL, Roman Explorers Program Director Deputy Director Executives XRISM, ExEP Operating Missions Athena, Euclid, LISA, IXPE, SPHEREx UltraSat Balloons Not Pictured Not Pictured Cross Cross Cutting Eric Smith Jeanne Davis Mario Perez Lisa Wainio Support Kelly Johnson Maria Washington Jackie Mackall Ingrid Farrell Chief Scientist Assoc Dir for Flight Chief Technologist Information Manager, Administrative Assistant Administrative Assistant Program Support Program Support Webb ASM Program Manager SAT, RTF Public Affairs Liaison Specialist Specialist Administrative Dominic Valerie Dan Evans Michael Garcia Thomas Hams Hashima Hasan Douglas Hudgins Stefan Immler Hannah Patricia Knezek Benford Connaughton PCOS Program APRA (UV/Optical), APRA (CR, Fund. Phys.) Education/Comms, Citizen ExEP Program Astrophysics Research Jang-Condell Astrophysics Explorers Program Mgr, Chandra, APRA Lead APRA (High Energy) NICER SmallSats/Pioneers Rockets/Balloons Science, Archives, ADAP Lead FINESST, ExEP, Program, SOFIA, XMM Roman XRISM, UltraSat Dual Anon.PR Hubble, Athena GUSTO, LISA Advisory Committees, TESS, ARIEL TESS Hubble Fellows NuSTAR, Keck Not NASA Astrophysics NASA Division Pictured Program Scientists Program William Latter Pamela Marcum Roopesh Ojha Aki Roberge Evan Kartik Sheth Linda Sparke Eric Tollestrup Heather Watson Future APRA (Lab Astro) Exoplanet Research Data Management, ASMP, Roman Scannapieco COR Program On detail to the Office APRA (IR/Submm) Dep. Technologist, Spitzer, SPHEREx, Program (XRP) FINESST, XMM ATP / TCAN Lead, of the Administrator Euclid, IXPE Explorers, Fermi Swift SmallSats/Pioneers 14 Astrophysics Program Abbreviations: ASM – Astrophysics Strategic Missions; COR – Cosmic Origins; ExEP – Exoplanet Exploration Program; PCOS - Physics of the Cosmos January 4, 2021 NASA Town Halls Session NASA Town Hall 220 Tuesday, Jan 12 @ 1:40 pm ET R&A Program Town Hall Splinter Wednesday, Jan 13 @ 12:00 pm ET STScI Town Hall 319 Wednesday, Jan 13 @ 1:40 pm ET Webb Space Telescope Town Hall 419 Thursday, Jan 14 @ 1:40 pm ET Science Activation Next Phase Splinter Thursday, Jan 14 @ 4:10 pm ET SOFIA Town Hall 519 Friday, Jan 15 @ 1:40 pm ET Roman Space Telescope Town Hall 520 Friday, Jan 15 @ 1:40 pm ET Program Analysis Groups (PAGs) COPAG Mon @ 12:00 pm PhysPAG Mon @ 12:00 pm SIGs Far-IR/Origins (Tue @ 12:00 pm) SIGs Multi-Messenger (Tue @ 12:00 pm) Low Freq Radio (Wed @ 12:00 pm) Inflation Probe (Wed @ 12:00 pm) UV/Vis/Tech (Thu @ 12:00 pm) X-ray (Wed @ 6:50 pm) Cosmic Origins (Fri @ 12:00 pm) Gravitational Wave (Thu @ 12:00 pm) Cosmic Structure (Thu @ 4:10 pm) Enhancing Participation of Minority Serving Institutions in Space Science (Mon @ 6:50 pm) 15 Join the Astrophysics Program Analysis Groups (PAGs) The Cosmic Origins PAG (COPAG), Exoplanet Exploration PAG (ExoPAG) and Physics of the Cosmos PAG (PhysPAG) want you Join the Executive Committee (EC), a Science Analysis Group (SAG), a Science Interest Group (SIG), or a Technology Interest Group (TIG) WHY? • The PAG provides NASA Astrophysics with analysis of community input and feedback on its programs; the PAG reports to NASA at meetings of the Astrophysics Advisory Committee (APAC) • The EC coordinates the activities of the PAG and its SAGs, SIGs, and TIGs • The SIGs and TIGs are where the community gathers to discuss common areas of interest, and the SAGs are specific efforts to analyze a specific problem; these analyses have an impact, e.g. ADAP offerings, Great Observatories report • The PAG and its SIGs, TIGs, and SAGs will aid in analyzing and discussing the Decadal Survey; this will be important and impactful to NASA as it decides how to implement the recommendations WHAT? HOW? • NASA seeks ECs, SIGs, TIGs, and SAGs that are inclusive and diverse across a variety of axes to be representative of the broad astrophysics community • Each PAG has a letter to the community inviting applications • Please speak to the Program Scientists or Chief Scientists to learn more https://cor.gsfc.nasa.gov/copag/ https://exoplanets.nasa.gov/exep/exopag/ https://pcos.gsfc.nasa.gov/physpag16/ Virtual NASA at the AAS 17 NASA Science Webinars Zoom Room Chats @ 2:40 – 3:10 pm ET Date Presenter(s)
Recommended publications
  • Rochyderabad 27072017.Pdf
    List of Companies under Strike Off Sl.No CIN Number Name of the Company 1 U93000TG1947PLC000008 RAJAHMUNDRY CHAMBER OF COMMERCE LIMITED 2 U80301TG1939GAP000595 HYDERABAD EDUCATIONAL CONFERENCE 3 U52300TG1957PTC000772 GUNTI AND CO PVT LTD 4 U99999TG1964PTC001025 HILITE PRODUCTS PVT LTD 5 U74999AP1965PTC001083 BALAJI MERCHANTS ASSOCIATION PRIVATE LIMITED 6 U92111TG1951PTC001102 PRASAD ART PICTURES PVT LTD 7 U26994AP1970PTC001343 PADMA GRAPHITE INDUSTRIES PRIVATE LIMITED 8 U16001AP1971PTC001384 ALLIED TOBBACCO PACKERS PVT LTD 9 U63011AP1972PTC001475 BOBBILI TRANSPORTS PRIVATE LIMITED 10 U65993TG1972PTC001558 RAJASHRI INVESTMENTS PRIVATE LIMITED 11 U85110AP1974PTC001729 DR RANGARAO NURSING HOME PRIVATE LIMITED 12 U74999AP1974PTC001764 CAPSEAL PVT LTD 13 U21012AP1975PLC001875 JAYALAKSHMI PAPER AND GENERAL MILLS LIMITED 14 U74999TG1975PTC001931 FRUTOP PRIVATE LIMITED 15 U05005TG1977PTC002166 INTERNATIONAL SEA FOOD PVT LTD 16 U65992TG1977PTC002200 VAMSI CHIT FUNDS PVT LTD 17 U74210TG1977PTC002206 HIMALAYA ENGINEERING WORKS PVT LTD 18 U52520TG1978PTC002306 BLUEFIN AGENCIES AND EXPORTS PVT LTD 19 U52110TG1979PTC002524 G S B TRADING PRIVATE LIMITED 20 U18100AP1979PTC002526 KAKINADA SATSANG SAREES PRINTING AND DYEING CO PVT LTD 21 U26942TG1980PLC002774 SHRI BHOGESWARA CEMENT AND MINERAL INDUSTRIES LIMITED 22 U74140TG1980PTC002827 VERNY ENGINEERS PRIVATE LIMITED 23 U27109TG1980PTC002874 A P PRECISION LIGHT ENGINEERING PVT LTD 24 U65992AP1981PTC003086 CHAITANYA CHIT FUNDS PVT LTD 25 U15310AP1981PTC003087 R K FLOUR MILLS PVT LTD 26 U05005AP1981PTC003127
    [Show full text]
  • Astrophysics
    National Aeronautics and Space Administration Astrophysics Astronomy and Astrophysics Paul Hertz Advisory Committee Director, Astrophysics Division Washington, DC Science Mission Directorate January 26, 2017 @PHertzNASA www.nasa.gov Why Astrophysics? Astrophysics is humankind’s scientific endeavor to understand the universe and our place in it. 1. How did our universe 2. How did galaxies, stars, 3. Are We Alone? begin and evolve? and planets come to be? These national strategic drivers are enduring 1972 1982 1991 2001 2010 2 Astrophysics Driving Documents 2016 update includes: • Response to Midterm Assessment • Planning for 2020 Decadal Survey http://science.nasa.gov/astrophysics/documents 3 Astrophysics - Big Picture • The FY16 appropriation/FY17 continuing resolution and FY17 President’s budget request provide funding for NASA astrophysics to continue its planned programs, missions, projects, research, and technology. – The total funding (Astrophysics including Webb) remains at ~$1.35B. – Fully funds Webb for an October 2018 launch, WFIRST formulation (new start), Explorers mission development, increased funding for R&A, new suborbital capabilities. – No negative impact from FY17 continuing resolution (through April 28, 2017). – Awaiting FY18 budget guidance from new Administration. • The operating missions continue to generate important and compelling science results, and new missions are under development for the future. – Senior Review in Spring 2016 recommended continued operation of all missions. – SOFIA is adding new instruments: HAWC+ instrument being commissioned; HIRMES instrument in development; next gen instrument call in 2017. – NASA missions under development making progress toward launches: ISS-NICER (2017), ISS-CREAM (2017), TESS (2018), Webb (2018), IXPE (2020), WFIRST (mid-2020s). – Partnerships with ESA and JAXA on their future missions create additional science opportunities: Euclid (ESA), X-ray Astronomy Recovery Mission (JAXA), Athena (ESA), L3/LISA (ESA).
    [Show full text]
  • Will the Real Monster Black Hole Please Stand Up? 8 January 2015
    Will the real monster black hole please stand up? 8 January 2015 how the merging of galaxies can trigger black holes to start feeding, an important step in the evolution of galaxies. "When galaxies collide, gas is sloshed around and driven into their respective nuclei, fueling the growth of black holes and the formation of stars," said Andrew Ptak of NASA's Goddard Space Flight Center in Greenbelt, Maryland, lead author of a The real monster black hole is revealed in this new new study accepted for publication in the image from NASA's Nuclear Spectroscopic Telescope Astrophysical Journal. "We want to understand the Array of colliding galaxies Arp 299. In the center panel, mechanisms that trigger the black holes to turn on the NuSTAR high-energy X-ray data appear in various and start consuming the gas." colors overlaid on a visible-light image from NASA's Hubble Space Telescope. The panel on the left shows NuSTAR is the first telescope capable of the NuSTAR data alone, while the visible-light image is pinpointing where high-energy X-rays are coming on the far right. Before NuSTAR, astronomers knew that the each of the two galaxies in Arp 299 held a from in the tangled galaxies of Arp 299. Previous supermassive black hole at its heart, but they weren't observations from other telescopes, including sure if one or both were actively chomping on gas in a NASA's Chandra X-ray Observatory and the process called accretion. The new high-energy X-ray European Space Agency's XMM-Newton, which data reveal that the supermassive black hole in the detect lower-energy X-rays, had indicated the galaxy on the right is indeed the hungry one, releasing presence of active supermassive black holes in Arp energetic X-rays as it consumes gas.
    [Show full text]
  • IEEE 2018 Paper Sunrise Draft7
    2018 IEEE Aerospace Conference Big Sky, Montana, USA 3-10 March 2018 Pages 1-740 IEEE Catalog Number: CFP18AAC-POD ISBN: 978-1-5386-2015-1 1/6 Copyright © 2018 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. *** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version. IEEE Catalog Number: CFP18AAC-POD ISBN (Print-On-Demand): 978-1-5386-2015-1 ISBN (Online): 978-1-5386-2014-4 ISSN: 1095-323X Additional Copies of This Publication Are Available From: Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: [email protected] Web: www.proceedings.com TABLE OF CONTENTS DEFECT TREND ANALYSIS OF C-130 ENVIRONMENTAL CONTROL SYSTEM BY DATA MINING OF MAINTENANCE HISTORY............................................................................................................................................................................1
    [Show full text]
  • The Most Dangerous Ieos in STEREO
    EPSC Abstracts Vol. 6, EPSC-DPS2011-682, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 The most dangerous IEOs in STEREO C. Fuentes (1), D. Trilling (1) and M. Knight (2) (1) Northern Arizona University, Arizona, USA, (2) Lowell Observatory, Arizona, USA ([email protected]) Abstract (STEREO-B) which view the Sun-Earth line using a suite of telescopes. Each spacecraft moves away 1 from the Earth at a rate of 22.5◦ year− (Figure 1). IEOs (inner Earth objects or interior Earth objects) are ∼ potentially the most dangerous near Earth small body Our search for IEOs utilizes the Heliospheric Imager population. Their study is complicated by the fact the 1 instruments on each spacecraft (HI1A and HI1B). population spends all of its time inside the orbit of The HI1s are centered 13.98◦ from the Sun along the the Earth, giving ground-based telescopes a small win- Earth-Sun line with a square field of view 20 ◦ wide, 1 dow to observe them. We introduce STEREO (Solar a resolution of 70 arcsec pixel− , and a bandpass of TErrestrial RElations Observatory) and its 5 years of 630—730 nm [3]. Images are taken every 40 minutes, archival data as our best chance of studying the IEO providing a nearly continuous view of the inner solar population and discovering possible impactor threats system since early 2007. The nominal visual limit- ing magnitude of HI1 is 13, although the sensitivity to Earth. ∼ We show that in our current search for IEOs in varies somewhat with solar elongation, and asteroids STEREO data we are capable of detecting and char- fainter than 13 can be seen near the outer edges.
    [Show full text]
  • ARIEL – 13Th Appleton Space Conference PLANETS ARE UBIQUITOUS
    Background image credit NASA ARIEL – 13th Appleton Space Conference PLANETS ARE UBIQUITOUS OUR GALAXY IS MADE OF GAS, STARS & PLANETS There are at least as many planets as stars Cassan et al, 2012; Batalha et al., 2015; ARIEL – 13th Appleton Space Conference 2 EXOPLANETS TODAY: HUGE DIVERSITY 3700+ PLANETS, 2700 PLANETARY SYSTEMS KNOWN IN OUR GALAXY ARIEL – 13th Appleton Space Conference 3 HUGE DIVERSITY: WHY? FORMATION & EVOLUTION PROCESSES? MIGRATION? INTERACTION WITH STAR? Accretion Gaseous planets form here Interaction with star Planet migration Ices, dust, gas ARIEL – 13th Appleton Space Conference 4 STAR & PLANET FORMATION/EVOLUTION WHAT WE KNOW: CONSTRAINTS FROM OBSERVATIONS – HERSCHEL, ALMA, SOLAR SYSTEM Measured elements in Solar system ? Image credit ESA-Herschel, ALMA (ESO/NAOJ/NRAO), Marty et al, 2016; André, 2012; ARIEL – 13th Appleton Space Conference 5 THE SUN’S PLANETS ARE COLD SOME KEY O, C, N, S MOLECULES ARE NOT IN GAS FORM T ~ 150 K Image credit NASA Juno mission, NASA Galileo ARIEL – 13th Appleton Space Conference 6 WARM/HOT EXOPLANETS O, C, N, S (TI, VO, SI) MOLECULES ARE IN GAS FORM Atmospheric pressure 0.01Bar H2O gas CO2 gas CO gas CH4 gas HCN gas TiO gas T ~ 500-2500 K Condensates VO gas H2S gas 1 Bar Gases from interior ARIEL – 13th Appleton Space Conference 7 CHEMICAL MEASUREMENTS TODAY SPECTROSCOPIC OBSERVATIONS WITH CURRENT INSTRUMENTS (HUBBLE, SPITZER,SPHERE,GPI) • Precision of 20 ppm can be reached today by Hubble-WFC3 • Current data are sparse, instruments not absolutely calibrated • ~ 40 planets analysed
    [Show full text]
  • FINESSE and ARIEL + CASE: Dedicated Transit Spectroscopy Missions for the Post-TESS Era
    FINESSE and ARIEL + CASE: Dedicated Transit Spectroscopy Missions for the Post-TESS Era Fast Infrared Exoplanet FINESSE Spectroscopy Survey Explorer Exploring the Diversity of New Worlds Around Other Stars Origins | Climate | Discovery Jacob Bean (University of Chicago) Presented on behalf of the FINESSE/CASE science team: Mark Swain (PI), Nicholas Cowan, Jonathan Fortney, Caitlin Griffith, Tiffany Kataria, Eliza Kempton, Laura Kreidberg, David Latham, Michael Line, Suvrath Mahadevan, Jorge Melendez, Julianne Moses, Vivien Parmentier, Gael Roudier, Evgenya Shkolnik, Adam Showman, Kevin Stevenson, Yuk Yung, & Robert Zellem Fast Infrared Exoplanet FINESSE Spectroscopy Survey Explorer Exploring the Diversity of New Worlds Around Other Stars **Candidate NASA MIDEX mission for launch in 2023** Objectives FINESSE will test theories of planetary origins and climate, transform comparative planetology, and open up exoplanet discovery space by performing a comprehensive, statistical, and uniform survey of transiting exoplanet atmospheres. Strategy • Transmission spectroscopy of 500 planets: Mp = few – 1,000 MEarth • Phase-resolved emission spectroscopy of a subset of 100 planets: Teq > 700 K • Focus on synergistic science with JWST: homogeneous survey, broader context, population properties, and bright stars Hardware • 75 cm aluminum Cassegrain telescope at L2 • 0.5 – 5.0 μm high-throughput prism spectrometer with R > 80 • Single HgCdTe detector with JWST heritage for science and guiding Origins | Climate | Discovery Advantages of Fast Infrared
    [Show full text]
  • NASA Program & Budget Update
    NASA Update AAAC Meeting | June 15, 2020 Paul Hertz Director, Astrophysics Division Science Mission Directorate @PHertzNASA Outline • Celebrate Accomplishments § Science Highlights § Mission Milestones • Committed to Improving § Inspiring Future Leaders, Fellowships § R&A Initiative: Dual Anonymous Peer Review • Research Program Update § Research & Analysis § ROSES-2020 Updates, including COVID-19 impacts • Missions Program Update § COVID-19 impact § Operating Missions § Webb, Roman, Explorers • Planning for the Future § FY21 Budget Request § Project Artemis § Creating the Future 2 NASA Astrophysics Celebrate Accomplishments 3 SCIENCE Exoplanet Apparently Disappears HIGHLIGHT in the Latest Hubble Observations Released: April 20, 2020 • What do astronomers do when a planet they are studying suddenly seems to disappear from sight? o A team of researchers believe a full-grown planet never existed in the first place. o The missing-in-action planet was last seen orbiting the star Fomalhaut, just 25 light-years away. • Instead, researchers concluded that the Hubble Space Telescope was looking at an expanding cloud of very fine dust particles from two icy bodies that smashed into each other. • Hubble came along too late to witness the suspected collision, but may have captured its aftermath. o This happened in 2008, when astronomers announced that Hubble took its first image of a planet orbiting another star. Caption o The diminutive-looking object appeared as a dot next to a vast ring of icy debris encircling Fomalhaut. • Unlike other directly imaged exoplanets, however, nagging Credit: NASA, ESA, and A. Gáspár and G. Rieke (University of Arizona) puzzles arose with Fomalhaut b early on. Caption: This diagram simulates what astronomers, studying Hubble Space o The object was unusually bright in visible light, but did not Telescope observations, taken over several years, consider evidence for the have any detectable infrared heat signature.
    [Show full text]
  • Cosmic Evolution Through Uv Surveys (Cetus) Final Report
    COSMIC EVOLUTION THROUGH UV SURVEYS (CETUS) FINAL REPORT Thematic Activity: Project (probe mission concept) Program: Electromagnetic observations from space Authors of Final Report: Jonathan Arenberg, Northrop Grumman Corporation Sally Heap, Univ. of Maryland, [email protected] Tony Hull, Univ. of New Mexico Steve Kendrick, Kendrick Aerospace Consulting LLC Bob Woodruff, Woodruff Consulting Scientific Contributors: Maarten Baes, Rachel Bezanson, Luciana Bianchi, David Bowen, Brad Cenko, Yi-Kuan Chiang, Rachel Cochrane, Mike Corcoran, Paul Crowther, Simon Driver, Bill Danchi, Eli Dwek, Brian Fleming, Kevin France, Pradip Gatkine, Suvi Gezari, Lea Hagen, Chris Hayward, Matthew Hayes, Tim Heckman, Edmund Hodges-Kluck, Alexander Kutyrev, Thierry Lanz, John MacKenty, Steve McCandliss, Harvey Moseley, Coralie Neiner, Goren Östlin, Camilla Pacifici, Marc Rafelski, Bernie Rauscher, Jane Rigby, Ian Roederer, David Spergel, Dan Stark, Alexander Szalay, Bryan Terrazas, Jonathan Trump, Arjun van der Wel, Sylvain Veilleux, Kate Whitaker, Isak Wold, Rosemary Wyse Technical Contributors: Jim Burge, Kelly Dodson, Chip Eckles, Brian Fleming, Jamie Kennea, Gerry Lemson, John MacKenty, Steve McCandliss, Greg Mehle, Shouleh Nikzad, Trent Newswander, Lloyd Purves, Manuel Quijada, Ossy Siegmund, Dave Sheikh, Phil Stahl, Ani Thakar, John Vallerga, Marty Valente, the Goddard IDC/MDL. September 2019 Cosmic Evolution Through UV Surveys (CETUS) TABLE OF CONTENTS INTRODUCTION TO CETUS ................................................................................................................
    [Show full text]
  • Spherex: New NASA MIDEX All-Sky 1-5 Um Spectral Survey
    SPHEREx: New NASA MIDEX All-Sky 1-5 um Spectral Survey Designed to Explore ▪ The Origin of the Universe ▪ The Origin and History of Galaxies ▪ The Origin of Water in Planetary Systems ▪ PI Jamie Bock, CalTech The First All-Sky Near-IR Spectral Survey A Rich Legacy Archive for the Astronomy Community with 100s of Millions of Stars and Galaxies Low-Risk Implementation ▪ 2022 NASA MIDEX Launch ▪ Single Observing Mode ▪ Large Design Margins Co-I Carey Lisse, SES/SRE ▪ No Moving Optics NASA SBAG Jun 25, 2019 Copyright 2017 California Institute of Technology. U.S. Government sponsorship acknowledged. New MIDEX SPHEREx (2022-2025): All-Sky 0.8 – 5.0 µm Spectral Legacy Archives Medium- High- Accuracy Accuracy Detected Spectra Spectra Clusters > 1 billion > 100 million 10 million 25,000 All-Sky surveys demonstrate high Galaxies scientiFic returns with a lasting Main data legacy used across astronomy Sequence Brown Spectra Dust-forming Dwarfs Cataclysms For example: > 100 million 10,000 > 400 > 1,000 COBE J IRAS J Stars GALEX Asteroid WMAP & Comet Galactic Quasars Quasars z >7 Spectra Line Maps Planck > 1.5 million 1 – 300? > 100,000 PAH, HI, H2 WISE J Other More than 400,000 total citations! SPHEREx Data Products & Tools: A spectrum (0.8 to 5 micron) for every 6″ pixel on the sky Planned Data Releases Survey Data Date (Launch +) Associated Products Survey 1 1 – 8 mo S1 spectral images Survey 2 8 – 14 mo S1/2 spectral images Early release catalog Survey 3 14 – 20 mo S1/2/3 spectral images Survey 4 20 – 26 mo S1/2/3/4 spectral images Final Release
    [Show full text]
  • Prelude To, and Nature of the Space Photometry Revolution
    EPJ Web of Conferences 101, 0001(0 2015) DOI: 10.1051/epjconf/20151010000 1 C Owned by the authors, published by EDP Sciences, 2015 Prelude to, and Nature of the Space Photometry Revolution Ronald L. Gilliland1,a Space Telescope Science Institute and Department of Astronomy and Astrophysics, and Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA Abstract. It is now less than a decade since CoRoT initiated the space photometry revo- lution with breakthrough discoveries, and five years since Kepler started a series of similar advances. I’ll set the context for this revolution noting the status of asteroseismology and exoplanet discovery as it was 15-25 years ago in order to give perspective on why it is not mere hyperbole to claim CoRoT and Kepler fostered a revolution in our sciences. Primary events setting up the revolution will be recounted. I’ll continue with noting the major discoveries in hand, and how asteroseismology and exoplanet studies, and indeed our approach to doing science, have been forever changed thanks to these spectacular missions. 1 Introduction I would like to start by thanking Rafa Garcia, Jer´ omeˆ Ballot and the Science Organizing Committee for inviting me to give the introductory talk at this conference. It is a great honor for me to do so. Of course we’re here to discuss the results that come from CoRoT and Kepler; these were French and American missions respectively with Annie Baglin as the PI for CoRoT and Bill Borucki as the PI for Kepler.
    [Show full text]
  • The Future of X-Rayastronomy
    The Future of X-rayAstronomy Keith Arnaud [email protected] High Energy Astrophysics Science Archive Research Center University of Maryland College Park and NASA’s Goddard Space Flight Center Themes Politics Efficient high resolution spectroscopy Mirrors Polarimetry Other missions Interferometry Themes Politics Efficient high resolution spectroscopy Mirrors Polarimetry Other missions Interferometry How do we get a new X-ray astronomy experiment? A group of scientists and engineers makes a proposal to a national (or international) space agency. This will include a science case and a description of the technology to be used (which should generally be in a mature state). In principal you can make an unsolicited proposal but in practice space agencies have proposal rounds in the same way that individual missions have observing proposal rounds. NASA : Small Explorer (SMEX) and Medium Explorer (MIDEX): every ~2 years alternating Small and Medium, three selected for study for one year from which one is selected for launch. RXTE, GALEX, NuSTAR, Swift, IXPE Arcus, a high resolution X-ray spectroscopy mission was a finalist in the latest MIDEX round but was not selected. Missions of Opportunity (MO): every ~2 years includes balloon programs, ISS instruments and contributions to foreign missions. Suzaku, Hitomi, NICER, XRISM Large missions such as HST, Chandra, JWST are not selected by such proposals but are decided as national priorities through the Astronomy Decadal process. Every ten years a survey is run by the National Academy of Sciences to decide on priorities for both land-based and space-based astronomy. 1960: HST; 1970: VLA; 1980: VLBA; 1990: Chandra and SIRTF; 2000: JWST and ALMA; 2010 WFIRST and LSST.
    [Show full text]