ARIEL Payload Design Description

Total Page:16

File Type:pdf, Size:1020Kb

ARIEL Payload Design Description Doc Ref: ARIEL-RAL-PL-DD-001 ARIEL Payload ARIEL Payload Design Issue: 2.0 Consortium Description Date: 15 February 2017 ARIEL Consortium Phase A Payload Study ARIEL Payload Design Description ARIEL-RAL-PL-DD-001 Issue 2.0 Prepared by: Date: Paul Eccleston (RAL Space) Consortium Project Manager Reviewed by: Date: Kevin Middleton (RAL Space) Payload Systems Engineer Approved & Date: Released by: Giovanna Tinetti (UCL) Consortium PI Page i Doc Ref: ARIEL-RAL-PL-DD-001 ARIEL Payload ARIEL Payload Design Issue: 2.0 Consortium Description Date: 15 February 2017 DOCUMENT CHANGE DETAILS Issue Date Page Description Of Change Comment 0.1 09/05/16 All New document draft created. Document structure and headings defined to request input from consortium. 0.2 24/05/16 All Added input information from consortium as received. 0.3 27/05/16 All Added further input received up to this date from consortium, addition of general architecture and background section in part 4. 0.4 30/05/16 All Further iteration of inputs from consortium and addition of section 3 on science case and driving requirements. 0.5 31/05/16 All Completed all additional sections except 1 (Exec Summary) and 8 (Active Cooler), further updates and iterations from consortium including updated science section. Added new mass budget and data rate tables. 0.6 01/06/16 All Updates from consortium review of final document and addition of section 8 on active cooler (except input on turbo-brayton alternative). Updated mass and power budget table entries for cooler based on latest modelling. 0.7 02/06/16 All Updated figure and table numbering following check. Added comments from KM & GT. Added section 8.4 on other cooler options. 1.0 02/06/16 All Added Executive summary. Prepared for release for MCR datapack. 1.1 23/12/16 All Draft issue to consortium with section authors identified 1.2 10/02/17 All Updated throughout with consortium input for updated designs ready for the MSR submission. 1.3 11/02/17 All Further updates for MSR based on consortium input 1.4 13/02/17 All Added sections on Mechanical, Thermal, detector readout modes, science overview & telescope assy from consortium authors. 1.5 14/02/17 All Added inputs on ACS and AIRS from consortium. Other minor editorial changes. 1.6 15/02/17 All Added comments from EP & KM reviews. Added section on TA thermo-elastic analysis. 1.7 15/02/17 All Final review comments incorporated 2.0 15/02/17 All Document released for MSR datapack Page ii Doc Ref: ARIEL-RAL-PL-DD-001 ARIEL Payload ARIEL Payload Design Issue: 2.0 Consortium Description Date: 15 February 2017 DISTRIBUTION LIST ARIEL Payload Consortium External Co-PIs Study Engineering Team European Space Working Group Leads Agency Giovanna Tinetti Paul Eccleston Goren Pilbratt Giusi Micela Kevin Middleton Ludovic Puig Jean-Philippe Beaulieu Emanule Pace Astrid Heske Paul Hartogh Gianluca Morgante Enzo Pascale Tom Hunt Ignasi Ribas Vania Da Deppo Hans Ulrik Nørgaard-Nielsen Pino Malaguti Michiel Min Jerome Amiaux Mirek Rataj Pep Colome Bart Vandenbussche Jean-Louis Auguères Manuel Gudel Etienne Renotte David Luz Martin Frericks Other Engineering Team As necessary for doc Page iii Doc Ref: ARIEL-RAL-PL-DD-001 ARIEL Payload ARIEL Payload Design Issue: 2.0 Consortium Description Date: 15 February 2017 TABLE OF CONTENTS Document Change Details ......................................................................................................... ii Distribution List ........................................................................................................................ iii Table of Contents .................................................................................................................... iv 1 Executive Summary ....................................................................................................... 11 2 Introduction ................................................................................................................... 12 2.1 Purpose ............................................................................................................................... 12 2.2 Scope .................................................................................................................................. 12 2.3 Applicable Documents ........................................................................................................... 12 2.4 Reference Documents ........................................................................................................... 12 3 ARIEL Science Background ........................................................................................... 15 3.1 The ARIEL Science ............................................................................................................... 15 3.1.1 Background ...................................................................................................................................... 15 3.1.2 ARIEL Science Goals ........................................................................................................................ 15 3.1.3 Observational Strategy ...................................................................................................................... 16 3.2 ARIEL science requirements .................................................................................................. 17 3.2.1 Wavelength coverage & spectral resolving power ............................................................................... 17 3.2.2 ARIEL performances requirements .................................................................................................... 19 3.2.3 ARIEL core sample, observational strategy & sky visibility ................................................................... 20 4 Payload System Design and Architecture ........................................................................ 23 4.1 Payload Architecture & Responsibilities ................................................................................... 23 4.2 The Need for Mechanisms in PLM .......................................................................................... 24 4.3 Design Philosophy ................................................................................................................ 24 4.3.1 Modularity ........................................................................................................................................ 24 4.3.2 Material Selection ............................................................................................................................. 24 4.4 Performance Analysis and Noise Budget ................................................................................. 25 4.4.1 Photometric Stability ......................................................................................................................... 26 4.4.1.1 Frequency Bands of Interest ...................................................................................................... 26 4.4.1.2 Pointing stability ........................................................................................................................ 27 4.4.1.3 Slit Losses ................................................................................................................................ 29 4.4.1.4 Detector stability ........................................................................................................................ 29 4.4.1.5 Thermal stability ....................................................................................................................... 30 4.4.2 Noise Budget .................................................................................................................................... 31 4.4.2.1 Contribution from star variability ................................................................................................. 32 4.4.3 Compliance with requirements ........................................................................................................... 33 4.5 Detector Readout Modes ....................................................................................................... 35 4.5.1 FGS Detectors and Readout Rates .................................................................................................... 35 Page iv Doc Ref: ARIEL-RAL-PL-DD-001 ARIEL Payload ARIEL Payload Design Issue: 2.0 Consortium Description Date: 15 February 2017 4.5.2 AIRS Detectors and readout rates ...................................................................................................... 36 4.5.3 SIDECAR ASIC as controller electronics ............................................................................................ 36 5 System Optical Design ................................................................................................... 37 5.1 Optical System Design Overview ............................................................................................ 37 5.2 Module Optical Division ......................................................................................................... 41 5.3 Common Optics Design ......................................................................................................... 41 5.3.1 Dichroics .......................................................................................................................................... 41 5.3.2 Spectrometer Input Optics ................................................................................................................
Recommended publications
  • The Planck Satellite and the Cosmic Microwave Background
    The Cosmic Microwave Background, Dark Matter and Dark Energy Anthony Lasenby, Astrophysics Group, Cavendish Laboratory and Kavli Institute for Cosmology, Cambridge Overview The Cosmic Microwave Background — exciting new results from the Planck Satellite Context of the CMB =) addressing key questions about the Big Bang and the Universe, including Dark Matter and Dark Energy Planck Satellite and planning for its observations have been a long time in preparation — first meetings in 1993! UK has been intimately involved Two instruments — the LFI (Low — e.g. Cambridge is the Frequency Instrument) and the HFI scientific data processing (High Frequency Instrument) centre for the HFI — RAL provided the 4K Cooler The Cosmic Microwave Background (CMB) So what is the CMB? Anywhere in empty space at the moment there is radiation present corresponding to what a blackbody would emit at a temperature of ∼ 2:74 K (‘Blackbody’ being a perfect emitter/absorber — furnace with a small opening is a good example - needs perfect thermodynamic equilibrium) CMB spectrum is incredibly accurately black body — best known in nature! COBE result on this showed CMB better than its own reference b.b. within about 9 minutes of data! Universe History Radiation was emitted in the early universe (hot, dense conditions) Hot means matter was ionised Therefore photons scattered frequently off the free electrons As universe expands it cools — eventually not enough energy to keep the protons and electrons apart — they History of the Universe: superluminal inflation, particle plasma,
    [Show full text]
  • Coryn Bailer-Jones Max Planck Institute for Astronomy, Heidelberg
    What will Gaia do for the disk? Coryn Bailer-Jones Max Planck Institute for Astronomy, Heidelberg IAU Symposium 254, Copenhagen June 2008 Acknowledgements: DPAC, ESA, Astrium 1 Gaia in a nutshell • high accuracy astrometry (parallaxes, proper motions) • radial velocities, optical spectrophotometry • 5D (some 6D) phase space survey • all sky survey to G=20 (1 billion objects) • formation, structure and evolution of the Galaxy • ESA mission for launch in late 2011 2 Gaia capabilities Hipparcos Gaia Magnitude limit 12.4 G = 20.0 No. sources 120 000 1 000 000 000 quasars 0 1 million galaxies 0 10 million Astrometric accuracy ~ 1000 μas 12-25 μas at G=15 100-300 μas at G=20 Photometry 2 bands spectra 330-1000 nm Radial velocities none 1-10 km/s to G=17 Target selection input catalogue real-time onboard selection 3 How the accuracy varies • astrometric errors dominated by photon statistics • parallax error: σ(ϖ) ~ 1/√flux ~ distance, d for fixed MV • fractional parallax error: σ(ϖ)/ϖ ~ d2 • fractional distance error: fde ~ d2 • transverse velocity accuracy: σ(v) ~ d2 • Example accuracy • K giant at 6 kpc (G=15): fde = 2%, σ(v) = 1 km/s • G dwarf at 2 kpc (G=16.5): fde = 8%, σ(v) = 0.4 km/s 4 Distance statistics 8kpc At larger distances may use spectroscopic parallaxes 100 000 stars with fde <0.1% 11 million stars with fde <1% panther-observatory.com NGC4565 from Image: 150 million stars with fde <10% 5 Payload overview 6 Instruments 7 Radial velocity spectrograph • R=11 500 • CaII triplet (848-874 nm) • more detailed APE for V < 14 (still millions of stars) 8 Spectrophotometry Figure: Anthony Brown Anthony Figure: Dispersion: 7-15 nm/pixel (red), 4-32 nm/pixel (blue) 9 Stellar parameters • Infer via pattern recognition (e.g.
    [Show full text]
  • Interferometric Orbits of New Hipparcos Binaries
    Interferometric orbits of new Hipparcos binaries I.I. Balega1, Y.Y. Balega2, K.-H. Hofmann3, E.V. Malogolovets4, D. Schertl5, Z.U. Shkhagosheva6 and G. Weigelt7 1 Special Astrophysical Observatory, Russian Academy of Sciences [email protected] 2 Special Astrophysical Observatory, Russian Academy of Sciences [email protected] 3 Max-Planck-Institut fur¨ Radioastronomie [email protected] 4 Special Astrophysical Observatory, Russian Academy of Sciences [email protected] 5 Max-Planck-Institut fur¨ Radioastronomie [email protected] 6 Special Astrophysical Observatory, Russian Academy of Sciences [email protected] 7 Max-Planck-Institut fur¨ Radioastronomie [email protected] Summary. First orbits are derived for 12 new Hipparcos binary systems based on the precise speckle interferometric measurements of the relative positions of the components. The orbital periods of the pairs are between 5.9 and 29.0 yrs. Magnitude differences obtained from differential speckle photometry allow us to estimate the absolute magnitudes and spectral types of individual stars and to compare their position on the mass-magnitude diagram with the theoretical curves. The spectral types of the new orbiting pairs range from late F to early M. Their mass-sums are determined with a relative accuracy of 10-30%. The mass errors are completely defined by the errors of Hipparcos parallaxes. 1 Introduction Stellar masses can be derived only from the detailed studies of the orbital motion in binary systems. To test the models of stellar structure and evolution, stellar masses must be determined with ≈ 2% accuracy. Until very recently, accurate masses were available only for double-lined, detached eclipsing binaries [1].
    [Show full text]
  • Asteroseismology with Corot, Kepler, K2 and TESS: Impact on Galactic Archaeology Talk Miglio’S
    Asteroseismology with CoRoT, Kepler, K2 and TESS: impact on Galactic Archaeology talk Miglio’s CRISTINA CHIAPPINI Leibniz-Institut fuer Astrophysik Potsdam PLATO PIC, Padova 09/2019 AsteroseismologyPlato as it is : a Legacy with CoRoT Mission, Kepler for Galactic, K2 and TESS: impactArchaeology on Galactic Archaeology talk Miglio’s CRISTINA CHIAPPINI Leibniz-Institut fuer Astrophysik Potsdam PLATO PIC, Padova 09/2019 Galactic Archaeology strives to reconstruct the past history of the Milky Way from the present day kinematical and chemical information. Why is it Challenging ? • Complex mix of populations with large overlaps in parameter space (such as Velocities, Metallicities, and Ages) & small volume sampled by current data • Stars move away from their birth places (migrate radially, or even vertically via mergers/interactions of the MW with other Galaxies). • Many are the sources of migration! • Most of information was confined to a small volume Miglio, Chiappini et al. 2017 Key: VOLUME COVERAGE & AGES Chiappini et al. 2018 IAU 334 Quantifying the impact of radial migration The Rbirth mix ! Stars that today (R_now) are in the green bins, came from different R0=birth Radial Migration Sources = bar/spirals + mergers + Inside-out formation (gas accretion) GalacJc Center Z Sun R Outer Disk R = distance from GC Minchev, Chiappini, MarJg 2013, 2014 - MCM I + II A&A A&A 558 id A09, A&A 572, id A92 Two ways to expand volume for GA • Gaia + complementary photometric information (but no ages for far away stars) – also useful for PIC! • Asteroseismology of RGs (with ages!) - also useful for core science PLATO (miglio’s talk) The properties at different places in the disk: AMR CoRoT, Gaia+, K2 + APOGEE Kepler, TESS, K2, Gaia CoRoT, Gaia+, K2 + APOGEE PLATO + 4MOST? Predicon: AMR Scatter increases towards outer regions Age scatter increasestowars outer regions ExtracGng the best froM GaiaDR2 - Anders et al.
    [Show full text]
  • Gaianir Combining Optical and Near-Infra-Red (NIR) Capabilities with Time-Delay-Integration (TDI) Sensors for a Future Gaia-Like Mission
    Proposal title: GaiaNIR Combining optical and Near-Infra-Red (NIR) capabilities with Time-Delay-Integration (TDI) sensors for a future Gaia-like mission. PI: Dr. David Hobbs, Lund Observatory, Box 43, SE-221 00 Lund, Sweden. Email: [email protected]. Tel.: +46-46-22 21573 Core team members: The following minimum team is needed to initiate the project. D. Hobbs Lund Observatory, Sweden. A. Brown Leiden Observatory, Holland. A. Mora Aurora Technology B.V., Spain. C. Crowley HE Space Operations B.V., Spain. N. Hambly University of Edinburgh, UK. J. Portell Institut de Ciències del Cosmos, ICCUB-IEEC, Spain. C. Fabricius Institut de Ciències del Cosmos, ICCUB-IEEC, Spain. M. Davidson University of Edinburgh, UK. Proposal writers: See Appendix A. Other supporting scientists: See Appendix B and Appendix C. Senior science advisors: E. Høg Copenhagen University (Retired), Denmark. L. Lindegren Lund Observatory, Sweden. C. Jordi Institut de Ciències del Cosmos, ICCUB-IEEC, Spain. S. Klioner Lohrmann Observatory, Germany. F. Mignard Observatoire de la Côte d’Azur, France. arXiv:1609.07325v2 [astro-ph.IM] 22 May 2020 Fig. 1: Left is an IR image from the Two Micron All-Sky Survey (image G. Kopan, R. Hurt) while on the right an artist’s concept of the Gaia mission superimposed on an optical image, (Image ESA). Images not to scale. 1 1. Executive summary ESA recently called for new “Science Ideas” to be investigated in terms of feasibility and technological developments – for tech- nologies not yet sufficiently mature. These ideas may in the future become candidates for M or L class missions within the ESA Science Program.
    [Show full text]
  • Herschel, Planck to Look Deep Into Cosmos
    Jet APRIL Propulsion 2009 Laboratory VOLUME 39 NUMBER 4 Herschel, Planck to look In a cleanroom at Centre Spatial Guy- deep into anais, Kourou, French Guyana, the Herschel spacecraft is raised cosmos from its transport con- tainer to begin launch Thanks in large part to the preparations. contributions of instruments By Mark Whalen and technologies developed by JPL, long-range views of the universe are about to become much clearer. European European Space Agency When the European Space Agency’s Herschel and wavelengths, continuing to move further into the far like the Hubble Space Telescope and ground-based Planck missions take to the sky together, onboard will infrared. There’s overlap with Spitzer, but Herschel telescopes to view galaxies in the billions, and millions be JPL’s legacy in cosmology studies. extends the range: Spitzer’s wavelength range is 3.5 to more with spectroscopy. In comparison, in the far infra- The pair are scheduled for launch together aboard an 160 microns; Herschel will go from 65 to 672 microns. red we have maybe a few hundred pictures of galaxies Ariane 5 rocket from Kourou, French Guyana on April Herschel’s mirror is much bigger than Spitzer’s and its that emit primarily in the far-infrared, but we know they 29. Once in orbit, Herschel and Planck will be sent angular resolution at the same wavelength will be sub- are important in a cosmological sense, and just the tip on separate trajectories to the second Lagrange point stantially better. of the iceberg. With Herschel, we will see hundreds of (L2), outside the orbit of the moon, to maintain an ap- “Herschel is really critical for studying important pro- thousands of galaxies, detected right at the peak of the proximately constant distance of 1.5 million kilometers cesses like how stars are formed,” said Paul Goldsmith, wavelengths they emit.” (900,000 miles) from Earth, in the opposite direction NASA Herschel project scientist and chief technologist A large fraction of the time with Herschel will be than the sun from Earth.
    [Show full text]
  • LISA, the Gravitational Wave Observatory
    The ESA Science Programme Cosmic Vision 2015 – 25 Christian Erd Planetary Exploration Studies, Advanced Studies & Technology Preparations Division 04-10-2010 1 ESAESA spacespace sciencescience timelinetimeline JWSTJWST BepiColomboBepiColombo GaiaGaia LISALISA PathfinderPathfinder Proba-2Proba-2 PlanckPlanck HerschelHerschel CoRoTCoRoT HinodeHinode AkariAkari VenusVenus ExpressExpress SuzakuSuzaku RosettaRosetta DoubleDouble StarStar MarsMars ExpressExpress INTEGRALINTEGRAL ClusterCluster XMM-NewtonXMM-Newton CassiniCassini-H-Huygensuygens SOHOSOHO ImplementationImplementation HubbleHubble OperationalOperational 19901990 19941994 19981998 20022002 20062006 20102010 20142014 20182018 20222022 XMM-Newton • X-ray observatory, launched in Dec 1999 • Fully operational (lost 3 out of 44 X-ray CCD early in mission) • No significant loss of performances expected before 2018 • Ranked #1 at last extension review in 2008 (with HST & SOHO) • 320 refereed articles per year, with 38% in the top 10% most cited • Observing time over- subscribed by factor ~8 • 2,400 registered users • Largest X-ray catalogue (263,000 sources) • Best sensitivity in 0.2-12 keV range • Long uninterrupted obs. • Follow-up of SZ clusters 04-10-2010 3 INTEGRAL • γ-ray observatory, launched in Oct 2002 • Imager + Spectrograph (E/ΔE = 500) + X- ray monitor + Optical camera • Coded mask telescope → 12' resolution • 72 hours elliptical orbit → low background • P/L ~ nominal (lost 4 out 19 SPI detectors) • No serious degradation before 2016 • ~ 90 refereed articles per year • Obs
    [Show full text]
  • Data Mining in the Spanish Virtual Observatory. Applications to Corot and Gaia
    Highlights of Spanish Astrophysics VI, Proceedings of the IX Scientific Meeting of the Spanish Astronomical Society held on September 13 - 17, 2010, in Madrid, Spain. M. R. Zapatero Osorio et al. (eds.) Data mining in the Spanish Virtual Observatory. Applications to Corot and Gaia. Mauro L´opez del Fresno1, Enrique Solano M´arquez1, and Luis Manuel Sarro Baro2 1 Spanish VO. Dep. Astrof´ısica. CAB (INTA-CSIC). P.O. Box 78, 28691 Villanueva de la Ca´nada, Madrid (Spain) 2 Departamento de Inteligencia Artificial. ETSI Inform´atica.UNED. Spain Abstract Manual methods for handling data are impractical for modern space missions due to the huge amount of data they provide to the scientific community. Data mining, understood as a set of methods and algorithms that allows us to recover automatically non trivial knowledge from datasets, are required. Gaia and Corot are just a two examples of actual missions that benefits the use of data mining. In this article we present a brief summary of some data mining methods and the main results obtained for Corot, as well as a description of the future variable star classification system that it is being developed for the Gaia mission. 1 Introduction Data in Astronomy is growing almost exponentially. Whereas projects like VISTA are pro- viding more than 100 terabytes of data per year, future initiatives like LSST (to be operative in 2014) and SKY (foreseen for 2024) will reach the petabyte level. It is, thus, impossible a manual approach to process the data returned by these surveys. It is impossible a manual approach to process the data returned by these surveys.
    [Show full text]
  • Epo in a Multinational Context
    →EPO IN A MULTINATIONAL CONTEXT Heidelberg, June 2013 ESA FACTS AND FIGURES • Over 40 years of experience • 20 Member States • Six establishments in Europe, about 2200 staff • 4 billion Euro budget (2013) • Over 70 satellites designed, tested and operated in flight • 17 scientific satellites in operation • Six types of launcher developed • Celebrated the 200th launch of Ariane in February 2011 2 ACTIVITIES ESA is one of the few space agencies in the world to combine responsibility in nearly all areas of space activity. • Space science • Navigation • Human spaceflight • Telecommunications • Exploration • Technology • Earth observation • Operations • Launchers 3 →SCIENCE & ROBOTIC EXPLORATION TODAY’S SCIENCE MISSIONS (1) • XMM-Newton (1999– ) X-ray telescope • Cluster (2000– ) four spacecraft studying the solar wind • Integral (2002– ) observing objects in gamma and X-rays • Hubble (1990– ) orbiting observatory for ultraviolet, visible and infrared astronomy (with NASA) • SOHO (1995– ) studying our Sun and its environment (with NASA) 5 TODAY’S SCIENCE MISSIONS (2) • Mars Express (2003– ) studying Mars, its moons and atmosphere from orbit • Rosetta (2004– ) the first long-term mission to study and land on a comet • Venus Express (2005– ) studying Venus and its atmosphere from orbit • Herschel (2009– ) far-infrared and submillimetre wavelength observatory • Planck (2009– ) studying relic radiation from the Big Bang 6 UPCOMING MISSIONS (1) • Gaia (2013) mapping a thousand million stars in our galaxy • LISA Pathfinder (2015) testing technologies
    [Show full text]
  • EUCLID Mission Assessment Study
    EUCLID Mission Assessment Study Executive Summary ESA Contract. No. 5856/08/F/VS September 2009 EUCLID– Mapping the Dark Universe EUCLID is a mission to study geometry and nature of the dark universe. It is a medium-class mission candidate within ESA's Cosmic Vision 2015– 2025 Plan for launch around 2017. EUCLID has been derived by ESA from DUNE and SPACE, two complementary Cosmic Vision proposals addressing questions on the origin and the constitution of the Universe. 70% Dark Energy The observational methods applied by EUCLID are shape and redshift measure- ments of galaxies and clusters of galaxies. To 4% Baryonic Matter this end EUCLID is equipped with 3 scientific instruments: 26% Dark Matter • Visible Imager (VIS) • Near-Infrared Photometer (NIP) • Near-Infrared Spectrograph (NIS) The EUCLID Mission Assessment Study is the industrial part of the EUCLID assessment phase. The study has been performed by Astrium from September 2008 to September 2009 and is intended for space segment definition and programmatic evaluation. The prime responsibility is with Astrium GmbH (Friedrichshafen, Germany) with support from Astrium SAS (Toulouse, France) and Astrium Ltd (Stevenage, UK). EUCLID Mission EUCLID shall observe 20.000 deg2 of the extragalactic sky at galactic latitudes |b|>30 deg. The sky is sampled in step & b>30° stare mode with instantaneous fields of about 0.5 deg2 . Nominally a strip of about 20 deg in latitude is scanned per day (corresponding to about 1 deg in longitude). galactic plane step 1 b<30° step 2 step 3 The sky is nominally observed along great circles in planes perpendicular to the Sun- spacecraft axis (SAA=0).
    [Show full text]
  • Michael Perryman
    Michael Perryman Cavendish Laboratory, Cambridge (1977−79) European Space Agency, NL (1980−2009) (Hipparcos 1981−1997; Gaia 1995−2009) [Leiden University, NL,1993−2009] Max-Planck Institute for Astronomy & Heidelberg University (2010) Visiting Professor: University of Bristol (2011−12) University College Dublin (2012−13) Lecture program 1. Space Astrometry 1/3: History, rationale, and Hipparcos 2. Space Astrometry 2/3: Hipparcos science results (Tue 5 Nov) 3. Space Astrometry 3/3: Gaia (Thu 7 Nov) 4. Exoplanets: prospects for Gaia (Thu 14 Nov) 5. Some aspects of optical photon detection (Tue 19 Nov) M83 (David Malin) Hipparcos Text Our Sun Gaia Parallax measurement principle… Problematic from Earth: Sun (1) obtaining absolute parallaxes from relative measurements Earth (2) complicated by atmosphere [+ thermal/gravitational flexure] (3) no all-sky visibility Some history: the first 2000 years • 200 BC (ancient Greeks): • size and distance of Sun and Moon; motion of the planets • 900–1200: developing Islamic culture • 1500–1700: resurgence of scientific enquiry: • Earth moves around the Sun (Copernicus), better observations (Tycho) • motion of the planets (Kepler); laws of gravity and motion (Newton) • navigation at sea; understanding the Earth’s motion through space • 1718: Edmond Halley • first to measure the movement of the stars through space • 1725: James Bradley measured stellar aberration • Earth’s motion; finite speed of light; immensity of stellar distances • 1783: Herschel inferred Sun’s motion through space • 1838–39: Bessell/Henderson/Struve
    [Show full text]
  • The GAIA/CHEOPS Synergy
    The GAIA/CHEOPS synergy Valerio Nascimbeni (INAF-OAPD) and the CHEOPS A1 working group CHEOPS Science workshop #3, Madrid 2015 Jun 17-19 Introduction GAIA is the most accurate (~10 μas) astrometric survey ever; it was launched in 2013 and is performing well (though some technical issues) Final catalog is expected in ≥2022, with a few intermediate releases starting from 2016 What planets (or planetary candidates) can GAIA provide to CHEOPS? This was investigated within the CHEOPS A1 WG, designed to 1) build an overview of available targets, 2) monitor present and future planet-search surveys, 3) establishing selection criteria for CHEOPS, 4) and proposing strategies to build the target list. CHEOPS Science workshop #3, Madrid 2015 Jun 17-19 The GAIA/CHEOPS synergy We started reviewing some recent works about the GAIA planet yield: ▶ Casertano+ 2008, A&A 482, 699. “Double-blind test program for astrometric planet detection with GAIA” ▶ Perryman+ 2014, Apj 797, 14. “Astrometric Exoplanet Detection with GAIA” ▶ Dzigan & Zucker 2012, ApJ 753, 1. “Detection of Transiting Jovian Exoplanets by GAIA Photometry” ▶ Sozzetti+ 2014, MNRAS 437, 497, “Astrometric detection of giant planets around nearby M dwarfs: the GAIA potential” ▶ Lucy 2014, A&A 571, 86. “Analysing weak orbital signals in GAIA data” ▶ Sahlmann+ 2015, MNRAS 447, 287. “GAIA's potential for the discovery of circumbinary planets” CHEOPS Science workshop #3, Madrid 2015 Jun 17-19 “Photometric” planets Challenges of GAIA planets discovered by photometry: ▶ GAIA's photometric detection of transiting planets will be limited by precision (1 mmag) and especially by the sparse sampling of the scanning law (Dzigan & Zucker 2012) ▶ Nearly all those planets will be VHJ (P < 3 d); only ~40 of them will be robustly detected and bright enough for CHEOPS (G < 12).
    [Show full text]