Erin Ashe Phd Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Erin Ashe Phd Thesis ECOLOGY OF PACIFIC WHITE-SIDED DOLPHINS (LAGENORHYNCHUS OBLIQUIDENS) IN THE COASTAL WATERS OF BRITISH COLUMBIA, CANADA Erin Ashe A Thesis Submitted for the Degree of PhD at the University of St Andrews 2015 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/9483 This item is protected by original copyright Ecology of Pacific white-sided dolphins (Lagenorhynchus obliquidens) in the coastal waters of British Columbia, Canada Erin Ashe This thesis is submitted in partial fulfilment for the degree of PhD at the University of St Andrews August 2015 1. Candidate’s declarations: I, Erin Ashe, hereby certify that this thesis, which is approximately 65,000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September, 2009 and as a candidate for the degree of PhD in September 2010; the higher study for which this is a record was carried out in the University of St Andrews between 2009 and 2015. (If you received assistance in writing from anyone other than your supervisor/s): I, Erin Ashe, received assistance in the writing of this thesis in respect of grammar and spelling, which was provided by Rob Williams. Date 21 August 2015 signature of candidate 2. Supervisor’s declaration: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Philosophy in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date 21 August 2015 signature of supervisor 3. Permission for electronic publication: (to be signed by both candidate and supervisor) In submitting this thesis to the University of St Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby. I also understand that the title and the abstract will be published, and that a copy of the work may be made and supplied to any bona fide library or research worker, that my thesis will be electronically accessible for personal or research use unless exempt by award of an embargo as requested below, and that the library has the right to migrate my thesis into new electronic forms as required to ensure continued access to the thesis. I have obtained any third-party copyright permissions that may be required in order to allow such access and migration, or have requested the appropriate embargo below. ii The following is an agreed request by candidate and supervisor regarding the electronic publication of this thesis: Add one of the following options: (i) Access to printed copy and electronic publication of thesis through the University of St Andrews. Date 21 August 2015 …… signature of candidate Date 24 August 2015 … signature of supervisor…… iii Abstract The ecology of Pacific white-sided dolphins (Lagenorhynchus obliquidens) in the Broughton Archipelago, British Columbia (BC), Canada was explored through photo-identification, mark- recapture, acoustics, and sociality studies. New population parameters were estimated from photo-ID data for the first time in this species. Abundance was highly variable, ranging from 546 (95% CI: 293-1,018) to 2,889 (95% CI: 1,424-5,863), after accounting for the proportion (0.57; 95% CI: 0.55 - 0.60) of marked dolphins. A “match uncertainty” analysis showed that less strict matching criteria caused negative bias in abundance estimates and an apparent improvement in precision. Estimates of survival rate ranged from 0.907 (SE=0.03) to 0.989 (SE= 0.066). Robust design analyses revealed random temporary emigration movement at 0.14 (SE=0.318) annually and no movement seasonally. The study revealed new evidence for philopatry and sociality: some individuals were resighted over 19-year periods, and associated pairs more than a decade apart. Evidence was found for a high degree of sociality. The mean proportion of calves was estimated as 0.0597 (SE=0.0083, 95% CI: 0.045-0.079) per capita, translating to an average probability of pregnancy in adult females of 0.238 (95% CI: 0.180- 0.316) and an average interbirth interval of 4.2 years. Approximately 3.9% of dolphins bore injuries from killer whales, but only 0.5% showed evidence of interactions with fishing gear or propellers. Acoustic evidence for population structure was equivocal, but warrants additional, targeted research. Population viability analysis predicted an average rate of annual decline of - 0.122 (95% CI: -0.143 to -0.101), given a range of input values in a sensitivity test, over the next 50 years. i Acknowledgments First, I would like to thank Prof. Phil Hammond for taking me on as a student, for always being available, offering insightful and practical advice, and holding my work to something approaching his impeccably high standards. I am extraordinarily grateful to have had Prof. Hammond as a supervisor and know my work has benefitted from his expertise, perspective and extraordinary commitment to science. I would also like to thank Dr. (honoris causa) Alexandra Morton for entrusting me with 20 years’ worth of her invaluable, irreplaceable, hard- won data on Pacific white-sided dolphins. Having spent 6 years working with these dolphins to continue the study Alexandra started, I have a new appreciation for the level of commitment that it took for launch it. Alexandra took the time to engage in fruitful discussions with me that furthered my understanding about the biology of the dolphins with which she has spent the past 25 years. I would like to thank Dr. Rob Williams for inspiring my study (by showing me my first Pacific white-sided dolphin) and encouraging me to always think bigger and set ambitious goals for my science. Rob also provided a research vessel, a base camp, a dog, and all the other resources needed to initiate the study, for which I am beyond grateful. Thank you to Paul Spong and Helena Symonds at Orcalab for sharing their data, their reports, their lab and home, their field assistants (especially, but not only, Emily Hague and Alyssa Rice), their knowledge and unwavering support. I am extraordinarily lucky to know and work with you. I would like to thank Marie Fournier, Christie McMillan, Melissa Boogaards, Nicole Koshure, Leila Fouda, and Alyssa Rice for their assistance with photo-matching and rising to the challenge of helping me turn tens of thousands of photographs into encounter histories. Javier Klaich has provided oceans of support, advice, and ideas throughout this process and I owe him mountains of gratitude. Thank you to Alex Zerbini and Julian Tyne for your discussions and advice. A big thanks to Doug Sandilands for database advice and support. Thanks also to Kate Blowers for Access insight and fresh bread in the field that kept me writing! Thank you to Marjolaine Caillat, Volker Deecke, Doug Gillespie, Vincent Janik, Christine Erbe, and Jamie Macaulay for advice on the acoustics analysis. Thank you Erin Cafferty for GIS advice. Thank you to Shane Gero for inspiring the social analysis and providing SOCPROG advice and ii support. I was extraordinarily lucky to work alongside an incredibly intelligent, warm, and supportive group of students at St Andrews. In particular, my office mates, Sanna Kuningas, Lindsay Wilson, Marina Costa, Diane Claridge, Salomé Dussán-Duque, Christian Ramp, Aaron Banks, Monica Arso-Civil, Inez Campbell, and Rob Williams were always available for advice and a chat. My cohort of students at St Andrews, and the entire team at SMRU and CREEM, are an extraordinary group of people to work with. Thank you to Don Willson for an unforgettable and productive expedition to Knight Inlet. And, thank you to James Willson for towing us when our boat died. Thank you to Alder Bay Resort for looking after our boat when it wasn’t dying. A huge thank you to the research, whalewatching, and conservation community of the North Island in British Columbia for sightings, reports, updates, and support, with special thanks to Bill Herbert, Wendy Thompson and Angela Smith. Thank you to Michael Moore, Frances Gulland, Stephen Raverty, Joe Gaydos, Ken Langelier, Antonio Fernandez, and Doug Sandilands for providing their expert opinion on the dolphin injury assessment. Thank you to Brad Hanson, Marilyn Dahlheim, Karen Hansen, Stan Hutchings, Jim Borrowman, Jack Springer, Gerry Henckel, Erin Rechsteiner, Alexandra Morton, Lisa Spaven, Jack Springer, Garry Henkel, Jared Towers, James Willson and Don Willson and others for providing information on killer whale on dolphins and Mridula Srinivasan for advice on putting this work in context. The MARK community was incredibly kind to me. Evan Cooch, Gary White, David Anderson, Javier Klaich and Ken Burnham gave great advice at the MARK workshops, and inspired the round of studies I would like to do next. Similarly, Bill Perrin, Barb Taylor, Jay Barlow, Melissa Soldevilla and Liz Henderson were very helpful in sharing information on Pacific white-sided dolphins in other parts of their range. Thanks to Denise Herzing, Randall Reeves iii and Erich Hoyt for big-picture advice. Thank you to Bob Lacy for advice on using the new version of Vortex. This project would not have been possible without the support of a small group of dedicated funders and supporters. Thank you to The SeaDoc Society for ‘going first’ and having confidence in this study.
Recommended publications
  • EXTERNAL FEATURES of the DUSKY DOLPHIN Lagenorhynchus Obscurus (GRAY, 1828) from PERUVIAN WATERS Caracteristicas EXTERNAS DEL DE
    Estud. Oceanol. 12: 37-53 1993 ISSN CL 0O71-173X EXTERNAL FEATURES OF THE DUSKY DOLPHIN Lagenorhynchus obscurus (GRAY, 1828) FROM PERUVIAN WATERS CARACTERisTICAS EXTERNAS DEL DELFiN OSCURO Lagenorhynchus obscurus (GRAY, 1828) DE AGUAS PERUANAS Koen Van Waerebeek Centro Peruano de Estudios Cetol6gicos (CEPEC), Asociaci6n de Ecologfa y Conservaci6n, Casilla 1536, Lima 18, Peru ABSTRACT Individual, sexual and developmental variation is quantified in the external morphology and colouration of the dusky dolphin Lagenorhynchus obscurus from Peruvian coastal waters. No significant difference in body length between sexes is found{p = 0.09) and, generally, little sexual dimorphism is present. However, males have a more anteriorly positioned genital slit and anus and their dorsal fin is more curved, has a broader base and a greater surface area than females Although the dorsal fin apparently serves as a secondary sexual character, the use of it for sexing free-ranging dusky dolphins is discouraged because of high overlap in values Relative growth in 25 body measurements is characterized for both sexes by multiplicative regression equations. The colouration pattern of the dorsal fin, flank patch, thoracic field, flipper stripe and possibly (x2, p = 008) the eye patch, are independent of maturity status. Flipper blaze and lower lip patch are less pigmented in juveniles than in adults No sexual dimorphism is found in the colour pattern The existence of a discrete "Fitzroy" colour form can not be confirmed from available data. Various cases of anomalous, piebald pigmentation are described, probably equivalent to so-called partial albinism Adult dusky dolphins from both SW Africa and New Zealand are 8-10 cm shorter than Peruvian specimens, supporting conclusions of separate populations from a recent skull variability study.
    [Show full text]
  • Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
    Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2.
    [Show full text]
  • Impact Report
    Impact Report 2020 Oceans Initiative is a team of scientists on a mission to protect marine life in the Pacific Northwest and beyond, and to share their cutting-edge science to guide conservation action. Dear Friends, I am pleased to share Oceans Initiative’s Impact Report for 2020. In a year that’s challenged us like none other in recent history, I couldn’t be more proud of our team of scientists and researchers, and the mission work we’ve been able to accomplish. For Oceans Initiative, the onset of the global pandemic brought with it a great deal of concern and uncertainty. At times, we wondered how we’d be able to fulfill our mission. Despite our concerns, we felt driven to make an immediate contribution. Being parents of a 6-year-old, and with schools closed in Seattle for the foreseeable future, we wanted to find a way to share our knowledge and our mission, and help other families in our community. We reached out to Oceans Initiative’s social media followers and offered to host a Virtual Marine Biology Camp where kids could chat with us about killer whales, dolphins, and other marine life, to keep them entertained while learning from home. The response was overwhelming and we were excited to have reached thousands of kids around the world. We saw a surprising surge in new supporters following this two–month period, a completely unexpected outcome of this opportunity to give back to our community. 2020 was also a year of growth. We hired four female early career scientists as Biological Research Assistants along with a Research Associate.
    [Show full text]
  • Molecular Systematics of South American Dolphins Sotalia: Sister
    Available online at www.sciencedirect.com Molecular Phylogenetics and Evolution 46 (2008) 252–268 www.elsevier.com/locate/ympev Molecular systematics of South American dolphins Sotalia: Sister taxa determination and phylogenetic relationships, with insights into a multi-locus phylogeny of the Delphinidae Susana Caballero a,*, Jennifer Jackson a,g, Antonio A. Mignucci-Giannoni b, He´ctor Barrios-Garrido c, Sandra Beltra´n-Pedreros d, Marı´a G. Montiel-Villalobos e, Kelly M. Robertson f, C. Scott Baker a,g a Laboratory of Molecular Ecology and Evolution, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand b Red Cariben˜a de Varamientos, Caribbean Stranding Network, PO Box 361715, San Juan 00936-1715, Puerto Rico c Laboratorio de Ecologı´a General, Facultad Experimental de Ciencias. Universidad del Zulia, Av. Universidad con prolongacio´n Av. 5 de Julio. Sector Grano de Oro, Maracaibo, Venezuela d Laboratorio de Zoologia, Colecao Zoologica Paulo Burheim, Centro Universitario Luterano de Manaus, Manaus, Brazil e Laboratorio de Ecologı´a y Gene´tica de Poblaciones, Centro de Ecologı´a, Instituto Venezolano de Investigaciones Cientı´ficas (IVIC), San Antonio de los Altos, Carretera Panamericana km 11, Altos de Pipe, Estado Miranda, Venezuela f Tissue and DNA Archive, National Marine Fisheries Service, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037-1508, USA g Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Drive, Newport, OR 97365, USA Received 2 May 2007; revised 19 September 2007; accepted 17 October 2007 Available online 25 October 2007 Abstract The evolutionary relationships among members of the cetacean family Delphinidae, the dolphins, pilot whales and killer whales, are still not well understood.
    [Show full text]
  • List of Marine Mammal Species & Subspecies
    List of Marine Mammal Species & Subspecies The Committee on Taxonomy, chaired by Bill Perrin, produced the first official Society for Marine Mammalogy list of marine mammal species and subspecies in 2010 . Consensus on some issues was not possible; this is reflected in the footnotes. The list is updated annually. This version was updated in October 2015. This list can be cited as follows: “Committee on Taxonomy. 2015. List of marine mammal species and subspecies. Society for Marine Mammalogy, www.marinemammalscience.org, consulted on [date].” This list includes living and recently extinct (within historical times) species and subspecies, named and un-named. It is meant to reflect prevailing usage and recent revisions published in the peer-reviewed literature. An un-named subspecies is included if author(s) of a peer-reviewed article stated explicitly that the form is likely an undescribed subspecies. The Committee omits some described species and subspecies because of concern about their biological distinctness; reservations are given below. Author(s) and year of description of the species follow the Latin species name; when these are enclosed in parentheses, the species was originally described in a different genus. Classification and scientific names follow Rice (1998), with adjustments reflecting more recent literature. Common names are arbitrary and change with time and place; one or two currently frequently used names in English and/or a range language are given here. Additional English common names and common names in French, Spanish, Russian and other languages are available at www.marinespecies.org/cetacea/. Species and subspecies are listed in alphabetical order within families.
    [Show full text]
  • 1 the Chiloé Small Cetacean Project
    The Chiloé Small Cetacean Project - Assessing the conservation status of endemic Chilean dolphins and sympatric species and promoting marine conservation and local capacity building in the Chiloé Archipelago, southern Chile - Progress Report for 2009-10 by Sonja Heinrich (with contributions by M. Fuentes; photos M. Fuentes, S. Heinrich, R. Antunes) I. Overview This progress report summarises the main activities of the Chiloé Small Cetacean Project for 2009 and 2010. During this period the project has been supported by the Organization for the Conservation of South American Aquatic Mammals - YAQU PACHA e.V., the University of St. Andrews (UK), the Universidad Austral de Chile, The Zoological Garden Nürnberg (Germany), the European Association for Aquatic Mammals - EAAM and by the World Association of Zoos and Aquariums - WAZA as Conservation project 07003 (branded in 2007). Our research efforts focus on the Chiloé Archipelago in Chile and have been ongoing since January 2001. This project constitutes the only dedicated and methodologically consistent long-term monitoring project for small cetaceans in southern Chile. Results to date have provided novel and pivotal information on three poorly known small odontocete species – endemic Chilean dolphins (Cephalorhynchus eutriopa ), Peale’s dolphins ( Lagenorhynchus australis ) and Burmeister’s poprpoises ( Phocoena spinipinnis ) (Figure 1). Until recently, all three species were classified as data deficient by the IUCN with very limited information available on their ecology and population biology, and a variety of known or potential anthropogenic threats to their survival identified (e.g. bycatch, habitat destruction, direct take). This project’s findings have contributed to the reclassification of Chilean dolphins to near- threatened during the IUCN status review (2009), and are currently being used to determine conservation areas during the zoning process under the revised Regional Coastal Management Plans for Chiloé.
    [Show full text]
  • How to Cite Complete Issue More Information About This
    Mastozoología Neotropical ISSN: 0327-9383 ISSN: 1666-0536 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Marchesi, María Constanza; Mora, Matías Sebastián; Crespo, Enrique Alberto; Boy, Claudia C.; González-José, Rolando; Goodall, Rae Natalie P. FUNCTIONAL SUBDIVISION OF THE VERTEBRAL COLUMN IN FOUR SOUTH AMERICAN DOLPHINS Mastozoología Neotropical, vol. 25, no. 2, 2018, July-December, pp. 329-343 Sociedad Argentina para el Estudio de los Mamíferos Argentina Available in: https://www.redalyc.org/articulo.oa?id=45760865007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Mastozoología Neotropical, 25(2):329-343, Mendoza, 2018 Copyright ©SAREM, 2018 Versión on-line ISSN 1666-0536 http://www.sarem.org.ar https://doi.org/10.31687/saremMN.18.25.2.0.12 http://www.sbmz.com.br Artículo FUNCTIONAL SUBDIVISION OF THE VERTEBRAL COLUMN IN FOUR SOUTH AMERICAN DOLPHINS María Constanza Marchesi1, Matías Sebastián Mora2, Enrique Alberto Crespo3, 4, Claudia C. Boy1, Rolando González-José5 and Rae Natalie P. Goodall1, 6† 1 Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Tierra del Fuego, Argentina [Correspondencia: M. Constanza Marchesi <[email protected]>]. 2 Instituto de Investigaciones Marinas y Costeras (IIMyC) – CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina. 3 Centro para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico (CENPAT-CONICET), Puerto Madryn, Chubut, Argentina 4 Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn, Chubut, Argentina.
    [Show full text]
  • Lagenorhynchus Australis (Peale, 1848) Delfín Austral; Tunina
    FICHA DE ANTECEDENTES DE ESPECIE Id especie: NOMBRE CIENTÍFICO: Lagenorhynchus australis (Peale, 1848) NOMBRE COMÚN: Delfín austral; Tunina; Llampa; Cahuel. Fotografía de Lagenorhynchus australis (Izq.: Frederick Toro; Der.:Marjorie Fuentes) Reino: Animalia Orden: Cetacea Phyllum/División: Chordata Familia: Delphinidae Clase: Mammalia Género: Lagenorhynchus Sinonimia: Tursio chiloensis, Philippi 1900. PHILIPPI RA (1900) Contribución a la osteolojía del Grypotherium domesticum Roth i un nuevo delfín. Imprenta Cervantes. Santiago, Chile. 28 p. Sagmatias australis, Peale 1848. PEALE TR (1848). United States Exploring Expedition during the years 1838, 1839, 1840, 1841, 1842. VIII. Mammalia and ornithology. Cetacea: 32-36. Sagmatias amblodon, Cope 1866. COPE E (1866). Third Contribution to the HIstory of the Balaenidae and Delphinidae. In: Proceedings of the Academy of Natural Sciences of Philadelphia vol.18. pp 293 – 200. Delphinus chilensis, Philippi 1896. PHILIPPI RA, 1896. Los Cráneos de los Delfines Chilenos. Entrega 12ª Primera Sección. Zoolojía. Anales del Museo Nacional de Chile. Santiago. 6p. Nota Taxonómica: El género Lagenorhynchus se considerada artificial (polifilético) y está compuesto por especies morfológicamente convergentes (LeDuc et al. 1999, McGowen 2001) por lo que algunos investigadores han sugerido que L. australis sea considerada dentro del género Sagmiata. En la actualidad no hay acuerdo sobre si L. australis y L. cruciger debieran o no ser incluidas en el género Cephalorhynchus, por lo que se mantienen provisionalmente todas las especies bajo el género Lagenorhynchus (SMM, 2015). ANTECEDENTES GENERALES Aspectos Morfológicos El delfín austral es de coloración gris oscuro a negro en la zona dorsal, y en los flancos de coloración más clara. Se describe una marca curvada desde el pedúnculo caudal, afinándose hacia craneal hasta terminar como una línea cerca de la aleta dorsal, de pigmentación blanca a gris.
    [Show full text]
  • A Possible Hybrid Between the Dusky Dolphin (Lagenorhynchus Obscurus) and the Southern Right Whale Dolphin (Lissodelphis Peronii)
    Aquatic Mammals 2002, 28.2, 211–217 A possible hybrid between the dusky dolphin (Lagenorhynchus obscurus) and the southern right whale dolphin (Lissodelphis peronii) Parissa Yazdi Institut für Meereskunde, Abt. Meereszoologie, Düsternbrooker Weg 20, 24105 Kiel, Germany Abstract Hemisphere (Jefferson et al., 1993; Carwardine, 1995). In New Zealand, dusky dolphins occasion- In Golfo Nuevo, Península Valdés, Argentina an ally are seen in mixed species groups with southern unusual dolphin was sighted several times, always right whale dolphins (Yin, 1999). Off Southwest associated with dusky dolphins (Lagenorhynchus Africa, mixed groups of both species were observed obscurus). Photographic evidence showed that the by Rose & Payne (1991) and Cruickshank & Brown anomalous dolphin shared characteristics of a (1981). In 1990, a large group of dusky dolphins southern right whale dolphin (Lissodelphis peronii) (700–800) together with approximately 50 southern and the dusky dolphin. The animal’s features were a right whale dolphins was observed along the coast slender body of approximately 2.0–2.2 m in length. of southern Chile (Van Waerebeek, 1992). Like southern right whale dolphins, a sharp divid- On 6 December 1998, an unusual dolphin was ing line separated the black dorsal part from the sighted for the first time in Golfo Nuevo, Península white ventral part of the body, but the line in Valdés, Argentina, within a group of dusky the area of the head did not extend below the eyes. dolphins (R. Benegas, pers. comm.). The peduncle showed a patch of pale grey, similar to the lateral colour pattern of a dusky dolphin. Contrary to the southern right whale dolphin, the Materials and Methods anomalous dolphin had a dorsal fin, which was smaller and more triangular than that of the dusky Resightings of the animal were attempted between dolphin and located around two-thirds of the way 22 November 1999 and 16 March 2000, using a along the back.
    [Show full text]
  • 06 September 2011 List of Marine Mammal Species and Subspecies the Ad-Hoc Committee on Taxonomy, Chaired by Bill Perrin, Has P
    06 September 2011 List of Marine Mammal Species and Subspecies The Ad-Hoc Committee on Taxonomy, chaired by Bill Perrin, has produced the first official SMM list of marine mammal species and subspecies. Consensus on some issues was not possible; this is reflected in the footnotes. This list is revisited and possibly revised every few months reflecting the continuing flux in marine mammal taxonomy. This version was updated on 6 September 2011. This list can be cited as follows: “Committee on Taxonomy. 2011. List of marine mammal species and subspecies. Society for Marine Mammalogy, www.marinemammalscience.org, consulted on [date].” This list includes living and recently extinct species and subspecies. It is meant to reflect prevailing usage and recent revisions published in the peer-reviewed literature. Author(s) and year of description of the species follow the Latin species name; when these are enclosed in parentheses, the species was originally described in a different genus. Classification and scientific names follow Rice (1998), with adjustments reflecting more recent literature. Common names are arbitrary and change with time and place; one or two currently frequently used in English and/or a range language are given here. Additional English common names and common names in French, Spanish, Russian and other languages are available at www.marinespecies.org/cetacea/. Based on molecular and morphological data, the cetaceans genetically and morphologically fall firmly within the artiodactyl clade (Geisler and Uhen, 2005), and therefore we include them in the order Cetartiodactyla, with Cetacea, Mysticeti and Odontoceti as unranked taxa (recognizing that the classification within Cetartiodactyla remains partially unresolved -- e.g., see Spaulding et al., 2009, Price et al., 2005; Agnarsson and May-Collado, 2008)1.
    [Show full text]
  • Divergence Date Estimation and a Comprehensive Molecular Tree of Extant Cetaceans
    Molecular Phylogenetics and Evolution 53 (2009) 891–906 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Divergence date estimation and a comprehensive molecular tree of extant cetaceans Michael R. McGowen *, Michelle Spaulding 1, John Gatesy Department of Biology, University of California Riverside, Riverside, CA 92521, USA article info abstract Article history: Cetaceans are remarkable among mammals for their numerous adaptations to an entirely aquatic exis- Received 26 February 2009 tence, yet many aspects of their phylogeny remain unresolved. Here we merged 37 new sequences from Revised 4 August 2009 the nuclear genes RAG1 and PRM1 with most published molecular data for the group (45 nuclear loci, Accepted 14 August 2009 transposons, mitochondrial genomes), and generated a supermatrix consisting of 42,335 characters. Available online 21 August 2009 The great majority of these data have never been combined. Model-based analyses of the supermatrix produced a solid, consistent phylogenetic hypothesis for 87 cetacean species. Bayesian analyses corrob- Keywords: orated odontocete (toothed whale) monophyly, stabilized basal odontocete relationships, and completely Cetacea resolved branching events within Mysticeti (baleen whales) as well as the problematic speciose clade Odontoceti Mysticeti Delphinidae (oceanic dolphins). Only limited conflicts relative to maximum likelihood results were Phylogeny recorded, and discrepancies found in parsimony trees were very weakly supported. We utilized the Supermatrix Bayesian supermatrix tree to estimate divergence dates among lineages using relaxed-clock methods. Divergence estimates revealed rapid branching of basal odontocete lineages near the Eocene–Oligocene boundary, the antiquity of river dolphin lineages, a Late Miocene radiation of balaenopteroid mysticetes, and a recent rapid radiation of Delphinidae beginning 10 million years ago.
    [Show full text]
  • Phylogenetic Relationships Among the Delphinid Cetaceans Based on Full Cytochrome B Sequences R
    MARINE MAMMAL SCIENCE, 15(3):619-648 (July 1999) 0 1999 by the Society for Marine Mammalogy PHYLOGENETIC RELATIONSHIPS AMONG THE DELPHINID CETACEANS BASED ON FULL CYTOCHROME B SEQUENCES R. G. LEDUC W. F. PERRIN A. E. DIZON Southwest Fisheries Science Center, P. 0. Box 271, La Jolla, California 92038, U.S.A. E-mail: [email protected] ABSTRACT Complete cytochrome b gene sequences from all but one species of del- phinid plus four outgroups were analyzed using parsimony, maximum like- lihood, and neighbor-joining methods. The results indicate the need for sys- tematic revision of the family; a provisional classification is presented and compared to previous studies. Among the suggested revisions are removal of Orcinus from the Globicephalinae, placement of Grampus within the Globi- cephalinae, removal of all Lagenorbyncbus spp. from the Delphininae, and placement of Soma in the Delphininae. The genus Lagenorbyncbus is found to be polyphyletic. L. albirostris (type species for the genus) and L. acutus are not closely related to each other or to nominal congeners. L. acutus is therefore assigned to the genus Leucopleurus. The remaining four Ldgenmbyncbus species are closely related to Lissodelpbis and Cepbalorbyncbus and are placed in the genus Sagmatias. These three genera constitute the revised Lissodelphininae. Within the Delphininae, a well-supported clade includes the two species of Delphinus, Stenelld clymene, S. frontalis, S. cowuleoalba, and the aduncus form of Tursiops truncatus. Accepting the monophyly of this group renders the genera Stenella and Tursiops polyphyletic. Apart from this finding, phylogenetic res- olution within the Delphininae was poor, so comprehensive taxonomic revi- sion of this group awaits further study.
    [Show full text]