Passive Acoustic Monitoring of Tothed Whales, with Implications for Mitigation, Monitoring and Biology

Total Page:16

File Type:pdf, Size:1020Kb

Passive Acoustic Monitoring of Tothed Whales, with Implications for Mitigation, Monitoring and Biology PASSIVE ACOUSTIC MONITORING OF TOOTHED WHALES, WITH IMPLICATIONS FOR MITIGATION, MANAGEMENT AND BIOLOGY Ph.d. thesis 2010 Line Anker Kyhn NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AU AARHUS UNIVERSITY PASSIVE ACOUSTIC MONITORING OF TOOTHED WHALES, WITH IMPLICATIONS FOR MITIGATION, MANAGEMENT AND BIOLOGY Ph.d. thesis 2010 Line Anker Kyhn NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AU AARHUS UNIVERSITY Data sheet Title: Passive acoustic monitoring of toothed whales, with implications for mitigation, management and biology Subtitle: Ph.d. thesis Author: Line Anker Kuhn Affi liation: Dep. of Arctic Environment, National Environmental Research Institute, Aarhus University Publisher: National Environmental Research Institute (NERI)© Aarhus University – Denmark URL: http://www.neri.dk Date of publication: November 2010 Please cite as: Kyhn, L.A. 2010: Passive acoustic monitoring of toothed whales, with implications for mitigation, management and biology. PhD thesis. Dep. of Arctic Environment, NERI. National Environmental Research Institute, Aar- hus University, Denmark. 166 pp. Reproduction permitted provided the source is explicitly acknowledged. Abstract: Small cetaceans like harbour porpoises are notoriously diffi cult to study due to various technical, physical and economical constraints in observing them in their marine environment. However, toothed whales are vocal animals and their social life as well as successful orientation and feeding depends on emission and reception of sound. When humans, by means of a hydrophone, are the receivers of these sounds, analysis may provide important information to researchers about the behavioural ecology, social interactions and sensory physiology of toothed whales, as well as it may be the means for acoustic monitoring. This ph.d. thesis presents a novel approach for counting and estimating density of harbour porpoises using acoustic dataloggers. This method is especially valuable for low density areas where traditional visual surveys become very expensive per observa- tion. The thesis further presents thorough descriptions of sounds from six small species that all use the same echolocation signal type, a narrow band high frequency (NBHF) click. Such thorough sound descriptions are a prerequisite of acoustic monitoring. The NBHF click is further discussed in light of possible adaptive values, since the click has evolved by convergent evolution four times. In agreement with previously stated hypothesis it is concluded through modelling that the NBHF click type most likely evolved as acoustic camoufl age against predation from killer whales, since all energy in the NBHF click is at frequencies above the upper hearing limit of killer whales. Keywords: Acoustic monitoring, abundance, density, detection function, harbour porpoise, echolocation, click source parameters, habitat specialization, acoustic species differentiation. Supervisors: Dr. Hans Malte, Biological Sciences, Aarhus University Dr. Jakob Tougaard, National Environmental Research Institute, Aarhus University Layout & photos: Line Anker Kyhn ISBN (DMU): 978-87-7073-210-9 Printed by: Rosendahls – Schultz Grafi sk a/s Number of pages: 166 Circulation: 50 Internet version: The report is available in electronic format (pdf) at NERI’s website http://www.dmu.dk/Pub/PHD_LAK.pdf Content Preface 5 Dansk resumé 6 Summary 8 Acknowledgements 10 A. Review Chapter I 11 Kyhn, L.A. Passive acoustic monitoring of Narrow Band High Frequency species. A review. (Unpublished manuscript). Appendix Source parameter definitions 77 B. Passive Acoustic Monitoring Chapter II 79 Kyhn, L.A., Tougaard, J., Thomas, L., Duve, L.R., Steinback, J., Amundin, M., Desportes, G. and Teilmann, J. From echolocation clicks to animal density – acoustic sampling of harbour porpoises with static dataloggers. (Drafted for Applied Ecology). C. Narrow Band High Frequency Sounds Chapter III 103 Kyhn, L.A., Tougaard, J., Jensen, F., Wahlberg, M., Stone, G., Yoshinaga, A., Beedholm, K. and Madsen, P.T. (2009). Feeding at a high pitch: Source parameters of narrow band, high frequency clicks from echolocating off-shore hourglass dolphins and coastal Hector’s dolphins. J. Acoust. Soc. Am. 125(3): 1783–1791. Chapter IV 115 Kyhn, L.A., Jensen, F. H., Beedholm, K., Tougaard, J. Hansen, M. and Madsen, P.T. (2010). Echolocation in sympatric Peale’s dolphins (Lagenorhynchus australis) and Commerson’s dolphins (Cephalorhynchus commersonii) producing narrow-band high-frequency clicks. The Journal of Experimental Biology 213: 1940-1949. Chapter V 127 Tougaard, J. and Kyhn, L.A. (2010). Echolocation sounds of hourglass dolphins (Lagenorhynchus cruciger) are similar to the narrow band high-frequency echolocation sounds of the dolphin genus Cephalorhynchus. Marine Mammal Science 26(1): 239-245. Chapter VI 137 Kyhn, L.A., Tougaard, J., Beedholm, K., Ash, E., Williams, R. Jensen, F.H. and Madsen, P.T. (Manuscript). Clicking in killer country: Is evolution of echolocation click parameters driven by predation or habitat? (Drafted for Behavioural Ecology and Sociobiology). Ph.d. thesis for the partial fulfilment of the requirements for the degree of Doctor of Philosophy (ph.d. thesis). Submitted to the Faculty of Science, Aarhus University, 29th October 2010. Supervisors: Dr. Hans Malte, Biological Sciences, Aarhus University Dr. Jakob Tougaard, National Environmental Research Institute, Aarhus University. _____________________________________________________________________ Defence date: December 8th 2010. Opponents: Dr. Paul Nachtigall, Hawai'i Institute of Marine Biology, Coconut Island, Marine Mammal Research Program Dr. Jonathan Gordon, Sea Mammal Research Unit, University of St. Andrews, Scotland. Assoc. Prof. Angela Fago (Chairman) Zoophysiology, Dept. of Biological Sciences, Aarhus University _____________________________________________________________________ All photos taken by the author Preface This thesis represents the partial fulfilment of the requirements for the degree of Doctor of Philosophy (ph.d.) at the Faculty of Science, Aarhus University. The thesis is written in accordance with regulations outlined by the Faculty of Science, in May 2002, and within the three year frame. When I was a child I once stumbled upon a dead harbour porpoise on the beach. I was fascinated and astonished – could that really be a whale? The picture has stuck to my mind and the memory of the amazement is clear. But what astonishes me to day is, that there still is so much to be learned about cetaceans: Imagine that in 2007 Jakob Tougaard and I were the first to record sounds from hourglass dolphins! And there are still species that have never been recorded. That more knowledge is ever important is underlined by the fact that one cetacean species have died out since I was a child. As a scientist it is crucial to obtain knowledge by posing and testing hypothesis scientifically in order to objectively assess the problems that many cetacean species encounter to day from for example human encroachment of their habitats. My hope for this thesis work is that I may contribute with knowledge on a cheap methodology to study and count small cetaceans by acoustic monitoring in all parts of the world, and I hope that this may contribute some of the required knowledge to ensure that we shall experience no more extinctions of cetaceans. This thesis deals with the sounds of six narrow band high frequency species that I have recorded in different parts of the world during the last three years. In this thesis I also present a method to combine acoustics and monitoring with the aim of being able to assess population densities acoustically. The thesis consists of six manuscripts of which three are published in peer reviewed journals (III, IV & V), two are ready for submission (II & VI) and awaits fruitful comments from my opponents, and the last manuscript, chapter I, represents, in accordance with the regulations outlined by the Faculty of Science, a larger review where I put my main results of chapter II to VI in to the context of other studies. Copenhagen, October 27th 2010 Line Anker Kyhn 5 Dansk resumé Dette er et resumé af ph.d. afhandlingen “Passive acoustic monitoring of small toothed whales, with implications for mitigation, management and biology” udarbejdet af Line Anker Kyhn på Afdelingen for Arktisk Miljø, Danmarks Miljøundersøgelser, & Zoofysiologi, Biologisk Institut, begge Århus Universitet. Jeg har arbejdet med en særlig gruppe af små tandhvaler der alle producerer samme ekkolokaliseringssignal. Signalet – klikket - er særligt bemærkelsesværdigt, fordi al energien er indeholdt i et smalt frekvensbånd, med energi udelukkende over hundrede kilohertz (kHz). Klikket kaldes et NBHF klik (Narrow Band High Frequency). Klikkets egenskaber gør det let, at designe et filter, der kan sortere signalet fra den omgivende støj. Der er derfor udviklet dataloggere der automatisk kan opsamle kliks fra eksempelvis marsvin (Phocoena phocoena, L.). Metoden anvendes i Danmark til at beskrive relative ændringer i forekomsten af marsvin over tid. Det er dog langt at foretrække, at kunne vurdere ændringer på populationsniveau. Jeg har i denne afhandling arbejdet med, at udvikle en metode til at tælle marsvin ved brug af akustiske dataloggere. Den metode præsenterer jeg i kapitel II. For at omregne akustiske registreringer per tidsenhed til antal dyr per arealenhed kræver det, at man kan beskrive en dataloggers detektionsfunktion. En detektionsfunktion beskriver hvad sandsynligheden er for, at en datalogger registrerer et klik
Recommended publications
  • EXTERNAL FEATURES of the DUSKY DOLPHIN Lagenorhynchus Obscurus (GRAY, 1828) from PERUVIAN WATERS Caracteristicas EXTERNAS DEL DE
    Estud. Oceanol. 12: 37-53 1993 ISSN CL 0O71-173X EXTERNAL FEATURES OF THE DUSKY DOLPHIN Lagenorhynchus obscurus (GRAY, 1828) FROM PERUVIAN WATERS CARACTERisTICAS EXTERNAS DEL DELFiN OSCURO Lagenorhynchus obscurus (GRAY, 1828) DE AGUAS PERUANAS Koen Van Waerebeek Centro Peruano de Estudios Cetol6gicos (CEPEC), Asociaci6n de Ecologfa y Conservaci6n, Casilla 1536, Lima 18, Peru ABSTRACT Individual, sexual and developmental variation is quantified in the external morphology and colouration of the dusky dolphin Lagenorhynchus obscurus from Peruvian coastal waters. No significant difference in body length between sexes is found{p = 0.09) and, generally, little sexual dimorphism is present. However, males have a more anteriorly positioned genital slit and anus and their dorsal fin is more curved, has a broader base and a greater surface area than females Although the dorsal fin apparently serves as a secondary sexual character, the use of it for sexing free-ranging dusky dolphins is discouraged because of high overlap in values Relative growth in 25 body measurements is characterized for both sexes by multiplicative regression equations. The colouration pattern of the dorsal fin, flank patch, thoracic field, flipper stripe and possibly (x2, p = 008) the eye patch, are independent of maturity status. Flipper blaze and lower lip patch are less pigmented in juveniles than in adults No sexual dimorphism is found in the colour pattern The existence of a discrete "Fitzroy" colour form can not be confirmed from available data. Various cases of anomalous, piebald pigmentation are described, probably equivalent to so-called partial albinism Adult dusky dolphins from both SW Africa and New Zealand are 8-10 cm shorter than Peruvian specimens, supporting conclusions of separate populations from a recent skull variability study.
    [Show full text]
  • Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
    Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • Impact Report
    Impact Report 2020 Oceans Initiative is a team of scientists on a mission to protect marine life in the Pacific Northwest and beyond, and to share their cutting-edge science to guide conservation action. Dear Friends, I am pleased to share Oceans Initiative’s Impact Report for 2020. In a year that’s challenged us like none other in recent history, I couldn’t be more proud of our team of scientists and researchers, and the mission work we’ve been able to accomplish. For Oceans Initiative, the onset of the global pandemic brought with it a great deal of concern and uncertainty. At times, we wondered how we’d be able to fulfill our mission. Despite our concerns, we felt driven to make an immediate contribution. Being parents of a 6-year-old, and with schools closed in Seattle for the foreseeable future, we wanted to find a way to share our knowledge and our mission, and help other families in our community. We reached out to Oceans Initiative’s social media followers and offered to host a Virtual Marine Biology Camp where kids could chat with us about killer whales, dolphins, and other marine life, to keep them entertained while learning from home. The response was overwhelming and we were excited to have reached thousands of kids around the world. We saw a surprising surge in new supporters following this two–month period, a completely unexpected outcome of this opportunity to give back to our community. 2020 was also a year of growth. We hired four female early career scientists as Biological Research Assistants along with a Research Associate.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    The lower bathyal and abyssal seafloor fauna of eastern Australia T. O’hara, A. Williams, S. Ahyong, P. Alderslade, T. Alvestad, D. Bray, I. Burghardt, N. Budaeva, F. Criscione, A. Crowther, et al. To cite this version: T. O’hara, A. Williams, S. Ahyong, P. Alderslade, T. Alvestad, et al.. The lower bathyal and abyssal seafloor fauna of eastern Australia. Marine Biodiversity Records, Cambridge University Press, 2020, 13 (1), 10.1186/s41200-020-00194-1. hal-03090213 HAL Id: hal-03090213 https://hal.archives-ouvertes.fr/hal-03090213 Submitted on 29 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P.
    [Show full text]
  • G. Distribution of the Marine Asellota
    G. Distribution of the marine Asellota As part of the evaluation of the bathymetrical and eulittoral, sublittoral, bathyal, abyssal, and hadal regional distribution of bathyal and abyssal Asel- (cf. p. 16 and p. 271). lota, it was found important to compare the require- Temperature. The temperature records have been ments of the deep-sea forms, regarding distribution derived from many sources. In only very few cases and temperature, to those of the littoral asellotes. has the temperature been given by the author who However, a monographic compilation of the entire described or mentioned the species in question. tribe of Asellota is an undertaking not previously However, by scanning the station lists of the various attempted. GURJANOVA(1933b) gave a survey of expeditions it was sometimes possible to find a re- the occurrence and depth records of the Arctic and cord of the temperat~re;~even if records older than Subarctic marine isopods and a similar survey was some 50 years are not always reliable they should compiled by NIERSTRASZ(1941) for the Indo-Pacific be exact enough for biological purposes. In the isopods. There are many misprints in distribution majority of cases it was necessary to acquire infor- data in the former paper, and the latter paper is by mation on temperatures from hydrographical data no means complete. In the depth records of both of other expeditions, etc., working in the same or papers the conversions from fathoms to metres are an adjacent area. almost all incorrect. Recently, MENZIES(1962b) di- Where more temperature records over a succes- agnosed most of the abyssal Atlantic isopods and sion of years were available, the maximum and mini- will discuss their distribution at a later date.
    [Show full text]
  • A Preliminary Report on Expeditions Monsoon And
    A Preliminary Report on Expeditions Monsoon and Lusiad 1960 - 1963 University of California, San Diego Scripps Institution of Oceanography Cruises to the Indian Ocean By The Members of the Expedition Edited by Robert L. Fisher S. I. O. Reference 64-19 ― i ― FOREWORD Field participation in the International Indian Ocean Expedition by scientists and research vessels of the University of California's Scripps Institution of Oceanography comprises three multi- program investigations: MONSOON (1960-1), LUSIAD (1962-3) and DODO (1964). All three expeditions, though first broadly outlined in 1959, lie within the cooperative international exploration of the Indian Ocean being sponsored by the Scientific Committee on Oceanic Research and UNESCO. Therefore, though original schedules have to date been met, the programs have in fact been influenced and modified by the plans, interests and findings of other agencies and laboratories, and direct participation by marine scientists, students and trainees from other areas has been welcomed. Although the final SIO IIOE cruise, DODO, is just underway, a preliminary report on some generalized results of the first two expeditions seems appropriate now, with the clear understanding that many conclusions stated here may indeed be premature. Final analyses, syntheses and results will appear in more specialized formal publications and in the proposed SCOR-sponsored atlases which eventually will summarize Indian Ocean Expedition findings. At Scripps Institution, it is customary to give names, rather than number designations, to the major expeditions. The 1960-1 investigation, 3 ½ months in the Indian Ocean, embraced the first SIO field work in the "monsoon seas". It was funded primarily by the Office of Naval Research of the Navy Department, with auxiliary support for personnel and special equipment from the Bureau of Ships and the National Science Foundation.
    [Show full text]
  • Molecular Systematics of South American Dolphins Sotalia: Sister
    Available online at www.sciencedirect.com Molecular Phylogenetics and Evolution 46 (2008) 252–268 www.elsevier.com/locate/ympev Molecular systematics of South American dolphins Sotalia: Sister taxa determination and phylogenetic relationships, with insights into a multi-locus phylogeny of the Delphinidae Susana Caballero a,*, Jennifer Jackson a,g, Antonio A. Mignucci-Giannoni b, He´ctor Barrios-Garrido c, Sandra Beltra´n-Pedreros d, Marı´a G. Montiel-Villalobos e, Kelly M. Robertson f, C. Scott Baker a,g a Laboratory of Molecular Ecology and Evolution, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand b Red Cariben˜a de Varamientos, Caribbean Stranding Network, PO Box 361715, San Juan 00936-1715, Puerto Rico c Laboratorio de Ecologı´a General, Facultad Experimental de Ciencias. Universidad del Zulia, Av. Universidad con prolongacio´n Av. 5 de Julio. Sector Grano de Oro, Maracaibo, Venezuela d Laboratorio de Zoologia, Colecao Zoologica Paulo Burheim, Centro Universitario Luterano de Manaus, Manaus, Brazil e Laboratorio de Ecologı´a y Gene´tica de Poblaciones, Centro de Ecologı´a, Instituto Venezolano de Investigaciones Cientı´ficas (IVIC), San Antonio de los Altos, Carretera Panamericana km 11, Altos de Pipe, Estado Miranda, Venezuela f Tissue and DNA Archive, National Marine Fisheries Service, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037-1508, USA g Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Drive, Newport, OR 97365, USA Received 2 May 2007; revised 19 September 2007; accepted 17 October 2007 Available online 25 October 2007 Abstract The evolutionary relationships among members of the cetacean family Delphinidae, the dolphins, pilot whales and killer whales, are still not well understood.
    [Show full text]
  • Marine Research in Indonesia
    9. A»V featNYvfeY- -V A-VV H £ MARINE RESEARCH IN INDONESIA No. 25 CRUSTACEA LIBRARY SMITHSONIAN INST. RKTUhJI '10 W--1I9 Published by LEMBAGA OSEANOLOGI NASIONAL (National institute of Oceanology) LEMBAGA ILMU PENGETAHUAN INDONESIA (Indonesian Institute of Sciences) JAKARTA, INDONESIA 1985 10 ISSN 0079-0435 MARINE RESEARCH IN INDONESIA Board of Editors APRILANI SOEGIARTO KASIJAN ROMIMOHTARTO SUJATNO BLROWO ANUGERAH NONTJI MOHAMMAD KASIM MOOSA Address of Editors LEMBAGA OSEANOLOGI NASIONAL LEMBAGA ILMU PENGETAHUAN INDONESIA Jl. Pasir Putih 1, Kompleks Bina Samudera P.O. Box 580 DAK Jakarta — Indonesia Phone 683850 MARINE RESEARCH IN INDONESIA No. 25 Published by LEMBAGA OSEANOLOGI NASIONAL (National institute of Oceanology) LEMBAGA ILMU PENGETAHUAN INDONESIA (Indonesian Institute of Sciences) JAKARTA, INDONESIA 1985 10 ISSN 0079-0435 MARINE RESEARCH IN INDONESIA, No. 25, 1985 ERRATA PAGE LINE ERROR CORRECTION P-6 L. 11 1945-1947 1845-1847 P-8 L. 8 cintinuum continuum P-10 L.-L2 Identation indentation P-,18 L. 23 hipothoe hippothoe P« 2.0 L. 13 microrhunchus microrhynchus P-.21 L. 9 Sumatera Sumatra P-, 24 ** ftnt L. 11 deletion of as microrhynchus as having P>,2 5 L. 12 deletion of reach fronds reach upward P-,29 L. 17 perpleced perplexed P>,3 0 L. 7 philocetes philoctetes P-,30 L. 8 philocetes philoctetes P-,35 L. 11 previous pervious P-,36 L. 26 eliminate period a 20 mm male P-.37 L. 9 rorstrum rostrum P-,37 L. 28 wel well P-,40 L. 15 central Central P-.44 L. 26 pari pair P-,45 L.6 rvo two P-,46 L.
    [Show full text]
  • List of Marine Mammal Species & Subspecies
    List of Marine Mammal Species & Subspecies The Committee on Taxonomy, chaired by Bill Perrin, produced the first official Society for Marine Mammalogy list of marine mammal species and subspecies in 2010 . Consensus on some issues was not possible; this is reflected in the footnotes. The list is updated annually. This version was updated in October 2015. This list can be cited as follows: “Committee on Taxonomy. 2015. List of marine mammal species and subspecies. Society for Marine Mammalogy, www.marinemammalscience.org, consulted on [date].” This list includes living and recently extinct (within historical times) species and subspecies, named and un-named. It is meant to reflect prevailing usage and recent revisions published in the peer-reviewed literature. An un-named subspecies is included if author(s) of a peer-reviewed article stated explicitly that the form is likely an undescribed subspecies. The Committee omits some described species and subspecies because of concern about their biological distinctness; reservations are given below. Author(s) and year of description of the species follow the Latin species name; when these are enclosed in parentheses, the species was originally described in a different genus. Classification and scientific names follow Rice (1998), with adjustments reflecting more recent literature. Common names are arbitrary and change with time and place; one or two currently frequently used names in English and/or a range language are given here. Additional English common names and common names in French, Spanish, Russian and other languages are available at www.marinespecies.org/cetacea/. Species and subspecies are listed in alphabetical order within families.
    [Show full text]
  • 1 the Chiloé Small Cetacean Project
    The Chiloé Small Cetacean Project - Assessing the conservation status of endemic Chilean dolphins and sympatric species and promoting marine conservation and local capacity building in the Chiloé Archipelago, southern Chile - Progress Report for 2009-10 by Sonja Heinrich (with contributions by M. Fuentes; photos M. Fuentes, S. Heinrich, R. Antunes) I. Overview This progress report summarises the main activities of the Chiloé Small Cetacean Project for 2009 and 2010. During this period the project has been supported by the Organization for the Conservation of South American Aquatic Mammals - YAQU PACHA e.V., the University of St. Andrews (UK), the Universidad Austral de Chile, The Zoological Garden Nürnberg (Germany), the European Association for Aquatic Mammals - EAAM and by the World Association of Zoos and Aquariums - WAZA as Conservation project 07003 (branded in 2007). Our research efforts focus on the Chiloé Archipelago in Chile and have been ongoing since January 2001. This project constitutes the only dedicated and methodologically consistent long-term monitoring project for small cetaceans in southern Chile. Results to date have provided novel and pivotal information on three poorly known small odontocete species – endemic Chilean dolphins (Cephalorhynchus eutriopa ), Peale’s dolphins ( Lagenorhynchus australis ) and Burmeister’s poprpoises ( Phocoena spinipinnis ) (Figure 1). Until recently, all three species were classified as data deficient by the IUCN with very limited information available on their ecology and population biology, and a variety of known or potential anthropogenic threats to their survival identified (e.g. bycatch, habitat destruction, direct take). This project’s findings have contributed to the reclassification of Chilean dolphins to near- threatened during the IUCN status review (2009), and are currently being used to determine conservation areas during the zoning process under the revised Regional Coastal Management Plans for Chiloé.
    [Show full text]
  • How to Cite Complete Issue More Information About This
    Mastozoología Neotropical ISSN: 0327-9383 ISSN: 1666-0536 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Marchesi, María Constanza; Mora, Matías Sebastián; Crespo, Enrique Alberto; Boy, Claudia C.; González-José, Rolando; Goodall, Rae Natalie P. FUNCTIONAL SUBDIVISION OF THE VERTEBRAL COLUMN IN FOUR SOUTH AMERICAN DOLPHINS Mastozoología Neotropical, vol. 25, no. 2, 2018, July-December, pp. 329-343 Sociedad Argentina para el Estudio de los Mamíferos Argentina Available in: https://www.redalyc.org/articulo.oa?id=45760865007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Mastozoología Neotropical, 25(2):329-343, Mendoza, 2018 Copyright ©SAREM, 2018 Versión on-line ISSN 1666-0536 http://www.sarem.org.ar https://doi.org/10.31687/saremMN.18.25.2.0.12 http://www.sbmz.com.br Artículo FUNCTIONAL SUBDIVISION OF THE VERTEBRAL COLUMN IN FOUR SOUTH AMERICAN DOLPHINS María Constanza Marchesi1, Matías Sebastián Mora2, Enrique Alberto Crespo3, 4, Claudia C. Boy1, Rolando González-José5 and Rae Natalie P. Goodall1, 6† 1 Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Tierra del Fuego, Argentina [Correspondencia: M. Constanza Marchesi <[email protected]>]. 2 Instituto de Investigaciones Marinas y Costeras (IIMyC) – CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina. 3 Centro para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico (CENPAT-CONICET), Puerto Madryn, Chubut, Argentina 4 Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn, Chubut, Argentina.
    [Show full text]