Designs, Codes and Cryptography, 10, 115–136 (1997) c 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. A Theory of Nets for Polyhedra and Polytopes Related to Incidence Geometries SABINE BOUZETTE C. P. 216, Universite´ Libre de Bruxelles, Bd du Triomphe, B-1050 Bruxelles FRANCIS BUEKENHOUT
[email protected] C. P. 216, Universite´ Libre de Bruxelles, Bd du Triomphe, B-1050 Bruxelles EDMOND DONY C. P. 216, Universite´ Libre de Bruxelles, Bd du Triomphe, B-1050 Bruxelles ALAIN GOTTCHEINER C. P. 216, Universite´ Libre de Bruxelles, Bd du Triomphe, B-1050 Bruxelles Communicated by: D. Jungnickel Received November 22, 1995; Revised July 26, 1996; Accepted August 13, 1996 Dedicated to Hanfried Lenz on the occasion of his 80th birthday. Abstract. Our purpose is to elaborate a theory of planar nets or unfoldings for polyhedra, its generalization and extension to polytopes and to combinatorial polytopes, in terms of morphisms of geometries and the adjacency graph of facets. Keywords: net, polytope, incidence geometry, prepolytope, category 1. Introduction Planar nets for various polyhedra are familiar both for practical matters and for mathematical education about age 11–14. They are systematised in two directions. The most developed of these consists in the drawing of some net for each polyhedron in a given collection (see for instance [20], [21]). A less developed theme is to enumerate all nets for a given polyhedron, up to some natural equivalence. Little has apparently been done for polytopes in dimensions d 4 (see however [18], [3]). We have found few traces of this subject in the literature and we would be grateful for more references.