Realizability of Polyhedra by Walter Whiteley

Total Page:16

File Type:pdf, Size:1020Kb

Realizability of Polyhedra by Walter Whiteley Realizability of Polyhedra by Walter Whiteley A great deal of our work employs surfaces which The Pattern for Convex Polyhedra Structural Topology (1) I@79 enclose sections of space (compact oriented 2- manifolds), constructed by joining plane polygons In many ways a model for the overall type of theory together in pairs across their edges. These finite we are seeking is offered by the most widely studied plane-faced coverings of the closed surface are the class of polyhedra, the convex mrr . These basic cells of the work on juxtapositions or space- polyhedra are formed in space by a series of plane fillings, and they also appear as the basic visual convex polygons, the faces, formed into a rough ball guide in our analysis of structural dependence and so that along each edge of aI polygon the face joins rigidity in plane frameworks. These polyhedra are one other face, and the plane of each facial polygon the essential building blocks of spatial geometry. cuts the three -dimensional space into two half- They have been scrutinized for centuries. In this spaces, one of which contains the entire polyhedron. century the study has been generalized to a topolo- Abstract gical theory of combinatorial polyhedra, but many of the fundamental problems, both solved and unsol- Such a polyhedron will be topologlcally like a ved, involve the realizability In space of the abstract sphere, and for a spherical polyhedron we have We address ourselves to three types of com- patterns within particular geometric constraints. Euler’s formula which gives a combinatorial rela- binatorial and projective problems, all of which tionship between the number of vertices V, edges E concern the patterns of faces, edges and and faces F: V - E t F = 2. When we have a set of vertices of polyhedra. These patterns, as com- vertices, edges and faces (each edge joining two binatorial structures, we call combinatorial vertices and separating two faces) which satisfies oriented polyhedra. Which patterns can be Each generation of workers has chosen particular thls formula, and thus forms a topological sphere*, realized in space with plane faces, bent along properties which they find desirable and then asked the skeleton formed by the edges and vertices forms every edge, and how can these patterns be - which polyhedra can be realized within these a planar graph, a graph* which can be drawn In the generated topologlcally? Which polyhedra are constraints? The constraints which we Investigate plane without any edges crossslng In their Interior. constructed in space by a series of single or within our research group arise directly or Indirectly (Flgure 1) double truncations on the smallest polyhedron from our prior concerns with space-fillings and of the type (for example from the tetrahedron rigidity. In addition, some constraints of obvious for spherical polyhedra)? Which plane line architectural or engineering significance - such as drawings portraying the edge graph of a com- metric regularity of angles, edge-lengths or face Combinatorial and Topological binatorial polyhedron are actually the projec- patterns - have been widely studied elsewhere and Problems tion of the edges of a plane-faced polyhedron will not be described here. Instead we will restrict our in space? Wherever possible known results attention to a series of questions of a combinatorial, and specific conjectures are given. topological and projective nature which represent An obvious question is: which planar graphs (with less traditional topics of study, the regions formed in the plane taken as the faces) 46 can be topologically reproduced as the faces, edges and the spatial construction by plane-truncations. projected lines labeled 12, 23, 31 be concurrent In and vertices of a convex polyhedron with plane faces the plane. Finally, to ensure the convexity of the and a real bend at each edge? Steinltz’ theorem proposed polyhedron we have found that two faces provides the answer - those planar graphs which Projective Problems which share a vertex but not an edge must have a are 3,.connected in a vertex sense and have more line of intersection which intersects the face poly- than three vertices (Grunbaum 1967, p. 235). Here 3- We now want to study in more detail the projective gons only at this vertex, and all the face polygons connected means that removing any two vertices construction of convex spatial polyhedron by plane must be convex (Flgure 4). Is this enough to guaran- (and the adjacent edges) cannot separate the graph slices on the tetrahedron. We have found that a tee the construction of a convex spatial polyhedron? into several components (Figure 1). useful way to observe this slicing Is in a single plane Yes. We have proven that all such consistent dia- projection where we record the projections of the grams of lines in the plane can be lifted back to lines where each new face plane meets all of the produce convex polyhedra in space. Closely related to this result, and used In some previous planes (Flgure 3). We then attempt to proofs, is the fact that all 3-connected planar graphs reverse the procedure and ask when a pattern (combinatorial convex polyhedra) can be created of lines drawn in the plane represents the To fix this spatial polyhedron, we need to specify our from the graph of the tetrahedron by successively construction of a convex polyhedron In point of projection and the position of the projection splitting faces in one of three natural ways (Figure 2) space. Of course we must identify, among all these plane. For convenience we wilt think of orthogonal (Lyusternik 1963, p.75). We also know, from their lines, the 3-connected planar graph which we want projection along the direction of the r-axis (from the definition, that any convex polyhedron can be sliced to be the projected edges of the proposed polyhe- point at infinity on the end of this axis) onto the xy- out of an underlying tetrahedron by a series of dron. In addition we must label each of the other plane. With this frame of reference specified, If a plane-cuts or truncations* - one for each face lines as the projected intersection of two faces of the plane diagram lifts to one convex polyhedron in beyond the original four faces of the tetrahedron. proposed polyhedron; We know that three planes In space, then it lifts to a four parameter family of One central theme for our further investigations will space 1, 2 and 3 will have a point of intersection (or, polyhedra - three parameters for the location of an be the connections between these three approaches as a degenerate case, a line of lntersectlon) so the initial face-plane, and the fourth for a factor which - the graphic characterization of a class of spatial three lines 12, 23, 31 are concurrent in space. Thus represents stretching along the z-axis, towards the polyhedra, the topological evolution of these graphs, in our labeled diagram it is necess;ary that the three point of projection. If one polyhedron of this four- parameter family is convex, then all of these equiva- lent realizations will also be convex. If we simplify the initial information In the plane and begin only with a drawing, with straight lines, of a 3- L3 connected planar graph, we have the obvious ques- E=3 tion - what possible complete diagrams of lntersec- F=2 A . tion lines for constructing. a convex polyhedron can A . VA E = 10 F=6 6 VA E= 12 F= 6 C . Figure 1. Both 3-connected planar graphs (C), and planar graphs Figure 2. Face splitting by a new edge adds new faces to a Figure 3. A convex polyhedron Is shown In proJectIon, and all Ilnes 47’ which are only P-connected, create spherical polyhedra combinatorial polyhedron. of Intersection of pairs of faces are drawn. The Intersection of face regions of the plane are chosen as faces. 1 and face 2 Is labeled 12. be produced as extensions of this initial drawing? the bent edges of the spatial polyhedron. (Whiteley 013 1976). 234= 23~34 Equivalently what convex polyhedra exist in space 124= 12~14 which project to the initial plane drawing? We will 24= 124~234 return to this basic problem shortly, but we note that n in many cases (E852V-2) this question can be answe- 013 =OlAO3A13 red by a series of direct geometric constructions General Concepts 024 = 02 ~04 A 24 from projective* (or descriptive) geometry. Consider the examples illustrated in flgun 5. Figure SA - shows the completion of a projected triangular prism Combinatorial Polyhedra by a sequence of steps, where points 013 and 024 are shown to confirm the consistency of the diagram. We want to use a similar approach to analyze other A . If one of these points of concurrence of three lines plane-faced space enclosures. A first step is to exists, then the other point must also exist, as a abstract a basic pattern of faces, edges and vertices result of Desargues’ theorem on perspective trian- which is found in the convex examples. bles* Flgure SB shows the completion of a second figure, with point 025 drawn as a check of consis- tency. Flgure SC shows an identical graph, where An orlented comblnatorlrl polyhedron is a set of the point 025 has broken up, and thus no consistent vertices vl,...,v, and a set of faces F,,...,Fk such completion (or spatial polyhedron) is possible. that (I) each face is assigned a polygonal cycle of distinct We also recall that a thorough understanding of the vertices ul,... ,un (at least 3). statics of frameworks in the plane would provide a 024=24/\04 solution to the problem of polyhedral completions, (2) the edgea are identified as unordered pairs of 02=024 v 012 since a convex polyhedron projects, via Maxwell’s vertices which are adjacent in the polygon of some 014=OlAO4 theorem, into a static stress on the plane framework face (including the last and first vertices of the cycle).
Recommended publications
  • Equivelar Octahedron of Genus 3 in 3-Space
    Equivelar octahedron of genus 3 in 3-space Ruslan Mizhaev ([email protected]) Apr. 2020 ABSTRACT . Building up a toroidal polyhedron of genus 3, consisting of 8 nine-sided faces, is given. From the point of view of topology, a polyhedron can be considered as an embedding of a cubic graph with 24 vertices and 36 edges in a surface of genus 3. This polyhedron is a contender for the maximal genus among octahedrons in 3-space. 1. Introduction This solution can be attributed to the problem of determining the maximal genus of polyhedra with the number of faces - . As is known, at least 7 faces are required for a polyhedron of genus = 1 . For cases ≥ 8 , there are currently few examples. If all faces of the toroidal polyhedron are – gons and all vertices are q-valence ( ≥ 3), such polyhedral are called either locally regular or simply equivelar [1]. The characteristics of polyhedra are abbreviated as , ; [1]. 2. Polyhedron {9, 3; 3} V1. The paper considers building up a polyhedron 9, 3; 3 in 3-space. The faces of a polyhedron are non- convex flat 9-gons without self-intersections. The polyhedron is symmetric when rotated through 1804 around the axis (Fig. 3). One of the features of this polyhedron is that any face has two pairs with which it borders two edges. The polyhedron also has a ratio of angles and faces - = − 1. To describe polyhedra with similar characteristics ( = − 1) we use the Euler formula − + = = 2 − 2, where is the Euler characteristic. Since = 3, the equality 3 = 2 holds true.
    [Show full text]
  • A Theory of Nets for Polyhedra and Polytopes Related to Incidence Geometries
    Designs, Codes and Cryptography, 10, 115–136 (1997) c 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. A Theory of Nets for Polyhedra and Polytopes Related to Incidence Geometries SABINE BOUZETTE C. P. 216, Universite´ Libre de Bruxelles, Bd du Triomphe, B-1050 Bruxelles FRANCIS BUEKENHOUT [email protected] C. P. 216, Universite´ Libre de Bruxelles, Bd du Triomphe, B-1050 Bruxelles EDMOND DONY C. P. 216, Universite´ Libre de Bruxelles, Bd du Triomphe, B-1050 Bruxelles ALAIN GOTTCHEINER C. P. 216, Universite´ Libre de Bruxelles, Bd du Triomphe, B-1050 Bruxelles Communicated by: D. Jungnickel Received November 22, 1995; Revised July 26, 1996; Accepted August 13, 1996 Dedicated to Hanfried Lenz on the occasion of his 80th birthday. Abstract. Our purpose is to elaborate a theory of planar nets or unfoldings for polyhedra, its generalization and extension to polytopes and to combinatorial polytopes, in terms of morphisms of geometries and the adjacency graph of facets. Keywords: net, polytope, incidence geometry, prepolytope, category 1. Introduction Planar nets for various polyhedra are familiar both for practical matters and for mathematical education about age 11–14. They are systematised in two directions. The most developed of these consists in the drawing of some net for each polyhedron in a given collection (see for instance [20], [21]). A less developed theme is to enumerate all nets for a given polyhedron, up to some natural equivalence. Little has apparently been done for polytopes in dimensions d 4 (see however [18], [3]). We have found few traces of this subject in the literature and we would be grateful for more references.
    [Show full text]
  • Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations
    Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations Jean Gallier and Jocelyn Quaintance Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected] April 20, 2017 2 3 Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations Jean Gallier Abstract: Some basic mathematical tools such as convex sets, polytopes and combinatorial topology, are used quite heavily in applied fields such as geometric modeling, meshing, com- puter vision, medical imaging and robotics. This report may be viewed as a tutorial and a set of notes on convex sets, polytopes, polyhedra, combinatorial topology, Voronoi Diagrams and Delaunay Triangulations. It is intended for a broad audience of mathematically inclined readers. One of my (selfish!) motivations in writing these notes was to understand the concept of shelling and how it is used to prove the famous Euler-Poincar´eformula (Poincar´e,1899) and the more recent Upper Bound Theorem (McMullen, 1970) for polytopes. Another of my motivations was to give a \correct" account of Delaunay triangulations and Voronoi diagrams in terms of (direct and inverse) stereographic projections onto a sphere and prove rigorously that the projective map that sends the (projective) sphere to the (projective) paraboloid works correctly, that is, maps the Delaunay triangulation and Voronoi diagram w.r.t. the lifting onto the sphere to the Delaunay diagram and Voronoi diagrams w.r.t. the traditional lifting onto the paraboloid. Here, the problem is that this map is only well defined (total) in projective space and we are forced to define the notion of convex polyhedron in projective space.
    [Show full text]
  • Zipper Unfoldings of Polyhedral Complexes
    Zipper Unfoldings of Polyhedral Complexes The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Demaine, Erik D. et al. "Zipper Unfoldings of Polyhedral Complexes." 22nd Canadian Conference on Computational Geometry, CCCG 2010, Winnipeg MB, August 9-11, 2010. As Published http://www.cs.umanitoba.ca/~cccg2010/accepted.html Publisher University of Manitoba Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/62237 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0 Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/ CCCG 2010, Winnipeg MB, August 9{11, 2010 Zipper Unfoldings of Polyhedral Complexes Erik D. Demaine∗ Martin L. Demainey Anna Lubiwz Arlo Shallitx Jonah L. Shallit{ Abstract We explore which polyhedra and polyhedral complexes can be formed by folding up a planar polygonal region and fastening it with one zipper. We call the reverse tetrahedron icosahedron process a zipper unfolding. A zipper unfolding of a polyhedron is a path cut that unfolds the polyhedron to a planar polygon; in the case of edge cuts, these are Hamiltonian unfoldings as introduced by Shephard in 1975. We show that all Platonic and Archimedean solids have Hamiltonian unfoldings. octahedron dodecahedron We give examples of polyhedral complexes that are, Figure 2: Doubly Hamiltonian unfoldings of the other and are not, zipper [edge] unfoldable. The positive ex- Platonic solids. amples include a polyhedral torus, and two tetrahedra joined at an edge or at a face. The physical model of a zipper provides a natural 1 Introduction extension of zipper unfolding to polyhedral complexes which generalize polyhedra, either by allowing positive A common way to build a paper model of a polyhe- genus (these are polyhedral manifolds), or by allowing dron is to fold and glue a planar polygonal shape, called an edge to be incident to more than two faces, or allow- a net of the polyhedron.
    [Show full text]
  • Representing the Sporadic Archimedean Polyhedra As Abstract Polytopes$
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Discrete Mathematics 310 (2010) 1835–1844 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Representing the sporadic Archimedean polyhedra as abstract polytopesI Michael I. Hartley a, Gordon I. Williams b,∗ a DownUnder GeoSolutions, 80 Churchill Ave, Subiaco, 6008, Western Australia, Australia b Department of Mathematics and Statistics, University of Alaska Fairbanks, PO Box 756660, Fairbanks, AK 99775-6660, United States article info a b s t r a c t Article history: We present the results of an investigation into the representations of Archimedean Received 29 August 2007 polyhedra (those polyhedra containing only one type of vertex figure) as quotients of Accepted 26 January 2010 regular abstract polytopes. Two methods of generating these presentations are discussed, Available online 13 February 2010 one of which may be applied in a general setting, and another which makes use of a regular polytope with the same automorphism group as the desired quotient. Representations Keywords: of the 14 sporadic Archimedean polyhedra (including the pseudorhombicuboctahedron) Abstract polytope as quotients of regular abstract polyhedra are obtained, and summarised in a table. The Archimedean polyhedron Uniform polyhedron information is used to characterize which of these polyhedra have acoptic Petrie schemes Quotient polytope (that is, have well-defined Petrie duals). Regular cover ' 2010 Elsevier B.V. All rights reserved. Flag action Exchange map 1. Introduction Much of the focus in the study of abstract polytopes has been on the regular abstract polytopes. A publication of the first author [6] introduced a method for representing any abstract polytope as a quotient of regular polytopes.
    [Show full text]
  • Of Rigid Motions) to Make the Simplest Possible Analogies Between Euclidean, Spherical,Toroidal and Hyperbolic Geometry
    SPHERICAL, TOROIDAL AND HYPERBOLIC GEOMETRIES MICHAEL D. FRIED, 231 MSTB These notes use groups (of rigid motions) to make the simplest possible analogies between Euclidean, Spherical,Toroidal and hyperbolic geometry. We start with 3- space figures that relate to the unit sphere. With spherical geometry, as we did with Euclidean geometry, we use a group that preserves distances. The approach of these notes uses the geometry of groups to show the relation between various geometries, especially spherical and hyperbolic. It has been in the background of mathematics since Klein’s Erlangen program in the late 1800s. I imagine Poincar´e responded to Klein by producing hyperbolic geometry in the style I’ve done here. Though the group approach of these notes differs philosophically from that of [?], it owes much to his discussion of spherical geometry. I borrowed the picture of a spherical triangle’s area directly from there. I especially liked how Henle has stereographic projection allow the magic multiplication of complex numbers to work for him. While one doesn’t need the rotation group in 3-space to understand spherical geometry, I used it gives a direct analogy between spherical and hyperbolic geometry. It is the comparison of the four types of geometry that is ultimately most inter- esting. A problem from my Problem Sheet has the name World Wallpaper. Map making is a subject that has attracted many. In our day of Landsat photos that cover the whole world in its great spherical presence, the still mysterious relation between maps and the real thing should be an easy subject for the classroom.
    [Show full text]
  • Polyhedral Models of the Projective Plane
    Bridges 2018 Conference Proceedings Polyhedral Models of the Projective Plane Paul Gailiunas 25 Hedley Terrace, Gosforth, Newcastle, NE3 1DP, England; [email protected] Abstract The tetrahemihexahedron is the only uniform polyhedron that is topologically equivalent to the projective plane. Many other polyhedra having the same topology can be constructed by relaxing the conditions, for example those with faces that are regular polygons but not transitive on the vertices, those with planar faces that are not regular, those with faces that are congruent but non-planar, and so on. Various techniques for generating physical realisations of such polyhedra are discussed, and several examples of different types described. Artists such as Max Bill have explored non-orientable surfaces, in particular the Möbius strip, and Carlo Séquin has considered what is possible with some models of the projective plane. The models described here extend the range of possibilities. The Tetrahemihexahedron A two-dimensional projective geometry is characterised by the pair of axioms: any two distinct points determine a unique line; any two distinct lines determine a unique point. There are projective geometries with a finite number of points/lines but more usually the projective plane is considered as an ordinary Euclidean plane plus a line “at infinity”. By the second axiom any line intersects the line “at infinity” in a single point, so a model of the projective plane can be constructed by taking a topological disc (it is convenient to think of it as a hemisphere) and identifying opposite points. The first known analytical surface matching this construction was discovered by Jakob Steiner in 1844 when he was in Rome, and it is known as the Steiner Roman surface.
    [Show full text]
  • Flippable Tilings of Constant Curvature Surfaces
    FLIPPABLE TILINGS OF CONSTANT CURVATURE SURFACES FRANÇOIS FILLASTRE AND JEAN-MARC SCHLENKER Abstract. We call “flippable tilings” of a constant curvature surface a tiling by “black” and “white” faces, so that each edge is adjacent to two black and two white faces (one of each on each side), the black face is forward on the right side and backward on the left side, and it is possible to “flip” the tiling by pushing all black faces forward on the left side and backward on the right side. Among those tilings we distinguish the “symmetric” ones, for which the metric on the surface does not change under the flip. We provide some existence statements, and explain how to parameterize the space of those tilings (with a fixed number of black faces) in different ways. For instance one can glue the white faces only, and obtain a metric with cone singularities which, in the hyperbolic and spherical case, uniquely determines a symmetric tiling. The proofs are based on the geometry of polyhedral surfaces in 3-dimensional spaces modeled either on the sphere or on the anti-de Sitter space. 1. Introduction We are interested here in tilings of a surface which have a striking property: there is a simple specified way to re-arrange the tiles so that a new tiling of a non-singular surface appears. So the objects under study are actually pairs of tilings of a surface, where one tiling is obtained from the other by a simple operation (called a “flip” here) and conversely. The definition is given below.
    [Show full text]
  • Geometric Point-Circle Pentagonal Geometries from Moore Graphs
    Also available at http://amc-journal.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 11 (2016) 215–229 Geometric point-circle pentagonal geometries from Moore graphs Klara Stokes ∗ School of Engineering Science, University of Skovde,¨ 54128 Skovde¨ Sweden Milagros Izquierdo Department of Mathematics, Linkoping¨ University, 58183 Linkoping¨ Sweden Received 27 December 2014, accepted 13 October 2015, published online 15 November 2015 Abstract We construct isometric point-circle configurations on surfaces from uniform maps. This gives one geometric realisation in terms of points and circles of the Desargues configura- tion in the real projective plane, and three distinct geometric realisations of the pentagonal geometry with seven points on each line and seven lines through each point on three distinct dianalytic surfaces of genus 57. We also give a geometric realisation of the latter pentago- nal geometry in terms of points and hyperspheres in 24 dimensional Euclidean space. From these, we also obtain geometric realisations in terms of points and circles (or hyperspheres) of pentagonal geometries with k circles (hyperspheres) through each point and k −1 points on each circle (hypersphere). Keywords: Uniform map, equivelar map, dessin d’enfants, configuration of points and circles Math. Subj. Class.: 05B30, 05B45, 14H57, 14N20, 30F10, 30F50, 51E26 1 Introduction A compact Klein surface S is a surface (possibly with boundary and non-orientable) en- dowed with a dianalytic structure, that is, the transition maps are holomorphic or antiholo- morphic (the conjugation z ! z is allowed). If the surface S admits analytic structure and is closed, then the surface is a Riemann surface.
    [Show full text]
  • Chiral Polyhedra in 3-Dimensional Geometries and from a Petrie-Coxeter Construction
    Chiral polyhedra in 3-dimensional geometries and from a Petrie-Coxeter construction Javier Bracho, Isabel Hubard and Daniel Pellicer January 19, 2021 Abstract We study chiral polyhedra in 3-dimensional geometries (Euclidian, hy- perbolic and projective) in a unified manner. This extends to hyperbolic and projective spaces some structural results in the classification of chi- ral polyhedra in Euclidean 3-space given in 2005 by Schulte. Then, we describe a way to produce examples with helical faces based on a clas- 3 sic Petrie-Coxeter construction that yields a new family in S , which is described exhaustively. AMS Subject Classification (2010): 52B15 (Primary), 51G05, 51M20, 52B10 Keywords: chiral polyhedron, projective polyhedron, Petrie-Coxeter construction 1 Introduction Symmetric structures in space have been studied since antiquity. An example of this is the inclusion of the Platonic solids in Euclid's Elements [14]. In particular, highly symmetric polyhedra-like structures have a rich history including convex ones such as the Archimedean solids (see for example [7, Chapter 21]), star- shaped ones such as the Kepler-Poinsot solids [27], and infinite ones such as the Petrie-Coxeter polyhedra [8]. In recent decades a lot of attention has been dedicated to the so-called skeletal polyhedra, where faces are not associated to membranes. The symmetry of a skeletal polyhedron is measured by the number of orbits of flags (triples of incident vertex, edge and face) under the action of the symmetry group. Those with only one flag-orbit are called regular, and in a combinatorial sense they have 1 maximal symmetry by reflections. Chiral polyhedra are those with maximal (combinatorial) symmetry by rotations but none by reflections and have two flag-orbits.
    [Show full text]
  • Collection Volume I
    Collection volume I PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 29 Jul 2010 21:47:23 UTC Contents Articles Abstraction 1 Analogy 6 Bricolage 15 Categorization 19 Computational creativity 21 Data mining 30 Deskilling 41 Digital morphogenesis 42 Heuristic 44 Hidden curriculum 49 Information continuum 53 Knowhow 53 Knowledge representation and reasoning 55 Lateral thinking 60 Linnaean taxonomy 62 List of uniform tilings 67 Machine learning 71 Mathematical morphology 76 Mental model 83 Montessori sensorial materials 88 Packing problem 93 Prior knowledge for pattern recognition 100 Quasi-empirical method 102 Semantic similarity 103 Serendipity 104 Similarity (geometry) 113 Simulacrum 117 Squaring the square 120 Structural information theory 123 Task analysis 126 Techne 128 Tessellation 129 Totem 137 Trial and error 140 Unknown unknown 143 References Article Sources and Contributors 146 Image Sources, Licenses and Contributors 149 Article Licenses License 151 Abstraction 1 Abstraction Abstraction is a conceptual process by which higher, more abstract concepts are derived from the usage and classification of literal, "real," or "concrete" concepts. An "abstraction" (noun) is a concept that acts as super-categorical noun for all subordinate concepts, and connects any related concepts as a group, field, or category. Abstractions may be formed by reducing the information content of a concept or an observable phenomenon, typically to retain only information which is relevant for a particular purpose. For example, abstracting a leather soccer ball to the more general idea of a ball retains only the information on general ball attributes and behavior, eliminating the characteristics of that particular ball.
    [Show full text]
  • Zipper Unfoldings of Polyhedral Complexes
    CCCG 2010, Winnipeg MB, August 9{11, 2010 Zipper Unfoldings of Polyhedral Complexes Erik D. Demaine∗ Martin L. Demainey Anna Lubiwz Arlo Shallitx Jonah L. Shallit{ Abstract We explore which polyhedra and polyhedral complexes can be formed by folding up a planar polygonal region and fastening it with one zipper. We call the reverse tetrahedron icosahedron process a zipper unfolding. A zipper unfolding of a polyhedron is a path cut that unfolds the polyhedron to a planar polygon; in the case of edge cuts, these are Hamiltonian unfoldings as introduced by Shephard in 1975. We show that all Platonic and Archimedean solids have Hamiltonian unfoldings. octahedron dodecahedron We give examples of polyhedral complexes that are, Figure 2: Doubly Hamiltonian unfoldings of the other and are not, zipper [edge] unfoldable. The positive ex- Platonic solids. amples include a polyhedral torus, and two tetrahedra joined at an edge or at a face. The physical model of a zipper provides a natural 1 Introduction extension of zipper unfolding to polyhedral complexes which generalize polyhedra, either by allowing positive A common way to build a paper model of a polyhe- genus (these are polyhedral manifolds), or by allowing dron is to fold and glue a planar polygonal shape, called an edge to be incident to more than two faces, or allow- a net of the polyhedron. Nets of Platonic solids and ing a boundary edge that is incident to only one face. other polyhedra with regular faces were first published We elaborate on the model of zipper unfolding in Sec- by D¨urerin 1525, and have been a source of fascination tion 1.1.
    [Show full text]