Color Photography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Digital Holography Using a Laser Pointer and Consumer Digital Camera Report Date: June 22Nd, 2004
Digital Holography using a Laser Pointer and Consumer Digital Camera Report date: June 22nd, 2004 by David Garber, M.E. undergraduate, Johns Hopkins University, [email protected] Available online at http://pegasus.me.jhu.edu/~lefd/shc/LPholo/lphindex.htm Acknowledgements Faculty sponsor: Prof. Joseph Katz, [email protected] Project idea and direction: Dr. Edwin Malkiel, [email protected] Digital holography reconstruction: Jian Sheng, [email protected] Abstract The point of this project was to examine the feasibility of low-cost holography. Can viable holograms be recorded using an ordinary diode laser pointer and a consumer digital camera? How much does it cost? What are the major difficulties? I set up an in-line holographic system and recorded both still images and movies using a $600 Fujifilm Finepix S602Z digital camera and a $10 laser pointer by Lazerpro. Reconstruction of the stills shows clearly that successful holograms can be created with a low-cost optical setup. The movies did not reconstruct, due to compression and very low image resolution. Garber 2 Theoretical Background What is a hologram? The Merriam-Webster dictionary defines a hologram as, “a three-dimensional image reproduced from a pattern of interference produced by a split coherent beam of radiation (as a laser).” Holograms can produce a three-dimensional image, but it is more helpful for our purposes to think of a hologram as a photograph that can be refocused at any depth. So while a photograph taken of two people standing far apart would have one in focus and one blurry, a hologram taken of the same scene could be reconstructed to bring either person into focus. -
Smithsonian Institution Archives (SIA)
SMITHSONIAN OPPORTUNITIES FOR RESEARCH AND STUDY 2020 Office of Fellowships and Internships Smithsonian Institution Washington, DC The Smithsonian Opportunities for Research and Study Guide Can be Found Online at http://www.smithsonianofi.com/sors-introduction/ Version 2.0 (Updated January 2020) Copyright © 2020 by Smithsonian Institution Table of Contents Table of Contents .................................................................................................................................................................................................. 1 How to Use This Book .......................................................................................................................................................................................... 1 Anacostia Community Museum (ACM) ........................................................................................................................................................ 2 Archives of American Art (AAA) ....................................................................................................................................................................... 4 Asian Pacific American Center (APAC) .......................................................................................................................................................... 6 Center for Folklife and Cultural Heritage (CFCH) ...................................................................................................................................... 7 Cooper-Hewitt, -
Session Outline: History of the Daguerreotype
Fundamentals of the Conservation of Photographs SESSION: History of the Daguerreotype INSTRUCTOR: Grant B. Romer SESSION OUTLINE ABSTRACT The daguerreotype process evolved out of the collaboration of Louis Jacques Mande Daguerre (1787- 1851) and Nicephore Niepce, which began in 1827. During their experiments to invent a commercially viable system of photography a number of photographic processes were evolved which contributed elements that led to the daguerreotype. Following Niepce’s death in 1833, Daguerre continued experimentation and discovered in 1835 the basic principle of the process. Later, investigation of the process by prominent scientists led to important understandings and improvements. By 1843 the process had reached technical perfection and remained the commercially dominant system of photography in the world until the mid-1850’s. The image quality of the fine daguerreotype set the photographic standard and the photographic industry was established around it. The standardized daguerreotype process after 1843 entailed seven essential steps: plate polishing, sensitization, camera exposure, development, fixation, gilding, and drying. The daguerreotype process is explored more fully in the Technical Note: Daguerreotype. The daguerreotype image is seen as a positive to full effect through a combination of the reflection the plate surface and the scattering of light by the imaging particles. Housings exist in great variety of style, usually following the fashion of miniature portrait presentation. The daguerreotype plate is extremely vulnerable to mechanical damage and the deteriorating influences of atmospheric pollutants. Hence, highly colored and obscuring corrosion films are commonly found on daguerreotypes. Many daguerreotypes have been damaged or destroyed by uninformed attempts to wipe these films away. -
Digital Camera Functions All Photography Is Based on the Same
Digital Camera Functions All photography is based on the same optical principle of viewing objects with our eyes. In both cases, light is reflected off of an object and passes through a lens, which focuses the light rays, onto the light sensitive retina, in the case of eyesight, or onto film or an image sensor the case of traditional or digital photography. The shutter is a curtain that is placed between the lens and the camera that briefly opens to let light hit the film in conventional photography or the image sensor in digital photography. The shutter speed refers to how long the curtain stays open to let light in. The higher the number, the shorter the time, and consequently, the less light gets in. So, a shutter speed of 1/60th of a second lets in half the amount of light than a speed of 1/30th of a second. For most normal pictures, shutter speeds range from 1/30th of a second to 1/100th of a second. A faster shutter speed, such as 1/500th of a second or 1/1000th of a second, would be used to take a picture of a fast moving object such as a race car; while a slow shutter speed would be used to take pictures in low-light situations, such as when taking pictures of the moon at night. Remember that the longer the shutter stays open, the more chance the image will be blurred because a person cannot usually hold a camera still for very long. A tripod or other support mechanism should almost always be used to stabilize the camera when slow shutter speeds are used. -
Sample Manuscript Showing Specifications and Style
Information capacity: a measure of potential image quality of a digital camera Frédéric Cao 1, Frédéric Guichard, Hervé Hornung DxO Labs, 3 rue Nationale, 92100 Boulogne Billancourt, FRANCE ABSTRACT The aim of the paper is to define an objective measurement for evaluating the performance of a digital camera. The challenge is to mix different flaws involving geometry (as distortion or lateral chromatic aberrations), light (as luminance and color shading), or statistical phenomena (as noise). We introduce the concept of information capacity that accounts for all the main defects than can be observed in digital images, and that can be due either to the optics or to the sensor. The information capacity describes the potential of the camera to produce good images. In particular, digital processing can correct some flaws (like distortion). Our definition of information takes possible correction into account and the fact that processing can neither retrieve lost information nor create some. This paper extends some of our previous work where the information capacity was only defined for RAW sensors. The concept is extended for cameras with optical defects as distortion, lateral and longitudinal chromatic aberration or lens shading. Keywords: digital photography, image quality evaluation, optical aberration, information capacity, camera performance database 1. INTRODUCTION The evaluation of a digital camera is a key factor for customers, whether they are vendors or final customers. It relies on many different factors as the presence or not of some functionalities, ergonomic, price, or image quality. Each separate criterion is itself quite complex to evaluate, and depends on many different factors. The case of image quality is a good illustration of this topic. -
Seeing Like Your Camera ○ My List of Specific Videos I Recommend for Homework I.E
Accessing Lynda.com ● Free to Mason community ● Set your browser to lynda.gmu.edu ○ Log-in using your Mason ID and Password ● Playlists Seeing Like Your Camera ○ My list of specific videos I recommend for homework i.e. pre- and post-session viewing.. PART 2 - FALL 2016 ○ Clicking on the name of the video segment will bring you immediately to Lynda.com (or the login window) Stan Schretter ○ I recommend that you eventually watch the entire video class, since we will only use small segments of each video class [email protected] 1 2 Ways To Take This Course What Creates a Photograph ● Each class will cover on one or two topics in detail ● Light ○ Lynda.com videos cover a lot more material ○ I will email the video playlist and the my charts before each class ● Camera ● My Scale of Value ○ Maximum Benefit: Review Videos Before Class & Attend Lectures ● Composition & Practice after Each Class ○ Less Benefit: Do not look at the Videos; Attend Lectures and ● Camera Setup Practice after Each Class ○ Some Benefit: Look at Videos; Don’t attend Lectures ● Post Processing 3 4 This Course - “The Shot” This Course - “The Shot” ● Camera Setup ○ Exposure ● Light ■ “Proper” Light on the Sensor ■ Depth of Field ■ Stop or Show the Action ● Camera ○ Focus ○ Getting the Color Right ● Composition ■ White Balance ● Composition ● Camera Setup ○ Key Photographic Element(s) ○ Moving The Eye Through The Frame ■ Negative Space ● Post Processing ○ Perspective ○ Story 5 6 Outline of This Class Class Topics PART 1 - Summer 2016 PART 2 - Fall 2016 ● Topic 1 ○ Review of Part 1 ● Increasing Your Vision ● Brief Review of Part 1 ○ Shutter Speed, Aperture, ISO ○ Shutter Speed ● Seeing The Light ○ Composition ○ Aperture ○ Color, dynamic range, ● Topic 2 ○ ISO and White Balance histograms, backlighting, etc. -
Explicit Image Detection Using Ycbcr Space Color Model As Skin Detection
Applications of Mathematics and Computer Engineering Explicit Image Detection using YCbCr Space Color Model as Skin Detection JORGE ALBERTO MARCIAL BASILIO1, GUALBERTO AGUILAR TORRES2, GABRIEL SÁNCHEZ PÉREZ3, L. KARINA TOSCANO MEDINA4, HÉCTOR M. PÉREZ MEANA5 Sección de Estudios de Posgrados e Investigación 1Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Culhuacan Santa Ana #1000 Col. San Francisco Culhuacan, Del. Coyoacán C.P. 04430 MEXICO CITY [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: - In this paper a novel way to detect explicit content images is proposed using the YCbCr space color, moreover the color pixels percentage that are within the image is calculated which are susceptible to be a tone skin. The main goal to use this method is to apply to forensic analysis or pornographic images detection on storage devices such as hard disk, USB memories, etc. The results obtained using the proposed method are compared with Paraben’s Porn Detection Stick software which is one of the most commercial devices used for detecting pornographic images. The proposed algorithm achieved identify up to 88.8% of the explicit content images, and 5% of false positives, the Paraben’s Porn Detection Stick software achieved 89.7% of effectiveness for the same set of images but with a 6.8% of false positives. In both cases were used a set of 1000 images, 550 natural images, and 450 with highly explicit content. Finally the proposed algorithm effectiveness shows that the methodology applied to explicit image detection was successfully proved vs Paraben’s Porn Detection Stick software. -
Photography As Metaphor and Material Object in Victorian Culture
"MIRROR WITH A MEMORY": PHOTOGRAPHY AS METAPHOR AND MATERIAL OBJECT IN VICTORIAN CULTURE Sarah Worman A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF ARTS May 2017 Committee: Piya Pal-Lapinski, Advisor Kim Coates © 2017 Sarah Worman All Rights Reserved iii ABSTRACT Piya Pal-Lapinski, Advisor In the Victorian period, photography was associated with the ghosts of history, con artists in the streets of London, and cultural anxieties about the future of Victorian society. The Victorian practice of photographing ghosts, or spirit photography, showed how Victorians viewed the past, present, and future. By examining the cultural artifact of Georgiana Houghton’s Chronicles of the Photographs of Spiritual Beings (1882), it becomes clear how photography affected Victorian literature as well as Victorian culture. In the short stories, “Oke of Okehurst” (1886) and “A Wicked Voice” (1887), Vernon Lee compared Victorian produced art to art from history. For Lee, the fast paced and highly commercialized art, which was influenced by photography, was not as powerful as art with historical context. An earlier work, Thomas Hardy’s A Laodicean: A Story of To-Day (1881), also showed the connections between photography, history, and uncertainty. The characters try to use photography to try and preserve a crumbling medieval castle, but their attempts end in failure. While technology like telegraphs gives Paula a sense of power, the novel leaves her wishing she had a more stable connection to the past and the future. These examples of Victorian literature show that photography affected Victorian culture at a deeper level than previously thought. -
University of Birmingham Oscar Wilde, Photography, and Cultures Of
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Birmingham Research Portal University of Birmingham Oscar Wilde, photography, and cultures of spiritualism Dobson, Eleanor License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Dobson, E 2020, 'Oscar Wilde, photography, and cultures of spiritualism: ''The most magical of mirrors''', English Literature in Transition 1880-1920, vol. 63, no. 2, pp. 139-161. Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility 12/02/2019 Published in English Literature in Transition 1880-1920 http://www.eltpress.org/index.html General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. -
Passport Photograph Instructions by the Police
Passport photograph instructions 1 (7) Passport photograph instructions by the police These instructions describe the technical and quality requirements on passport photographs. The same instructions apply to all facial photographs used on the passports, identity cards and permits granted by the police. The instructions are based on EU legislation and international treaties. The photographer usually sends the passport photograph directly to the police electronically, and it is linked to the application with a photograph retrieval code assigned to the photograph. You can also use a paper photograph, if you submit your application at a police service point. Contents • Photograph format • Technical requirements on the photograph • Dimensions and positioning • Posture • Lighting • Expressions, glasses, head-wear and make-up • Background Photograph format • The photograph can be a black-and-white or a colour photograph. • The dimensions of photographs submitted electronically must be exactly 500 x 653 pixels. Deviations as small as one pixel are not accepted. • Electronically submitted photographs must be saved in the JPEG format (not JPEG2000). The file extension can be either .jpg or .jpeg. • The maximum size of an electronically submitted photograph is 250 kilobytes. 1. Correct 2. Correct 2 (7) Technical requirements on the photograph • The photograph must be no more than six months old. • The photograph must not be manipulated in any way that would change even the small- est details in the subject’s appearance or in a way that could raise suspicions about the photograph's authenticity. Use of digital make-up is not allowed. • The photograph must be sharp and in focus over the entire face. -
Computational RYB Color Model and Its Applications
IIEEJ Transactions on Image Electronics and Visual Computing Vol.5 No.2 (2017) -- Special Issue on Application-Based Image Processing Technologies -- Computational RYB Color Model and its Applications Junichi SUGITA† (Member), Tokiichiro TAKAHASHI†† (Member) †Tokyo Healthcare University, ††Tokyo Denki University/UEI Research <Summary> The red-yellow-blue (RYB) color model is a subtractive model based on pigment color mixing and is widely used in art education. In the RYB color model, red, yellow, and blue are defined as the primary colors. In this study, we apply this model to computers by formulating a conversion between the red-green-blue (RGB) and RYB color spaces. In addition, we present a class of compositing methods in the RYB color space. Moreover, we prescribe the appropriate uses of these compo- siting methods in different situations. By using RYB color compositing, paint-like compositing can be easily achieved. We also verified the effectiveness of our proposed method by using several experiments and demonstrated its application on the basis of RYB color compositing. Keywords: RYB, RGB, CMY(K), color model, color space, color compositing man perception system and computer displays, most com- 1. Introduction puter applications use the red-green-blue (RGB) color mod- Most people have had the experience of creating an arbi- el3); however, this model is not comprehensible for many trary color by mixing different color pigments on a palette or people who not trained in the RGB color model because of a canvas. The red-yellow-blue (RYB) color model proposed its use of additive color mixing. As shown in Fig. -
Tnemec Colorbook
COLORBOOK WHITES 00WH Tnemec White � 06WH Albatross � 07WH Winter Mist � 08WH Acropolis � LRV 84% LRV 82% LRV 80% LRV 72% 01WH Ash White � 02WH Iceberg � 03WH Daisy � 04WH Silver Pearl � LRV 84% LRV 84% LRV 75% LRV 76% 12WH Milkweed � 13WH French Vanilla � 14WH Veiled � 15WH Aspen � LRV 78% LRV 73% LRV 78% LRV 72% 15BR Pale � 22BR Nova � 57BR Cloud � 79BR Colliseum � LRV 83% LRV 81% LRV 75% LRV 67% NOTE: Colors represented are digital reproductions of actual standards and will vary in appearance due to differences in monitor and video card output. These digital representations should not be used to finalize color selection(s). Please contact your local Tnemec Coatings Consultant for color-accurate samples or for assistance with suitable primer and finish coat selections and color matching. LRV = Light Reflectance Value � Standard color and gloss warranty is available in this color for Fluoronar and HydroFlon products. Other colors may be included. Contact your Tnemec representative for more information. GRAYS 30GR Comet � 24GR Lightpole � 43GR Constellation � 37GR Gradation � LRV 75% LRV 62% LRV 71% LRV 65% 25GR Grey Day � 31GR Slate Gray � 57GR Aluminum � 38GR Dove Gray � LRV 46% LRV 61% LRV 46% LRV 58% 33GR Gray – ANSI No. 61 � 32GR Light Gray – ANSI No. 70 � 46GR Sinker � 39GR Pigeon � LRV 33% LRV 44% LRV 26% LRV 42% 35GR Black � 34GR Deep Space � 48GR Moon Shadow � 41GR Hammerhead � LRV 4% LRV 12% LRV 10% LRV 17% NOTE: Colors represented are digital reproductions of actual standards and will vary in appearance due to differences in monitor and video card output.