Episodes in History of the Hemiptera

Total Page:16

File Type:pdf, Size:1020Kb

Episodes in History of the Hemiptera • Coleoptera – ca. 400.000 species, 204 families; 38% • Lepidoptera – ca. 180.000 species, 126 families; 17% • Hymenoptera – ca. 155.000 species, 132 families; 15% Diversity of insects • Diptera – ca. 125.000 species, 241 families; 12% • Hemiptera – ca. 82.000 species, 300 families; 8% • other insects – ca. 100.000 species; 10% INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2016/04 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age Erathem / Era System / Period GSSP GSSP age (Ma) GSSP GSSP Eonothem /Eon Erathem /Era System /Period Eonothem /Eon Erathem /Era System /Period age (Ma) Eonothem /Eon Erathem /Era System /Period age (Ma) / Eon GSSA age (Ma) present ~ 145.0 358.9 ± 0.4 541.0 ±1.0 y Holocene r Ediacaran 0.0117 Tithonian a Upper 152.1 ±0.9 Famennian ~ 635 n Neo- Cryogenian r 0.126 Upper Kimmeridgian Middle Upper proterozoic ~ 720 e 157.3 ±1.0 t Pleistocene 0.781 372.2 ±1.6 a Calabrian Oxfordian Tonian u 1.80 163.5 ±1.0 Frasnian Callovian 1000 n c 166.1 ±1.2 Q Gelasian 2.58 i 382.7 ±1.6 Stenian Bathonian a s Piacenzian Middle 168.3 ±1.3 i s Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 n Meso- a 387.7 ±0.8 o Middle Ectasian Zanclean r Aalenian c v proterozoic 5.333 i u 174.1 ±1.0 Eifelian 1400 e o Messinian J 393.3 ±1.2 e Toarcian z 7.246 D Calymmian n 182.7 ±0.7 o r 1600 e Tortonian Emsian 11.63 c i e g Pliensbachian t Statherian o Lower o Serravallian 407.6 ±2.6 190.8 ±1.0 Lower o 13.82 z 1800 r e Miocene Pragian 410.8 ±2.8 n o c i Langhian Sinemurian P N a Orosirian 15.97 s i o 199.3 ±0.3 Lochkovian r Paleo- e z Burdigalian Hettangian 2050 201.3 ±0.2 419.2 ±3.2 b proterozoic o 20.44 M Rhyacian m n Aquitanian Rhaetian Pridoli a e 23.03 ~ 208.5 423.0 ±2.3 2300 Ludfordian c C 425.6 ±0.9 Chattian Ludlow e Siderian n 28.1 Gorstian 427.4 ±0.5 r Oligocene Upper Norian a 2500 P i c Homerian r Rupelian i Wenlock 430.5 ±0.7 Neo- u s ~ 227 33.9 l Sheinwoodian 433.4 ±0.8 archean i s a 2800 Priabonian Carnian S e i Telychian 37.8 r ~ 237 n n Llandovery 438.5 ±1.1 Meso- Bartonian T a e 41.2 Ladinian Aeronian 440.8 ±1.2 archean c c c e g ~ 242 i Eocene i Middle i Rhuddanian c h o Lutetian 3200 o o o 443.8 ±1.5 Anisian i c e z z z 247.2 o Hirnantian l 47.8 445.2 ±1.4 r Paleo- o o o z a Olenekian 251.2 A r r Lower r Ypresian o Katian archean P e e Induan 252.17 ±0.06 e Upper 56.0 e l n n n 3600 Changhsingian 254.14 ±0.07 453.0 ±0.7 n a a Thanetian a a 59.2 Lopingian Sandbian Eo- a h h h P Wuchiapingian i Paleocene Selandian 458.4 ±0.9 259.8 ±0.4 c archean P P P 61.6 i Capitanian v Darriwilian 4000 Danian 265.1 ±0.4 Middle 66.0 o 467.3 ±1.1 Guadalupian Wordian d n 268.8 ±0.5 r Dapingian 470.0 ±1.4 Hadean Maastrichtian a i Roadian O ~ 4600 72.1 ±0.2 272.3 ±0.5 Floian m Campanian r Lower 477.7 ±1.4 Units of all ranks are in the process of being defined by Global e Kungurian 283.5 ±0.6 Tremadocian Boundary Stratotype Section and Points (GSSP) for their lower 83.6 ±0.2 P boundaries, including those of the Archean and Proterozoic, long 485.4 ±1.9 Upper Santonian 86.3 ±0.5 Artinskian defined by Global Standard Stratigraphic Ages (GSSA). Charts and Cisuralian 290.1 ±0.26 Stage 10 detailed information on ratified GSSPs are available at the website Coniacian ~ 489.5 c http://www.stratigraphy.org. The URL to this chart is found below. 89.8 ±0.3 i Sakmarian 295.0 ±0.18 Furongian Jiangshanian Turonian o s ~ 494 z Asselian Paibian Numerical ages are subject to revision and do not define uni ts in c 93.9 298.9 ±0.15 u o i ~ 497 n the Phanerozoic and the Ediacaran; only GSSPs do. For boundaries o e o a Cenomanian l Gzhelian Guzhangian i in the Phanerozoic without ratified GSSPs or without constrained e Upper 303.7 ±0.1 z n 100.5 a ~ 500.5 c numerical ages, an approximate numerical age (~) is provided. a o Kasimovian 307.0 ±0.1 P n v a Series 3 Drumian s l t a Albian y ~ 504.5 s e Middle Moscovian i e s Numerical ages for all systems except Lower Pleistocene, r r u Stage 5 ~ 113.0 n 315.2 ±0.2 M Permian,Triassic, Cretaceous and Precambrian are taken from b n o C ~ 509 r e ‘A Geologic Time Scale 2012’ by Gradstein et al. (2012); Aptian Lower Bashkirian m Stage 4 e P those for the Lower Pleistocene, Permian, Triassic and Cretaceous f 323.2 ±0.4 a ~ 125.0 i Series 2 ~ 514 were provided by the relevant ICS subcommissions. n C n Upper Serpukhovian Stage 3 o Barremian a i 330.9 ±0.2 b Coloring follows the Commission for the Lower ~ 129.4 p ~ 521 r p Geological Map of the World (http://www.ccgm.org) i Hauterivian a Stage 2 ~ 132.9 s Middle Visean s C i ~ 529 Chart drafted by K.M. Cohen, S.C. Finney, P.L. Gibbard s 346.7 ±0.4 Valanginian Terreneuvian (c) International Commission on Stratigraphy, April 2016 s ~ 139.8 i Fortunian Berriasian M Lower Tournaisian To cite: Cohen, K.M., Finney, S.C., Gibbard, P.L. & Fan, J.-X. (2013; updated) ~ 145.0 358.9 ±0.4 541.0 ±1.0 The ICS International Chronostratigraphic Chart. Episodes 36: 199-204. URL: http://www.stratigraphy.org/ICSchart/ChronostratChart2016-04.pdf Delitzschala bitterfeldensis Strudiella devonica Garrouste et al., 2012 Brauckmann et Schneider, 1996 Fammenian, Devonian; Strud, Namur, Belgium Arnsbergian (Namurian A), Late Mississippian, Germany System and classification: Ordo: Hemiptera Linnaeus, 1758 Subordines: †Paleorrhyncha Carpenter, 1931 Sternorrhyncha Duméril, 1806 Fulgoromorpha Evans, 1946 Cicadomorpha Evans, 1946 Coleorrhyncha Myers et China, 1929 Heteroptera Latreille, 1810 300 families known (recently 178 present), the highest number among the insects! Hemiptera (Thripida included) – paraphyletic unit Hypothesis of head and mouthpart morphologies in Acercaria (Paraneoptera) (Huang et al. 2016) (a) Psocodean groundpattern (also present in Hypoperlidae). (b) Permopsocidan groundpattern. (c) Thripidan groundpattern, reconstructed after the head of an adult Tubulifera, and Moundthrips. (d) Hemipteran groundpattern. Mandible: blue; maxilla: brown; anterior part of gena (mandibular lobe): yellow; posterior part of gena (maxillary lobe?): green. Ant.cl. anteclypeus; Cl.F. clypeo-frons; F. frons; Post.cl. postclypeus. S y n a p o m o r p h i e s o f t h e H e m i p t e r a : mouthparts developed into suctorial beak, with two pairs of mandibular and maxillary stylets lying in a long, grooved labium; maxillary and labial palps lost; ocelli close to compound eyes, median ocellus near postclypeus; veins ScP+R+M+CuA fused at base as common stem; transverse veinlet cua-cup developed in various degree vein ScP fused with RA, vein MA completely fused with vein RP; tarsi 3-segmented; cerci reduced; primarily, nymphs oval, flattened dorsoventrally, with short legs; chitin-protein peritrophic membrane lost replaced by lipoprotein perimicrovillar membrane Possible synapomorphies (modern forms): hind legs jumping, hind tibia with apical rows formed by teeth provided with setae; first two tarsomeres enlarged; HYPOPERLIDA other Psocoptera Psocodea Liposcelidae Phthiraptera AMBLYCERA ISCHNOCERA RHYNCOPTHIRINA ANOPLURA HOLOMETABOLA PERMOPSOCIDA THRIPIDA PALEORRHYNCHA Hemiptera STERNORRHYNCHA FULGOROMORPHA CICADOMORPHA COLEORRHYNCHA HETEROPTERA Generally speaking, evolutionary processes may be dominated by biotic factors, as in the Red Queen model, or abiotic factors, as in the Court Jester model, or a mixture of both. These two models appear to operate predominantly over different geographic and temporal scales: competition, predation, parasitism and other biotic factors shape ecosystems locally and over short time spans, but extrinsic factors such as climate and tectonic events shape larger-scale patterns regionally and globally, and through thousands and millions of years. The current studies suggest that Hemiptera evolution is driven largely by abiotic factors such as climate, landscape, but biotic factors as food supply or new niches occupation are important factors for lineages formation. Comparative phylogenetic approach offer new insights into Hemiptera clade dynamics. Benton 2009 “It takes all the running you can do, to keep in the same place.” The Red Queen, Through the Looking-Glass, Lewis Carroll. “I believe whatever doesn’t kill you, simply makes you…. stranger.” Joker, The Dark Knight, Christopher Nolan. The Red Queen hypothesis was originally used to describe competition between species being the driving factor behind the large number of species we see today. Another hypothesis, known as the Court Jester hypothesis suggests that changes in species may result not due to competition between species, but due to random geological or climate events that act as the driving force behind evolution, and the formation of new species. … another player in the game of the Hemiptera evolution is involved – The Red King.
Recommended publications
  • Molecular Evolutionary Trends and Feeding Ecology Diversification In
    bioRxiv preprint doi: https://doi.org/10.1101/201731; this version posted October 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Molecular evolutionary trends and 2 feeding ecology diversification in the Hemiptera, 3 anchored by the milkweed bug genome 4 5 6 Kristen A. Panfilio1, 2*, Iris M. Vargas Jentzsch1, Joshua B. Benoit3, Deniz 7 Erezyilmaz4, Yuichiro Suzuki5, Stefano Colella6, 7, Hugh M. Robertson8, Monica F. 8 Poelchau9, Robert M. Waterhouse10, 11, Panagiotis Ioannidis10, Matthew T. 9 Weirauch12, Daniel S.T. Hughes13, Shwetha C. Murali13, 14, 15, John H. Werren16, Chris 10 G.C. Jacobs17, 18, Elizabeth J. Duncan19, 20, David Armisén21, Barbara M.I. Vreede22, 11 Patrice Baa-Puyoulet6, Chloé S. Berger21, Chun-che Chang23, Hsu Chao13, Mei-Ju M. 12 Chen9, Yen-Ta Chen1, Christopher P. Childers9, Ariel D. Chipman22, Andrew G. 13 Cridge19, Antonin J.J. Crumière21, Peter K. Dearden19, Elise M. Didion3, Huyen 14 Dinh13, HarshaVardhan Doddapaneni13, Amanda Dolan16, 24, Shannon Dugan13, 15 Cassandra G. Extavour25, 26, Gérard Febvay6, Markus Friedrich27, Neta Ginzburg22, Yi 16 Han13, Peter Heger28, Thorsten Horn1, Yi-min Hsiao23, Emily C. Jennings3, J. Spencer 17 Johnston29, Tamsin E. Jones25, Jeffery W. Jones27, Abderrahman Khila21, Stefan 18 Koelzer1, Viera Kovacova30, Megan Leask19, Sandra L. Lee13, Chien-Yueh Lee9, 19 Mackenzie R. Lovegrove19, Hsiao-ling Lu23, Yong Lu31, Patricia J. Moore32, Monica 20 C. Munoz-Torres33, Donna M. Muzny13, Subba R. Palli34, Nicolas Parisot6, Leslie 21 Pick31, Megan Porter35, Jiaxin Qu13, Peter N. Refki21, 36, Rose Richter16, 37, Rolando 22 Rivera Pomar38, Andrew J.
    [Show full text]
  • Conceptual Issues in Phylogeny, Taxonomy, and Nomenclature
    Contributions to Zoology, 66 (1) 3-41 (1996) SPB Academic Publishing bv, Amsterdam Conceptual issues in phylogeny, taxonomy, and nomenclature Alexandr P. Rasnitsyn Paleontological Institute, Russian Academy ofSciences, Profsoyuznaya Street 123, J17647 Moscow, Russia Keywords: Phylogeny, taxonomy, phenetics, cladistics, phylistics, principles of nomenclature, type concept, paleoentomology, Xyelidae (Vespida) Abstract On compare les trois approches taxonomiques principales développées jusqu’à présent, à savoir la phénétique, la cladis- tique et la phylistique (= systématique évolutionnaire). Ce Phylogenetic hypotheses are designed and tested (usually in dernier terme s’applique à une approche qui essaie de manière implicit form) on the basis ofa set ofpresumptions, that is, of à les traits fondamentaux de la taxonomic statements explicite représenter describing a certain order of things in nature. These traditionnelle en de leur et particulier son usage preuves ayant statements are to be accepted as such, no matter whatever source en même temps dans la similitude et dans les relations de evidence for them exists, but only in the absence ofreasonably parenté des taxons en question. L’approche phylistique pré- sound evidence pleading against them. A set ofthe most current sente certains avantages dans la recherche de réponses aux phylogenetic presumptions is discussed, and a factual example problèmes fondamentaux de la taxonomie. ofa practical realization of the approach is presented. L’auteur considère la nomenclature A is made of the three
    [Show full text]
  • THE ORIGIN and EVOLUTION of HYMENOPTEROUS INSECTS [P
    THE ORIGIN AND EVOLUTION OF HYMENOPTEROUS INSECTS [p. 24] Chapter 3 EVOLUTION OF THE INFRACLASS SCARABAEONES A. P. Rasnitzyn* Dragonflies [order Odonata] and mayflies [order Ephemeroptera], which have retained a primitive thorax structure (absence of a cryptosternum) but are specialized in other respects, occupy the most isolated position in the infraclass. They are similar to each other in a number of characters, but the nature of the latter does not allow drawing a conclusion about any close relationship of the two orders. Indeed, the primitiveness of the structure of the thorax common to both of them, like any symplesiomorphy, is not evidence of a common origin. The adaptations of the larvae of mayflies and dragonflies to an aquatic way of life are different, and they show, rather, an independent transition to development in water. The loss of the ability to fold the wings as well is connected with different processes in them: in mayflies, with the ephemerality of the imago, the function of which is essentially limited to nuptial flight and oviposition; and in dragonflies, with the metamorphosis of the adult insect to an active aerial predator. It is highly probable that mayflies and dragonflies are independent evolutionary branches. The belonging of dragonflies and mayflies to a common trunk of Scarabaeones, that is, the isolation of them from Protoptera as part of a single trunk with the remaining members of the infraclass (except Protoptera), is confirmed by the metamorphosis of the style of the ninth segment in mayfly males into part of the copulatory organ [endophallus], and in dragonfly females into a sheath of the ovipositor.
    [Show full text]
  • New Fossil Insect Order Permopsocida Elucidates Major Radiation And
    www.nature.com/scientificreports OPEN New fossil insect order Permopsocida elucidates major radiation and evolution of suction Received: 21 July 2015 Accepted: 26 February 2016 feeding in hemimetabolous insects Published: 10 March 2016 (Hexapoda: Acercaria) Di-Ying Huang1,*, Günter Bechly2,*, Patricia Nel3,4,*, Michael S. Engel5,6, Jakub Prokop7, Dany Azar8, Chen-Yang Cai1, Thomas van de Kamp9,10, Arnold H. Staniczek2, Romain Garrouste3, Lars Krogmann2, Tomy dos Santos Rolo9, Tilo Baumbach9,10, Rainer Ohlhoff11, Alexey S. Shmakov12, Thierry Bourgoin3 & André Nel3 With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These “missing links” fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors.
    [Show full text]
  • Paleoentomofauna Del Pérmico Temprano En Uruguay
    UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE CIENCIAS - PEDECIBA ÁREA BIOLOGÍA- SUBÁREA ZOOLOGÍA TESIS DE MAESTRÍA Paleoentomofauna del Pérmico temprano en Uruguay Viviana Calisto Directora de tesis: Dra. Graciela Piñeiro Co-director de tesis: Dr. Enrique Morelli TRIBUNAL Presidente: Dr. Claudio Gaucher Vocales: Dra. Ana Verdi y Dra. Patricia González Vainer Diciembre, 2018 1 ÍNDICE RESUMEN ………………………………………………………..………………………….……………………………..…… 4 ABSTRACT……………………………………………………………………………….…………………………….…………. 5 ÍNDICE DE FIGURAS…………………………………………….……….…………………………………..…………… 7 CAPÍTULO 1………………………………………..………………………………..………………………………..….…. 11 INTRODUCCIÓN……………………………………………………………….……………….………………….……..…. 11 a. Los primeros insectos fósiles……………………………….………………..………………..…………….…..11 b. Preservación de los insectos fósiles………………………….…………………..……….……………..…..12 c. Caracterización de la Formación Mangrullo ……………….………………………...………………..…14 d. Registros de insectos fósiles en Uruguay …………………….……………….………………..…….…...16 HIPÓTESIS…………………………………………….……………………………………………………………………….….18 OBJETIVO GENERAL………………………………….…………..…………………..…………………………………..…18 OBJETIVOS ESPECÍFICOS…….…………………………………..………………..………………………….…….……. 18 MATERIALES Y METODOLOGÍAS……………..………….……………………………………………………………. 19 a. Materiales……………………………………………………………………………..…………………………..……... 19 b. Área de estudio y colecta……………………………………………………..…………………..………….…... 19 c. Fotografías y diagramación………………………………………………..………………….....….…………… 22 CAPÍTULO 2 - BLATTARIA ………………………………….…………..…………..……………………….…..… 23 Antecedentes de Blattaria………………………………….………………….…………….………………………..…
    [Show full text]
  • Evolution of the Insects David Grimaldi and Michael S
    Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Index More information INDEX 12S rDNA, 32, 228, 269 Aenetus, 557 91; general, 57; inclusions, 57; menageries 16S rDNA, 32, 60, 237, 249, 269 Aenigmatiinae, 536 in, 56; Mexican, 55; parasitism in, 57; 18S rDNA, 32, 60, 61, 158, 228, 274, 275, 285, Aenne, 489 preservation in, 58; resinite, 55; sub-fossil 304, 307, 335, 360, 366, 369, 395, 399, 402, Aeolothripidae, 284, 285, 286 resin, 57; symbioses in, 303; taphonomy, 468, 475 Aeshnoidea, 187 57 28S rDNA, 32, 158, 278, 402, 468, 475, 522, 526 African rock crawlers (see Ambermantis wozniaki, 259 Mantophasmatodea) Amblycera, 274, 278 A Afroclinocera, 630 Amblyoponini, 446, 490 aardvark, 638 Agaonidae, 573, 616: fossil, 423 Amblypygida, 99, 104, 105: in amber, 104 abdomen: function, 131; structure, 131–136 Agaoninae, 423 Amborella trichopoda, 613, 620 Abies, 410 Agassiz, Alexander, 26 Ameghinoia, 450, 632 Abrocomophagidae, 274 Agathiphaga, 560 Ameletopsidae, 628 Acacia, 283 Agathiphagidae, 561, 562, 567, 630 American Museum of Natural History, 26, 87, acalyptrate Diptera: ecological diversity, 540; Agathis, 76 91 taxonomy, 540 Agelaia, 439 Amesiginae, 630 Acanthocnemidae, 391 ages, using fossils, 37–39; using DNA, 38–40 ametaboly, 331 Acari, 99, 105–107: diversity, 101, fossils, 53, Ageniellini, 435 amino acids: racemization, 61 105–107; in-Cretaceous amber, 105, 106 Aglaspidida, 99 ammonites, 63, 642 Aceraceae, 413 Aglia, 582 Amorphoscelidae, 254, 257 Acerentomoidea, 113 Agrias, 600 Amphientomidae,
    [Show full text]
  • Taxonomic and Molecular Studies in Cleridae and Hemiptera
    University of Kentucky UKnowledge Theses and Dissertations--Entomology Entomology 2015 TAXONOMIC AND MOLECULAR STUDIES IN CLERIDAE AND HEMIPTERA John Moeller Leavengood Jr. University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Leavengood, John Moeller Jr., "TAXONOMIC AND MOLECULAR STUDIES IN CLERIDAE AND HEMIPTERA" (2015). Theses and Dissertations--Entomology. 18. https://uknowledge.uky.edu/entomology_etds/18 This Doctoral Dissertation is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Entomology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • Diversification of Insects Since the Devonian
    www.nature.com/scientificreports OPEN Diversifcation of insects since the Devonian: a new approach based on morphological disparity of Received: 18 September 2017 Accepted: 12 February 2018 mouthparts Published: xx xx xxxx Patricia Nel1,2, Sylvain Bertrand2 & André Nel1 The majority of the analyses of the evolutionary history of the megadiverse class Insecta are based on the documented taxonomic palaeobiodiversity. A diferent approach, poorly investigated, is to focus on morphological disparity, linked to changes in the organisms’ functioning. Here we establish a hierarchy of the great geological epochs based on a new method using Wagner parsimony and a ‘presence/ absence of a morphological type of mouthpart of Hexapoda’ dataset. We showed the absence of major rupture in the evolution of the mouthparts, but six epochs during which numerous innovations and few extinctions happened, i.e., Late Carboniferous, Middle and Late Triassic, ‘Callovian-Oxfordian’, ‘Early’ Cretaceous, and ‘Albian-Cenomanian’. The three crises Permian-Triassic, Triassic-Jurassic, and Cretaceous-Cenozoic had no strong, visible impact on mouthparts types. We particularly emphasize the origination of mouthparts linked to nectarivory during the Cretaceous Terrestrial Revolution. We also underline the origination of mouthparts linked to phytophagy during the Middle and the Late Triassic, correlated to the diversifcation of the gymnosperms, especially in relation to the complex ‘fowers’ producing nectar of the Bennettitales and Gnetales. During their ca. 410 Ma history, hexapods have evolved morphologically to adapt in a continuously changing world, thereby resulting in a unique mega-biodiversity1. Age-old questions2–4 about insects’ macroevolution now- adays receive renewed interest thanks to the remarkable recent improvements in data and methods that allow incorporating full data, phylogenomic trees besides fossil record5–9.
    [Show full text]
  • A First Survey of Cretaceous Thrips from Burmese Amber Including the Establishment of a New Family of Tubulifera (Insecta: Thysanoptera)
    Zootaxa 4486 (4): 548–558 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4486.4.8 http://zoobank.org/urn:lsid:zoobank.org:pub:DE414CAD-F68C-4967-999C-2EE7688ACEDB A first survey of Cretaceous thrips from Burmese amber including the establishment of a new family of Tubulifera (Insecta: Thysanoptera) MANFRED R. ULITZKA1 1Thrips-iD, Straßburger Straße 37A, 77652 Offenburg, Germany. E-mail: [email protected] Abstract Burmite, a Cretaceous amber coming from the north of Myanmar, is known to preserve a great diversity of fossil arthro- pods, particularly insects. Many inclusions of different taxa in several insect orders have been well analysed, but this is the first study focussed on the Thysanoptera found in Burmite. In the sub-order Terebrantia, family Merothripidae, Myan- marothrips pankowskiorum gen. n., sp. n. is recognized in various amber samples from a total of 34 females but only one male. In the sub-order Tubulifera, Rohrthrips burmiticus sp. n. is based on a single female with a tubular tenth abdominal segment. This is an exceptionally well-preserved specimen, and details of the mouth parts indicate that the gnathal appa- ratus of modern Tubulifera was already developed in the Cretaceous. Due to plesiomorphic characters with respect to ex- tant Tubulifera, the genus Rohrthrips is transferred to Rohrthripidae fam. n., and this family is clearly differentiated from extant Phlaeothripidae. Key words: Burmite, Cenomanian, Myanmarothrips gen. n., Merothripidae, new species, new genus, new family, Rohrthripidae fam. n.
    [Show full text]
  • Evolution of the Insects
    CY501-C08[261-330].qxd 2/15/05 11:10 PM Page 261 quark11 27B:CY501:Chapters:Chapter-08: 8 TheThe Paraneopteran Orders Paraneopteran The evolutionary history of the Paraneoptera – the bark lice, fold their wings rooflike at rest over the abdomen, but thrips true lice, thrips,Orders and hemipterans – is a history beautifully and Heteroptera fold them flat over the abdomen, which reflected in structure and function of their mouthparts. There probably relates to the structure of axillary sclerites and other is a general trend from the most generalized “picking” minute structures at the base of the wing (i.e., Yoshizawa and mouthparts of Psocoptera with standard insect mandibles, Saigusa, 2001). to the probing and puncturing mouthparts of thrips and Relationships among paraneopteran orders have been anopluran lice, and the distinctive piercing-sucking rostrum discussed by Seeger (1975, 1979), Kristensen (1975, 1991), or beak of the Hemiptera. Their mouthparts also reflect Hennig (1981), Wheeler et al. (2001), and most recently by diverse feeding habits (Figures 8.1, 8.2, Table 8.1). Basal Yoshizawa and Saigusa (2001). These studies generally agree paraneopterans – psocopterans and some basal thrips – are on the monophyly of the order Hemiptera and most of its microbial surface feeders. Thysanoptera and Hemiptera suborders and a close relationship of the true lice (order independently evolved a diet of plant fluids, but ancestral Phthiraptera) with the most basal group, the “bark lice” (Pso- heteropterans were, like basal living families, predatory coptera), which comprise the Psocodea. One major issue is insects that suction hemolymph and liquified tissues out of the position of thrips (order Thysanoptera), which either their prey.
    [Show full text]
  • Late Jurassic Yanliao Biota: Chronology, Taphonomy, Paleontology and Paleoecology
    Vol. 90 No. 6 pp.2229–2243 ACTA GEOLOGICA SINICA (English Edition) Dec. 2016 An Updated Review of the Middle-Late Jurassic Yanliao Biota: Chronology, Taphonomy, Paleontology and Paleoecology XU Xing1, *, ZHOU Zhonghe1, Corwin SULLIVAN1, WANG Yuan1 and REN Dong2 1 Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 2 College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China Abstract: The northeastern Chinese Yanliao Biota (sometimes called the Daohugou Biota) comprises numerous, frequently spectacular fossils of non-marine organisms, occurring in Middle-Upper Jurassic strata in western Liaoning, northern Hebei, and southeastern Inner Mongolia. The biota lasted for about 10 million years, divided into two phases: the Bathonian-Callovian Daohugou phase (about 168-164 million years ago) and the Oxfordian Linglongta phase (164-159 million years ago). The Yanliao fossils are often taphonomically exceptional (many vertebrate skeletons, for example, are complete and accompanied by preserved integumentary features), and not only are taxonomically diverse but also include the oldest known representatives of many groups of plants, invertebrates, and vertebrates. These fossils have provided significant new information regarding the origins and early evolution of such clades as fleas, birds, and mammals, in addition to the evolution of some major biological structures such as feathers, and have demonstrated the existence of a complex terrestrial ecosystem in northeast China around the time of the Middle-Late Jurassic boundary. Key words: Yanliao Biota, Daohugou phase, Linglongta phase, Middle-Late Jurassic, Yanliao area 1 Introduction 1983, when a rich insect assemblage was discovered from the Middle Jurassic Jiulongshan Formation in the Yanliao The Yanliao Area is a large region of northeast China, Area.
    [Show full text]
  • A History of Insect Phylogenetics Rsif.Royalsocietypublishing.Org Karl M
    Progress, pitfalls and parallel universes: a history of insect phylogenetics rsif.royalsocietypublishing.org Karl M. Kjer1, Chris Simon2, Margarita Yavorskaya3 and Rolf G. Beutel3 1Department of Entomology and Nematology, University of California-Davis, 1282 Academic Surge, Davis, CA 95616, USA Review 2Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA Cite this article: Kjer KM, Simon C, 3Institut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, 07743 Jena, Germany Yavorskaya M, Beutel RG. 2016 Progress, KMK, 0000-0001-7370-9617 pitfalls and parallel universes: a history of insect phylogenetics. J. R. Soc. Interface 13: The phylogeny of insects has been both extensively studied and vigorously 20160363. debated for over a century. A relatively accurate deep phylogeny had been pro- duced by 1904. It was not substantially improved in topology until recently http://dx.doi.org/10.1098/rsif.2016.0363 when phylogenomics settled many long-standing controversies. Intervening advances came instead through methodological improvement. Early molecu- lar phylogenetic studies (1985–2005), dominated by a few genes, provided datasets that were too small to resolve controversial phylogenetic problems. Received: 9 May 2016 Adding to the lack of consensus, this period was characterized by a polariz- Accepted: 19 July 2016 ation of philosophies, with individuals belonging to either parsimony or maximum-likelihood camps; each largely ignoring the insights of the other. The result was an unfortunate detour in which the few perceived phylogenetic revolutions published by both sides of the philosophical divide were probably Subject Category: erroneous. The size of datasets has been growing exponentially since the mid- 1980s accompanied by a wave of confidence that all relationships will soon be Review known.
    [Show full text]