080698 Diuretic Therapy

Total Page:16

File Type:pdf, Size:1020Kb

080698 Diuretic Therapy DRUG THERAPY Review Article Drug Therapy 50 percent is conjugated to glucuronic acid in the kidneys.9 Thus, in patients with renal insufficiency, the plasma half-life of furosemide is prolonged be- A LASTAIR J.J. WOOD, M.D., Editor cause not only urinary excretion but also renal con- jugation is decreased7, 8 , 1 0 -1 4 (Table 1). The other two loop diuretics available in the United States, bumet- DIURETIC THERAPY anide and torsemide, are largely metabolized by the liver (50 and 80 percent, respectively)4,15-17; there- D. CRAIG BRATER, M.D. fore, their half-lives are not prolonged in patients with renal insufficiency, although renal disease im- IURETIC drugs are widely used for the pairs their delivery to the tubular fluid. In contrast, treatment of patients with edema. Among in patients with liver disease, the plasma half-lives of these drugs, loop diuretics such as furose- these drugs are prolonged, and more drug reaches D 7, 1 8 mide are perhaps the most frequently prescribed, the tubular fluid (Table 1). and their clinical pharmacology is better understood Although the pharmacologic characteristics of eth- than is that of other diuretics. This review will there- acrynic acid have been characterized as typical of fore focus on this class of diuretics, but others will those of loop diuretics, there are no data on its phar- be discussed as well. macokinetics. The drug’s ototoxic potential is greater than that of other loop diuretics, and it is therefore CLINICAL PHARMACOLOGY now given only to patients who have allergic reac- OF DIURETICS tions to other loop diuretics. Pharmacokinetics The pharmacokinetics of thiazide diuretics (Table 1) have been studied less extensively than those of The pharmacologic characteristics of all loop di- loop diuretics. Some thiazide diuretics are metabo- uretics are similar. Therefore, a lack of response to lized primarily by the liver (e.g., bendroflumethia- adequate doses of one loop diuretic militates against zide, polythiazide, and indapamide); others are pri- the administration of another loop diuretic; instead, marily excreted in unchanged form in the urine (e.g., combinations of diuretics with different mechanisms chlorothiazide, chlorthalidone, hydrochlorothiazide, of action should be given. hydroflumethiazide, and trichlormethiazide). There Loop diuretics block the sodium–potassium–chlo- is little information about the influence of disease on ride transporter, thiazide diuretics block the electro- the pharmacokinetics of these drugs. neutral sodium–chloride transporter, and amiloride Since amiloride is excreted by the kidneys, renal 1-6 and triamterene block apical sodium channels. All disease prolongs its plasma half-life,19,20 whereas liver diuretics except spironolactone reach these luminal disease has little effect on the drug.20 The pharma- transport sites through the tubular fluid; all but os- cokinetics of triamterene are complicated, because it motic diuretics are actively secreted into the urine by is converted to an active metabolite by the liver, and proximal tubule cells. A high degree of protein bind- the metabolite is then secreted into the tubular flu- 1-6 ing (>95 percent) limits glomerular filtration, even id.7,21,22 Renal disease impairs the secretion of this in patients with hypoalbuminemia. In effect, bind- metabolite into the tubular fluid.21 The amount of ing to serum proteins traps the diuretic in the vas- metabolite that reaches the tubular fluid is also re- cular space so that it can be delivered to secretory duced in patients with liver disease, because of di- sites of proximal tubule cells. Loop and thiazide di- minished formation of the metabolite in the liver.22 uretics and acetazolamide are secreted through the The pharmacokinetics of spironolactone are even 1-4 organic-acid pathway, and amiloride and triamter- more complex, because it is converted to numerous 5,6 ene through the organic-base pathway. active metabolites.23,24 About 50 percent of a dose of furosemide is ex- In addition to the routes of metabolism, the phar- 7, 8 creted in unchanged form into the urine ; the other macokinetic features of diuretics that are clinically important are bioavailability and half-life. On aver- age, the amount of an oral dose of furosemide that is From the Division of Clinical Pharmacology, Department of Medicine, absorbed is 50 percent, but it ranges from 10 to 100 Indiana University School of Medicine, Emerson Hall 317, 545 Barnhill percent.7 This wide range makes it difficult to predict Dr., Indianapolis, IN 46202-5124, where reprint requests should be addressed to Dr. Brater. how much furosemide will be absorbed in an indi- ©1998, Massachusetts Medical Society. vidual patient, and different doses must be tried be- Volume 339 Number 6 · 387 Downloaded from www.nejm.org by D SHERWOOD-BERNER on April 23, 2003. For personal use only. No other uses without permission. All rights reserved. The New England Journal of Medicine TABLE 1. PHARMACOKINETICS OF DIURETIC DRUGS.* ORAL DIURETIC BIOAVAILABILITY ELIMINATION HALF-LIFE PATIENTS PATIENTS PATIENTS WITH NORMAL WITH RENAL WITH CONGESTIVE SUBJECTS INSUFFICIENCY CIRRHOSIS HEART FAILURE %hr Loop Furosemide 10–100 1.5–2 2.8 2.5 2.7 Bumetanide 80–100 1 1.6 2.3 1.3 Torsemide 80–100 3–4 4–5 8 6 Thiazide Bendroflumethiazide ND 2–5 ND ND ND Chlorthalidone 64 24–55 ND ND ND Chlorothiazide 30–50 1.5 ND ND ND Hydrochlorothiazide 65–75 2.5 Increased ND ND Hydroflumethiazide 73 6–25 ND ND 6–28 Indapamide 93 15–25 ND ND ND Polythiazide ND 26 ND ND ND Trichlormethiazide ND 1–4 5–10 ND ND Distal Amiloride Conflicting data 17–26 100 Negligible ND change Triamterene† >80 2–5 Prolonged No change ND Spironolactone Conflicting data 1.5 No change No change ND Active metabolites of >15 ND ND ND spironolactone *ND denotes not determined. †Values are for the active metabolite. fore the drug is judged to be ineffective. In contrast, Pharmacodynamics absorption of bumetanide and torsemide is nearly The relation between the arrival of a diuretic at its complete, ranging from 80 to 100 percent (Table site of action (determined on the basis of the rate of 1).18,25,26 There is therefore probably less need for ti- urinary excretion) and the natriuretic response de- tration of these drugs when one is switching from termines the pharmacodynamics of the drug (Fig. an intravenous to an oral dose. The variation in the 1).1,17 This relation holds for all loop diuretics, al- absorption of furosemide may be clinically impor- though the curve may be shifted to the right or the tant; patients with heart failure treated with a com- left.7 This means that in any one patient, the maxi- pletely absorbed loop diuretic (torsemide) may re- mal response to each loop diuretic is the same. The quire hospitalization less often and have a better same is true for thiazide diuretics. The choice of an quality of life than patients treated with furosemide.27 agent within either class of diuretics is governed by The amount of loop diuretic that is absorbed is nor- factors such as pharmacokinetic differences and cost. mal in patients with edema,18,25,26,28-32 although ab- Several pharmacodynamic features of diuretics are sorption is slower than normal, particularly in those clinically important. There is a threshold quantity of with decompensated heart failure.32 drug that must be achieved at the site of action in The plasma half-life of a diuretic determines the fre- order to elicit a response. The diuretic must there- quency of administration. Thiazide and distal diuretics fore be titrated in each patient in order to determine have sufficiently long half-lives that they can be admin- the dose that will deliver enough drug to the site of istered once or twice a day. The plasma half-lives of action to reach the steep portion of the curve shown loop diuretics range from about one hour for bumet- in Figure 1 (effective dose). In addition, one can de- anide to three to four hours for torsemide; the half-life termine the lowest dose that elicits a maximal re- of furosemide is one and a half to two hours.7 A truly sponse and that should therefore not be exceeded long acting loop diuretic is not available. Once a dose (maximal dose). In normal subjects, an intravenous of a loop diuretic has been administered, its effect dis- dose of 40 mg of furosemide or an equivalent dose sipates before the next dose is given. During this time, of other loop diuretics results in a maximal response, the nephron avidly reabsorbs sodium, resulting in so- which is the excretion of 200 to 250 mmol of sodium called rebound sodium retention,33,34 which may be in 3 to 4 liters of urine over a period of three to four sufficient to nullify the prior natriuresis. hours. 388 · August 6, 1998 Downloaded from www.nejm.org by D SHERWOOD-BERNER on April 23, 2003. For personal use only. No other uses without permission. All rights reserved. DRUG THERAPY 20 thiazide will cause diuresis in patients with mild re- nal insufficiency, the response in patients with a cre- atinine clearance of less than about 50 ml per min- ute is poor. In patients with a creatinine clearance of 15 ml per minute, 1⁄5 to 1⁄10 as much loop diuretic is secret- 7, 8 10 ed into the tubular fluid as in normal subjects. Thus, a large dose must be given to attain an effec- tive amount of diuretic in the tubular fluid (Table 2). The relation between the rate at which the di- uretic is excreted and the response to it is the same in patients with renal insufficiency as it is in normal 50,51 0 subjects.
Recommended publications
  • In Silico Methods for Drug Repositioning and Drug-Drug Interaction Prediction
    In silico Methods for Drug Repositioning and Drug-Drug Interaction Prediction Pathima Nusrath Hameed ORCID: 0000-0002-8118-9823 Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy Department of Mechanical Engineering THE UNIVERSITY OF MELBOURNE May 2018 Copyright © 2018 Pathima Nusrath Hameed All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm or any other means without written permission from the author. Abstract Drug repositioning and drug-drug interaction (DDI) prediction are two fundamental ap- plications having a large impact on drug development and clinical care. Drug reposi- tioning aims to identify new uses for existing drugs. Moreover, understanding harmful DDIs is essential to enhance the effects of clinical care. Exploring both therapeutic uses and adverse effects of drugs or a pair of drugs have significant benefits in pharmacology. The use of computational methods to support drug repositioning and DDI prediction en- able improvements in the speed of drug development compared to in vivo and in vitro methods. This thesis investigates the consequences of employing a representative training sam- ple in achieving better performance for DDI classification. The Positive-Unlabeled Learn- ing method introduced in this thesis aims to employ representative positives as well as reliable negatives to train the binary classifier for inferring potential DDIs. Moreover, it explores the importance of a finer-grained similarity metric to represent the pairwise drug similarities. Drug repositioning can be approached by new indication detection. In this study, Anatomical Therapeutic Chemical (ATC) classification is used as the primary source to determine the indications/therapeutic uses of drugs for drug repositioning.
    [Show full text]
  • Diuretic Cocktail"
    Clinical evaluation of a "diuretic cocktail" LAWRENCE J. GALLA, A.B., D.O., and WIL- acetazoleamide depressing hydration of carbon LIAM BALDWIN, JR., D.O., F.A.C.0.1., York, dioxide, exchange resins drawing salt from food Pennsylvania in the intestinal tract, or water diuresis. Therefore, diuretic therapy should be planned to permit daily salt and water balance. The treatment should take into account the particular type of fluid or electro- The characteristics of an ideal diuretic can be lyte to be removed, the need for speed in its re- easily enumerated; it should be effective without moval, and the setting in which it will be done. producing electrolyte disturbance, nephrotoxicity, Oral diuretics, for example, are desirable; however, sensitivity, refractoriness, or cardiac toxicity. How- they are often not powerful enough for acute or ever, in practice, a compound encompassing these emergency problems, or they may irritate the pa- properties remains to be found. Furthermore, be- tient's stomach. It may be said that oral diuretics cause of the many factors involved in the patho- are useful in cases where a modest diuretic action logic states that result in abnormal water retention, is satisfactory. Other clinical situations are met by a universal diuretic—that is, one that will work in other means. every situation—has yet to to be made available. Diet is rather important. Patients with edema In recent years a number of new diuretic drugs will probably have to accept a low-salt diet sooner utilizing various physiologic principles have ap- or later; the sooner they start, the sooner better peared.
    [Show full text]
  • Ovid MEDLINE(R)
    Supplementary material BMJ Open Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily <1946 to September 16, 2019> # Searches Results 1 exp Hypertension/ 247434 2 hypertens*.tw,kf. 420857 3 ((high* or elevat* or greater* or control*) adj4 (blood or systolic or diastolic) adj4 68657 pressure*).tw,kf. 4 1 or 2 or 3 501365 5 Sex Characteristics/ 52287 6 Sex/ 7632 7 Sex ratio/ 9049 8 Sex Factors/ 254781 9 ((sex* or gender* or man or men or male* or woman or women or female*) adj3 336361 (difference* or different or characteristic* or ratio* or factor* or imbalanc* or issue* or specific* or disparit* or dependen* or dimorphism* or gap or gaps or influenc* or discrepan* or distribut* or composition*)).tw,kf. 10 or/5-9 559186 11 4 and 10 24653 12 exp Antihypertensive Agents/ 254343 13 (antihypertensiv* or anti-hypertensiv* or ((anti?hyperten* or anti-hyperten*) adj5 52111 (therap* or treat* or effective*))).tw,kf. 14 Calcium Channel Blockers/ 36287 15 (calcium adj2 (channel* or exogenous*) adj2 (block* or inhibitor* or 20534 antagonist*)).tw,kf. 16 (agatoxin or amlodipine or anipamil or aranidipine or atagabalin or azelnidipine or 86627 azidodiltiazem or azidopamil or azidopine or belfosdil or benidipine or bepridil or brinazarone or calciseptine or caroverine or cilnidipine or clentiazem or clevidipine or columbianadin or conotoxin or cronidipine or darodipine or deacetyl n nordiltiazem or deacetyl n o dinordiltiazem or deacetyl o nordiltiazem or deacetyldiltiazem or dealkylnorverapamil or dealkylverapamil
    [Show full text]
  • DIURETICS Diuretics Are Drugs That Promote the Output of Urine Excreted by the Kidneys
    DIURETICS Diuretics are drugs that promote the output of urine excreted by the Kidneys. The primary action of most diuretics is the direct inhibition of Na+ transport at one or more of the four major anatomical sites along the nephron, where Na+ reabsorption takes place. The increased excretion of water and electrolytes by the kidneys is dependent on three different processes viz., glomerular filtration, tubular reabsorption (active and passive) and tubular secretion. Diuretics are very effective in the treatment of Cardiac oedema, specifically the one related with congestive heart failure. They are employed extensively in various types of disorders, for example, nephritic syndrome, diabetes insipidus, nutritional oedema, cirrhosis of the liver, hypertension, oedema of pregnancy and also to lower intraocular and cerebrospinal fluid pressure. Therapeutic Uses of Diuretics i) Congestive Heart Failure: The choice of the diuretic would depend on the severity of the disorder. In an emergency like acute pulmonary oedema, intravenous Furosemide or Sodium ethacrynate may be given. In less severe cases. Hydrochlorothiazide or Chlorthalidone may be used. Potassium-sparing diuretics like Spironolactone or Triamterene may be added to thiazide therapy. ii) Essential hypertension: The thiazides usually sever as primary antihypertensive agents. They may be used as sole agents in patients with mild hypertension or combined with other antihypertensives in more severe cases. iii) Hepatic cirrhosis: Potassium-sparing diuretics like Spironolactone may be employed. If Spironolactone alone fails, then a thiazide diuretic can be added cautiously. Furosemide or Ethacrymnic acid may have to be used if the oedema is regractory, together with spironolactone to lessen potassium loss. Serum potassium levels should be monitored periodically.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0113314 A1 Fong Et Al
    US 20050113314A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0113314 A1 Fong et al. (43) Pub. Date: May 26, 2005 (54) CICLETANINE IN COMBINATION WITH Publication Classification ORAL ANTIDIABETIC AND/OR BLOOD LIPID-LOWERING AGENTS ASA COMBINATION THERAPY FOR DIABETES (51) Int. Cl." ..................... A61K 31/70; A61K 31/4741; AND METABOLIC SYNDROME A61K 31/426; A61K 31/155; A61K 31/175 (76) Inventors: Benson M. Fong, San Francisco, CA (52) U.S. Cl. ............................ 514/25; 514/302; 514/369; (US); Glenn V. Cornett, Palo Alto, CA 514/592; 514/635 (US) Correspondence Address: KNOBBE MARTENS OLSON & BEAR LLP 2040 MAIN STREET (57) ABSTRACT FOURTEENTH FLOOR IRVINE, CA 92614 (US) Preferred embodiments of the present invention are related to novel therapeutic drug combinations and methods for (21) Appl. No.: 10/929,108 treating and/or preventing complications in patients with (22) Filed: Aug. 27, 2004 diabetes and/or metabolic Syndrome. More particularly, aspects of the present invention are related to using a Related U.S. Application Data combination of cicletanine and an oral antidiabetic agent for treating and/or preventing complications (including microal (60) Provisional application No. 60/498,916, filed on Aug. buminuria, nephropathies, retinopathies and other compli 29, 2003. cations) in patients with diabetes or metabolic Syndrome. US 2005/0113314 A1 May 26, 2005 CICLETANNE IN COMBINATION WITH ORAL women >0.85) and/or Body Mass Index >30 kg/M); 6) ANTIDIABETIC AND/OR BLOOD micro albuminuria (urine albumin excretion: 220 ugmin' LIPID-LOWERING AGENTS ASA COMBINATION or albumin/creatinine ratio22.0 mg/mmol.
    [Show full text]
  • US20050113367A1.Pdf
    US 20050113367A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0113367 A1 Sada et al. (43) Pub. Date: May 26, 2005 (54) PHARMACEUTICAL COMPOSITION (52) U.S. Cl. ......................................... 514/223.5; 514/381 (75) Inventors: Toshio Sada, Tokyo (JP); Makoto (57) ABSTRACT Mizuno, Funabashi-shi (JP) A pharmaceutical composition which comprises (i) an Correspondence Address: angiotensin II receptor antagonist having the following FRISHAUF, HOLTZ, GOODMAN & CHICK, formula (I), a pharmacologically acceptable Salt thereof, a PC pharmacologically acceptable ester thereof or a pharmaco 767 THIRDAVENUE logically acceptable Salt of Such ester, and (ii) a diuretic 25TH FLOOR which is at least one thiazide compound: NEW YORK, NY 10017-2023 (US) (73) Assignee: SANKYO COMPANY, LIMITED, (I) Tokyo (JP) HC (21) Appl. No.: 11/020,624 CH N OH (22) Filed: Dec. 23, 2004 Related U.S. Application Data --> (63) Continuation of application No. 10/442,874, filed on May 20, 2003, now Pat. No. 6,878,703, which is a continuation of application No. PCT/JP01/10095, filed on Nov. 19, 2001. (30) Foreign Application Priority Data Nov. 21, 2000 (JP). 2000-354327 May 31, 2001 (JP)...................................... 2001-164009 Publication Classification The pharmaceutical composition has an excellent hypoten Sive effect and low toxicity, and therefore is useful as a (51) Int. Cl." .................... A61K 3.1/549; A61K 31/4178 medicament for treating hypertension or heart disease. US 2005/0113367 A1 May 26, 2005 PHARMACEUTICAL COMPOSITION nist and one or more diuretics to warm-blooded animals (particularly humans) at effective doses, and a pharmaceu CROSS-REFERENCE TO RELATED tical composition for administering Simultaneously or APPLICATIONS Sequentially a specific angiotensin II receptor antagonist and one or more diuretics for preventing or treating hyperten 0001.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Therapeutic Combination and Use of Dll4 Antagonist Antibodies and Anti-Hypertensive Agents
    (19) TZZ Z_T (11) EP 2 488 204 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 39/395 (2006.01) A61P 35/00 (2006.01) 06.04.2016 Bulletin 2016/14 A61P 9/12 (2006.01) (21) Application number: 10824244.7 (86) International application number: PCT/US2010/053064 (22) Date of filing: 18.10.2010 (87) International publication number: WO 2011/047383 (21.04.2011 Gazette 2011/16) (54) THERAPEUTIC COMBINATION AND USE OF DLL4 ANTAGONIST ANTIBODIES AND ANTI-HYPERTENSIVE AGENTS THERAPEUTISCHE KOMBINATION UND VERWENDUNGG MIT DLL4-ANTAGONISTISCHE ANTIKÖRPER UND MITTEL GEGEN BLUTHOCHDRUCK COMBINAISON THÉRAPEUTIQUE ET UTILISATION D’ANTICORPS ANTAGONISTES DE D LL4 ET D’AGENTS ANTI-HYPERTENSEURS (84) Designated Contracting States: US-A1- 2009 221 549 AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • SMITH D C ET AL: "222 A first-in-human, phase I PL PT RO RS SE SI SK SM TR trial of the anti-DLL4 antibody (OMP-21M18) targeting cancer stem cells (CSC) in patients with (30) Priority: 16.10.2009 US 252473 P advanced solid tumors", EUROPEAN JOURNAL OF CANCER. SUPPLEMENT, PERGAMON, (43) Date of publication of application: OXFORD, GB, vol. 8, no. 7, 1 November 2010 22.08.2012 Bulletin 2012/34 (2010-11-01), page 73, XP027497910, ISSN: 1359-6349, DOI: 10.1016/S1359-6349(10)71927-3 (60) Divisional application: [retrieved on 2010-11-01] & Smith et al: "A 16155324.3 first-in-human, phase I trial of the anti-DLL4 antibody (OMP-21M18) targeting cancer stem (73) Proprietor: Oncomed Pharmaceuticals, Inc.
    [Show full text]
  • Using Medications, Cosmetics, Or Eating Certain Foods Can Increase Sensitivity to Ultraviolet Radiation
    USING MEDICATIONS, COSMETICS, OR EATING CERTAIN FOODS CAN INCREASE SENSITIVITY TO ULTRAVIOLET RADIATION. INDIVIDUALS SHOULD CONSULT A PHYSICIAN BEFORE USING A SUNLAMP, IF THEY ARE TAKING MEDICATIONS. THE ITEMS LISTED ARE POTENTIAL PHOTOSENSITIZING AGENTS THAT MAY INCREASE SENSITIVITY TO ULTRAVIOLET LIGHT THAT MAY RESULT IN A PHOTOTOXIC OR PHOTOALLERGIC RESPONSES. PHOTOSENSITIZING MEDICATIONS Acetazolamide Amiloride+Hydrochlorothizide Amiodarone Amitriptyline Amoxapine Astemizole Atenolol+Chlorthalidone Auranofin Azatadine (Optimine) Azatidine+Pseudoephedrine Bendroflumethiazide Benzthiazide Bromodiphenhydramine Bromopheniramine Captopril Captopril+Hydrochlorothiazide Carbaamazepine Chlordiazepoxide+Amitriptyline Chlorothiazide Chlorpheniramine Chlorpheniramin+DPseudoephedrine Chlorpromazine Chlorpheniramine+Phenylopropanolamine Chlorpropamide Chlorprothixene Chlorthalidone Chlorthalidone+Reserpine Ciprofloxacin Clemastine Clofazime ClonidineChlorthalisone+Coal Tar Coal Tar Contraceptive (oral) Cyclobenzaprine Cyproheptadine Dacarcazine Danazol Demeclocycline Desipramine Dexchlorpheniramine Diclofenac Diflunisal Ditiazem Diphenhydramine Diphenylpyraline Doxepin Doxycycline Doxycycline Hyclate Enalapril Enalapril+Hydrochlorothiazide Erythromycin Ethylsuccinate+Sulfisoxazole Estrogens Estrogens Ethionamide Etretinate Floxuridine Flucytosine Fluorouracil Fluphenazine Flubiprofen Flutamide Gentamicin Glipizide Glyburide Gold Salts (compounds) Gold Sodium Thiomalate Griseofulvin Griseofulvin Ultramicrosize Griseofulvin+Hydrochlorothiazide Haloperidol
    [Show full text]
  • Polythiazide in the Treatment of Congestive Heart Failure
    Henry Ford Hospital Medical Journal Volume 10 | Number 4 Article 4 12-1962 Polythiazide In The rT eatment Of Congestive Heart Failure John W. Keyes Gerald M. Breneman Jose R. De Jesus Jr. Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Keyes, John W.; Breneman, Gerald M.; and De Jesus, Jose R. Jr. (1962) "Polythiazide In The rT eatment Of Congestive Heart Failure," Henry Ford Hospital Medical Bulletin : Vol. 10 : No. 4 , 555-561. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol10/iss4/4 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. For more information, please contact [email protected]. Henry Ford Hosp. Med. Bull. Vol. 10, December, 1962 POLYTHIAZIDE IN THE TREATMENT OF CONGESTIVE HEART FAILURE JOHN W. KEYES, M.D., GERALD M. BRENEMAN, M.D., JOSE R. DE JESUS, JR., M.D."' THE INTRODUCTION of chlorothiazide and its analogues in the past few years have made available potent oral diuretics which approach the organic mercurial compounds in efficacy. These drugs have shifted the emphasis from parenteral mercury, particularly for the long term management of various derivatives, all appear to be effective and safe diuretics. All of these compounds are active saluretic agents inhibiting tubular reabsorption of sodium, and causing increased excretion of chlorides. Potassium excretion is also significantly increased, but varies somewhat, depending on the particular analogue in use.
    [Show full text]
  • FDA Listing of Established Pharmacologic Class Text Phrases January 2021
    FDA Listing of Established Pharmacologic Class Text Phrases January 2021 FDA EPC Text Phrase PLR regulations require that the following statement is included in the Highlights Indications and Usage heading if a drug is a member of an EPC [see 21 CFR 201.57(a)(6)]: “(Drug) is a (FDA EPC Text Phrase) indicated for Active Moiety Name [indication(s)].” For each listed active moiety, the associated FDA EPC text phrase is included in this document. For more information about how FDA determines the EPC Text Phrase, see the 2009 "Determining EPC for Use in the Highlights" guidance and 2013 "Determining EPC for Use in the Highlights" MAPP 7400.13.
    [Show full text]
  • Change Notification No 9
    Northern Ireland BLOOD TRANSFUSION SERVICE Date of publication: 24th April 2006 Implementation: To be determined by each Service Change Notification UK National Blood Services No. 9 - 2006 Appendix 5 – Treatment for High Blood Pressure Applies to Tissue Donor Selection Guidelines – Bone Marrow and PBSC and also appears as Appendix 6 – Treatment for High Blood Pressure Applies to Donor Selection Guidelines - Whole Blood and Components The entry in both the guidelines is the same: Treatment for High Blood Pressure Donors who have been diagnosed with high blood pressure may donate provided that: 1. They have not suffered any adverse effects of raised blood pressure (BP) such as heart disease (angina, heart attack or heart failure), stroke, transient ischaemic attack (TIA or mini-stroke), or peripheral vascular disease (intermittent claudication, gangrene). 2. They are taking only a Beta(ß)-blocker and/or diuretic as their treatment for the raised BP. The list below shows the proper and trade names of allowed drugs. It is important to note that this list is not exclusive and that these drugs may be used to treat other conditions such as heart failure and abnormal heart rhythms (arrhythmia); both of which would mean the donor must not donate. Other medication should be assessed independently. 3. Treatment is stable. This requires: That the donor is well and not having any problems with feeling faint, fainting or giddiness. They have been on the same dose of medication for at least a month. They are not undergoing tests to find out the underlying
    [Show full text]