Technetium-99M Radiopharmaceuticals: Manufacture of Kits of Manufacture Radiopharmaceuticals: Technetium-99M Technetium-99M Radiopharmaceuticals: Manufacture of Kits

Total Page:16

File Type:pdf, Size:1020Kb

Technetium-99M Radiopharmaceuticals: Manufacture of Kits of Manufacture Radiopharmaceuticals: Technetium-99M Technetium-99M Radiopharmaceuticals: Manufacture of Kits 200 pages 12 mm technical reportS series no. This report describes the procedures for preparing kits for the formulation of 23 selected 99mTc radiopharmaceuticals. Details of the preparation of ten of the active ingredients are also included. The procedures described here can be used to develop manuals, monographs and standard operating procedures. This 466 report is expected to serve as a guide to radiopharmaceutical manufacturing centres and Technical Reports SeriEs No. 466 centralized pharmacies involved in the production of kits. It will be a useful resource for the many hospital radiopharmacies that routinely use the kits to compound 99mTc radiopharmaceuticals, and a source of information for regulators of radiopharmaceuticals. Technetium-99m Radiopharmaceuticals: Manufacture of Kits Technetium-99m Radiopharmaceuticals: Manufacture of Kits INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–100408–6 ISSN 0074–1914 D466_covI-IV.indd 1 2008-08-19 10:20:00 TECHNETIUM-99m RADIOPHARMACEUTICALS: MANUFACTURE OF KITS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GREECE NORWAY ALBANIA GUATEMALA PAKISTAN ALGERIA HAITI PALAU ANGOLA HOLY SEE PANAMA ARGENTINA HONDURAS PARAGUAY ARMENIA HUNGARY PERU AUSTRALIA ICELAND PHILIPPINES AUSTRIA INDIA POLAND AZERBAIJAN INDONESIA PORTUGAL BANGLADESH IRAN, ISLAMIC REPUBLIC OF QATAR BELARUS IRAQ REPUBLIC OF MOLDOVA BELGIUM IRELAND ROMANIA BELIZE ISRAEL RUSSIAN FEDERATION BENIN ITALY SAUDI ARABIA BOLIVIA JAMAICA SENEGAL BOSNIA AND HERZEGOVINA JAPAN SERBIA BOTSWANA JORDAN SEYCHELLES BRAZIL KAZAKHSTAN SIERRA LEONE BULGARIA KENYA SINGAPORE BURKINA FASO KOREA, REPUBLIC OF SLOVAKIA CAMEROON KUWAIT SLOVENIA CANADA KYRGYZSTAN SOUTH AFRICA CENTRAL AFRICAN LATVIA SPAIN REPUBLIC LEBANON SRI LANKA CHAD LIBERIA SUDAN CHILE LIBYAN ARAB JAMAHIRIYA SWEDEN CHINA LIECHTENSTEIN SWITZERLAND COLOMBIA LITHUANIA SYRIAN ARAB REPUBLIC COSTA RICA LUXEMBOURG TAJIKISTAN CÔTE D’IVOIRE MADAGASCAR THAILAND CROATIA MALAWI THE FORMER YUGOSLAV CUBA MALAYSIA REPUBLIC OF MACEDONIA CYPRUS MALI TUNISIA CZECH REPUBLIC MALTA TURKEY DEMOCRATIC REPUBLIC MARSHALL ISLANDS UGANDA OF THE CONGO MAURITANIA UKRAINE DENMARK MAURITIUS UNITED ARAB EMIRATES DOMINICAN REPUBLIC MEXICO UNITED KINGDOM OF ECUADOR MONACO GREAT BRITAIN AND EGYPT MONGOLIA NORTHERN IRELAND EL SALVADOR MONTENEGRO UNITED REPUBLIC ERITREA MOROCCO OF TANZANIA ESTONIA MOZAMBIQUE UNITED STATES OF AMERICA ETHIOPIA MYANMAR URUGUAY FINLAND NAMIBIA UZBEKISTAN FRANCE NETHERLANDS VENEZUELA GABON NEW ZEALAND VIETNAM GEORGIA NICARAGUA YEMEN GERMANY NIGER ZAMBIA GHANA NIGERIA ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. TECHNICAL REPORTS SERIES No. 466 TECHNETIUM-99m RADIOPHARMACEUTICALS: MANUFACTURE OF KITS INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2008 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Sales and Promotion, Publishing Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books © IAEA, 2008 Printed by the IAEA in Austria August 2008 STI/DOC/010/466 IAEA Library Cataloguing in Publication Data Technetium-99m radiopharmaceuticals : manufacture of kits. — Vienna : International Atomic Energy Agency, 2008. p. ; 24 cm. — (Technical reports series, ISSN 0074–1914 ; no. 466) STI/DOC/010/466 ISBN 978–92–0–100408–6 Includes bibliographical references. 1. Technetium — Therapeutic use. 2. Radiopharmaceuticals — Quality control. 3. Radiopharmaceutical industry. — I. International Atomic Energy Agency. II. Series: Technical reports series (International Atomic Energy Agency); 466. IAEAL 08–00527 FOREWORD Technetium-99m radiopharmaceuticals are in widespread use owing to the availability and affordability of 99Mo/99mTc generators and the variety of kits for formulating the desired products. Together, they provide an array of specific tools for diagnosing a large number of diseases affecting the bones and major organs of the body such as the heart, brain, liver, kidney and thyroid. Nuclear medicine requires high quality radiopharmaceuticals and kits that are safe for administration and efficacious for a given application. The IAEA supports Member States in building capacity in the area of 99mTc generators and ‘cold kits’ through coordinated research projects (CRPs), technical cooperation activities and the publication of relevant reports that help disseminate useful information. These efforts have contributed greatly to reducing costs and increasing the efficiency of resource utilization, thereby helping to make nuclear medicine cost effective in Member States. This publication presents the theoretical basis of and describes the procedures for preparing 23 selected kits. Details of the preparation of ten of the active ingredients are also included. The procedures described here can be used to develop manuals, monographs and standard operating procedures. This report is expected to serve as a guide to radiopharmaceutical manufacturing centres and centralized pharmacies involved in the production of such kits. It will be a useful resource for the many hospital radiopharmacies that routinely use the kits to compound 99mTc radiopharmaceuticals, and a useful source of information for regulators of radiopharmaceuticals. The IAEA thanks J. Környei and K. Ozker for compiling and reviewing the manuscript, the experts who provided input for the report, and the reviewers for their valuable suggestions and comments. The IAEA officer responsible for this publication was M.R.A. Pillai of the Division of Physical and Chemical Sciences. EDITORIAL NOTE Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. CONTENTS 1. INTRODUCTION . 1 1.1. Background . 1 1.2. Objective . 5 1.3. Scope . 5 REFERENCES TO SECTION 1 . 6 2. TECHNETIUM CHEMISTRY: THE STATE OF THE ART . 7 2.1. Basic chemical properties of technetium . 7 2.2. First generation technetium radiopharmaceuticals . 7 2.3. Second generation technetium radiopharmaceuticals . 11 2.4. Novel technetium chemistry . 14 2.5. Designed molecules and bioconjugates . 19 2.6. Precursors and chelating agents needed for the labelling of biomolecules . 21 REFERENCES TO SECTION 2 . 22 3. GOOD MANUFACTURING PRACTICE . 26 3.1. Main components of GMP . 26 3.2. Quality management . 27 3.3. Personnel . 27 3.4. Premises and equipment . 28 3.5. Documentation . 36 3.6. Production . 37 3.7. Quality control . 39 3.8. Stability testing . 40 3.9. Contract manufacture and analysis . 42 3.10. Complaints and product recalls . 42 3.11. Self-inspections . 42 3.12. Relationship between GMP and ISO regulation . 43 BIBLIOGRAPHY . 43 4. GENERAL PROCEDURES FOR PRODUCTION OF KITS . 44 4.1. Batch planning . 45 4.2. Washing and sterilization of glassware and stoppers . 45 4.3. Starting materials . 46 4.4. Preparation of bulk solutions . 46 4.5. Sterile filtration . 47 4.6. Dispensing . 47 4.7. Crimping . 48 4.8. Summary of in-process controls . 48 4.9. Quarantine . 49 4.10. Packaging . 49 4.11. Leaving the production premises . 49 BIBLIOGRAPHY . 50 5. GENERAL PROCEDURES IN QUALITY CONTROL . 50 5.1. Quality control of starting materials . 50 5.2. Quality control of active substances used in the kit . 51 5.3. Quality control of finished kits . 54 BIBLIOGRAPHY . 57 6. QUALITY SPECIFICATIONS . 58 6.1. Clean rooms . 59 6.2. Freeze-drying . 59 6.3. Packing materials: Vials, stoppers and caps . 60 6.4. Water for injection . 60 6.5. Nitrogen gas . 61 6.6. Commonly used chemicals . 62 6.7. Other excipients . 62 REFERENCES TO SECTION 6 . 63 BIBLIOGRAPHY . 63 7. PRODUCTION METHODS AND SPECIFICATIONS FOR KITS . 64 7.1. Preparation of kit for 99mTc-MDP . 66 7.2. Preparation of kit for 99mTc-HMDP . 69 7.3. Preparation of kit for 99mTc-pyrophosphate . 72 7.4. Preparation of kit for 99mTc-DTPA . 74 7.5. Preparation of kit for 99mTc-glucoheptonate . 77 99m 7.6. Preparation of kit for Tc-MAG3 . 79 7.7. Preparation of kit for 99mTc-EC . 83 7.8. Preparation of kit for 99mTc-DMSA(III) . 86 7.9. Preparation of kit for 99mTc-DMSA(V) . 89 7.10. Preparation of kit for 99mTc-mebrofenin (bromo-HIDA) . 91 7.11. Preparation of kit for 99mTc-EHIDA . 93 7.12. Preparation of kit for 99mTc-phytate . 96 7.13. Preparation of kit for 99mTc-sulphur colloid . 98 7.14. Preparation of kit for 99mTc-tin colloid . 102 7.15. Preparation of kit for 99mTc-rhenium-sulphide colloid . 104 7.16. Preparation of kit for 99mTc–human serum albumin (HSA) nanocolloid . 108 7.17. Preparation of kit for 99mTc–human serum albumin (HSA) colloid . ..
Recommended publications
  • Radioisotopes and Radiopharmaceuticals
    RADIOISOTOPES AND RADIOPHARMACEUTICALS Radioisotopes are the unstable form of an element that emits radiation to become a more stable form — they have certain special attributes. These make radioisotopes useful in areas such as medicine, where they are used to develop radiopharmaceuticals, as well as many other industrial applications. THE PRODUCTION OF TECHNETIUM-99m RADIOPHARMACEUTICALS: ONE POSSIBLE ROUTE IRRADIATED U-235 99 TARGETS MO PROCESSING FACILITY HOSPITAL RADIOPHARMACY (MIXING WITH BIOLOGICAL MOLECULES THAT BIND AT DIFFERENT LOCATIONS IN THE 99mTC IS IDEAL FOR DIAGNOSTICS BECAUSE OF BODY, SUPPORTING A WIDE ITS SHORT HALF-LIFE (6 HOURS) AND IDEAL GAMMA EMISSION RANGE OF MEDICAL NUCLEAR APPLICATIONS) REACTOR: 6 HOURS MAKES DISTRIBUTION DIFFICULT 99MO BULK LIQUID TARGET ITS PARENT NUCLIDE, MOLYBDENUM-99, IS PRODUCED; ITS HALF-LIFE (66 HOURS) MAKES 99 99m IRRADIATION IT SUITABLE FOR TRANSPORT MO/ TC GENERATORS 99MO/99mTC GENERATORS ARE PRODUCED AND DISTRIBUTED AROUND THE GLOBE 99MO/99TC GENERATOR MANUFACTURER Radioisotopes can occur naturally or be produced artificially, mainly in research reactors and accelerators. They are used in various fields, including nuclear medicine, where radiopharmaceuticals play a major role. Radiopharmaceuticals are substances that contain a radioisotope, and have properties that make them effective markers in medical diagnostic or therapeutic procedures. The chemical presence of radiopharmaceuticals can relay detailed information to medical professionals that can help in diagnoses and treatments. Eighty percent of all diagnostic medical scans worldwide use 99mTc, and its availability, at present, is dependent on the production of 99Mo in research reactors. Globally, the number of medical procedures involving the use of radioisotopes is growing, with an increasing emphasis on radionuclide therapy using radiopharmaceuticals for the treatment of cancer..
    [Show full text]
  • OPERATIONAL GUIDANCE on HOSPITAL RADIOPHARMACY: a SAFE and EFFECTIVE APPROACH the Following States Are Members of the International Atomic Energy Agency
    OPERATIONAL GUIDANCE ON HOSPITAL RADIOPHARMACY: A SAFE AND EFFECTIVE APPROACH The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA PAKISTAN ALBANIA HAITI PALAU ALGERIA HOLY SEE PANAMA ANGOLA HONDURAS PARAGUAY ARGENTINA HUNGARY PERU ARMENIA ICELAND PHILIPPINES AUSTRALIA INDIA POLAND AUSTRIA INDONESIA PORTUGAL AZERBAIJAN IRAN, ISLAMIC REPUBLIC OF QATAR BANGLADESH IRAQ REPUBLIC OF MOLDOVA BELARUS IRELAND ROMANIA BELGIUM ISRAEL RUSSIAN FEDERATION BELIZE ITALY SAUDI ARABIA BENIN JAMAICA SENEGAL BOLIVIA JAPAN SERBIA BOSNIA AND HERZEGOVINA JORDAN SEYCHELLES BOTSWANA KAZAKHSTAN BRAZIL KENYA SIERRA LEONE BULGARIA KOREA, REPUBLIC OF SINGAPORE BURKINA FASO KUWAIT SLOVAKIA CAMEROON KYRGYZSTAN SLOVENIA CANADA LATVIA SOUTH AFRICA CENTRAL AFRICAN LEBANON SPAIN REPUBLIC LIBERIA SRI LANKA CHAD LIBYAN ARAB JAMAHIRIYA SUDAN CHILE LIECHTENSTEIN SWEDEN CHINA LITHUANIA SWITZERLAND COLOMBIA LUXEMBOURG SYRIAN ARAB REPUBLIC COSTA RICA MADAGASCAR TAJIKISTAN CÔTE D’IVOIRE MALAWI THAILAND CROATIA MALAYSIA THE FORMER YUGOSLAV CUBA MALI REPUBLIC OF MACEDONIA CYPRUS MALTA TUNISIA CZECH REPUBLIC MARSHALL ISLANDS TURKEY DEMOCRATIC REPUBLIC MAURITANIA UGANDA OF THE CONGO MAURITIUS UKRAINE DENMARK MEXICO UNITED ARAB EMIRATES DOMINICAN REPUBLIC MONACO UNITED KINGDOM OF ECUADOR MONGOLIA GREAT BRITAIN AND EGYPT MONTENEGRO NORTHERN IRELAND EL SALVADOR MOROCCO ERITREA MOZAMBIQUE UNITED REPUBLIC ESTONIA MYANMAR OF TANZANIA ETHIOPIA NAMIBIA UNITED STATES OF AMERICA FINLAND NEPAL URUGUAY FRANCE NETHERLANDS UZBEKISTAN GABON NEW ZEALAND VENEZUELA GEORGIA NICARAGUA VIETNAM GERMANY NIGER YEMEN GHANA NIGERIA ZAMBIA GREECE NORWAY ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna.
    [Show full text]
  • Preparation and Dispensing Problems Associated with Technetium Tc-99M Radiopharmaceuticals
    THE UNIVERSITY OF NEW MEXICO HEALTH SCIENCES CENTER COLLEGE OF PHARMACY ALBUQUERQUE, NEW MEXICO Correspondence Continuing Education Courses for Nuclear Pharmacists and Nuclear Medicine Professionals VOLUME 11, LESSON 1 Preparation and Dispensing Problems Associated with Technetium Tc-99m Radiopharmaceuticals By James A. Ponto, MS, RPh, BCNP University of Iowa Hospitals and Clinics, and College of Pharmacy Iowa City, IA The University of New Mexico Health Sciences Center College of Pharmacy is accredited by the American Council on Pharmaceutical Education as a provider of continuing pharmaceutical education. Program No. 039- 000-04-003-H04. Expires May 25, 2007. 2.5 Contact Hours of .25 CEUs. Preparation and Dispensing Problems Associated with Technetium Tc-99m Radiopharmaceuticals By: James A. Ponto Coordinating Editor and Director of Pharmacy Continuing Education William B. Hladik III, MS, RPh College of Pharmacy University of New Mexico Health Sciences Center Managing Editor Julliana Newman, ELS Wellman Publishing, Inc. Albuquerque, New Mexico Editorial Board George H. Hinkle, MS, RPh, BCNP William B. Hladik III, MS, RPh David Laven, NPh, CRPh, FASHP, FAPhA Jeffrey P. Norenberg, MS, PharmD, BCNP, FASHP Neil A. Petry, RPh, MS, BCNP, FAPhA Timothy M. Quinton, PharmD, MS, RPh, BCNP Guest Reviewer Joseph Hung, PhD Director, Nuclear Pharmacy Laboratories and Positron Emission Tomography (PET) Radiochemistry Facility Mayo Clinic 200 First St. S.W. Rochester, MN 55905 While the advice and information in this publication are believed to be true and accurate at press time, the author(s), editors, or the publisher cannot accept any legal responsibility for any errors or omissions that may be made. The publisher makes no war- ranty, express or implied, with respect to the material container herein.
    [Show full text]
  • Azedra) Reference Number: ERX.SPA.420 Effective Date: 03.01.21 Last Review Date: 02.21 Line of Business: Commercial, Medicaid Revision Log
    Clinical Policy: Iobenguane I-131 (Azedra) Reference Number: ERX.SPA.420 Effective Date: 03.01.21 Last Review Date: 02.21 Line of Business: Commercial, Medicaid Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Iobenguane I-131 (Azedra®) injection is a radioactive agent. FDA Approved Indication(s) Azedra is indicated for the treatment of adult and pediatric patients 12 years and older with iobenguane scan positive, unresectable, locally advanced or metastatic pheochromocytoma or paraganglioma who require systemic anticancer therapy. Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. Health plan approved formularies should be reviewed for all coverage determinations. Requirements to use preferred alternative agents apply only when such requirements align with the health plan approved formulary. It is the policy of health plans affiliated with Envolve Pharmacy Solutions™ that Azedra is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Pheochromocytoma and Paraganglioma (must meet all): 1. Diagnosis of pheochromocytoma or paraganlioma; 2. Prescribed by or in consultation with an oncologist; 3. Age ≥ 12 years; 4. Tumor is unresectable, locally advanced, or metastatic; 5. Member currently receives medication to control tumor secretion of catecholamines (e.g., epinephrine, norepinephrine, dopamine) and related symptoms (e.g., hypertension, arrhythmia, hyperglycemia); 6. Metaiodobenzylguanidine (MIBG) scan is positive; 7. Concurrent radiopharmaceuticals have not been prescribed (e.g., Lutathera® [lutetium lu-177 dotatate]); 8. Request meets one of the following (a or b):* a. Dose does not exceed (i or ii): i.
    [Show full text]
  • Metabolomics Analysis Reveals Large Effects of Gut Microflora on Mammalian Blood Metabolites
    Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites William R. Wikoffa, Andrew T. Anforab, Jun Liub, Peter G. Schultzb,1, Scott A. Lesleyb, Eric C. Petersb, and Gary Siuzdaka,1 aDepartment of Molecular Biology and Center for Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and bGenomics Institute of the Novartis Research Foundation, San Diego, CA 92121 Communicated by Steve A. Kay, University of California at San Diego, La Jolla, CA, December 19, 2008 (received for review December 12, 2008) Although it has long been recognized that the enteric community of found to extract energy from their food more efficiently compared bacteria that inhabit the human distal intestinal track broadly impacts with lean counterparts due to alterations in the composition of their human health, the biochemical details that underlie these effects gut microflora that resulted in an increased complement of genes remain largely undefined. Here, we report a broad MS-based metabo- for polysaccharide metabolism (10). It has also been observed that lomics study that demonstrates a surprisingly large effect of the gut bile salt hydrolase encoding genes are enriched in the gut micro- ‘‘microbiome’’ on mammalian blood metabolites. Plasma extracts biome, and that enteric bacteria carry out a wide range of bile acid from germ-free mice were compared with samples from conventional modifications (6, 14). These metagenomic studies suggest that the (conv) animals by using various MS-based methods. Hundreds of metabolites derived from this diverse microbial community can features were detected in only 1 sample set, with the majority of have a direct role in human health and disease.
    [Show full text]
  • Report Name:Ukraine's Mrls for Veterinary Drugs
    Voluntary Report – Voluntary - Public Distribution Date: November 05,2020 Report Number: UP2020-0051 Report Name: Ukraine's MRLs for Veterinary Drugs Country: Ukraine Post: Kyiv Report Category: FAIRS Subject Report Prepared By: Oleksandr Tarassevych Approved By: Robin Gray Report Highlights: Ukraine adopted several maximum residue levels (MRLs) for veterinary drugs, coccidiostats and histomonostats in food products of animal origin. Ukraine also adopted a list of drugs residues that are not allowed in food products. THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY The Office of Agricultural Affairs of USDA/Foreign Agricultural Service in Kyiv, Ukraine prepared this report for U.S. exporters of domestic food and agricultural products. While every possible care was taken in the preparation of this report, information provided may not be completely accurate either because policies have changed since the time this report was written, or because clear and consistent information about these policies was not available. It is highly recommended U.S. exporters verify the full set of import requirements with their foreign customers, who are normally best equipped to research such matters with local authorities, before any goods are shipped. This FAIRS Subject Report accompanies other reports on Maximum, Residue Limits established by Ukraine in 2020. Related reports could be found under the following links: 1.) Ukraine's MRLs for Microbiological Contaminants_Kyiv_Ukraine_04-27-2020 2.) Ukraine's MRLs for Certain Contaminants_Kyiv_Ukraine_03-06-2020 Food Products of animal origin and/or ingredients of animal origin are not permitted in the Ukrainian market if they contain certain veterinary drugs residues in excess of the maximum residue levels established in Tables 1 and 2.
    [Show full text]
  • Metabolism of [IC ]Methamphetamine in Man, the Guinea Pig and the Rat
    Biochem. J. (1972) 129, 11-22 11 Printed in Great Britain Metabolism of [IC ]Methamphetamine in Man, the Guinea Pig and the Rat By J. CALDWELL, L. G. DRING and R. T. WILLIAMS Department of Biochemistry, St. Mary's Hospital Medical School, London W.2, U.K. (Received 2 March 1972) 1. The metabolites of (±)-2-methylamino-1-phenyl[1-14C]propane ([14C]methamphet- amine) in urine were examined in man, rat and guinea pig. 2. In two male human subjects receiving the drug orally (20mg per person) about 90% ofthe 14C was excreted in the urine in 4 days. The urine ofthe first day was examined for metabolites, and the main metabolites were the unchanged drug (22% of the dose) and 4-hydroxymethamphetamine (15 %). Minor metabolites were hippuric acid, norephedrine, 4-hydroxyamphetamine, 4-hydroxy- norephedrine and an acid-labile precursor of benzyl methyl ketone. 3. In the rat some 82 % of the dose of '4C (45mg/kg) was excreted in the urine and 2-3 % in the faeces in 3-4 days. In 2 days the main metabolites in the urine were 4-hydroxymethamphetamine (31 % ofdose), 4-hydroxynorephedrine (16 %) and unchanged drug (11 %). Minor metabo- lites were amphetamine, 4-hydroxyamphetamine and benzoic acid. 4. The guinea pig was injected intraperitoneally with the drug at two doses, 10 and 45mg/kg. In both cases nearly 90% of the 14C was excreted, mainly in the urine after the lower dose, but in the urine (69%) and faeces (18%) after the higher dose. The main metabolites in the guinea pig were benzoic acid and its conjugates.
    [Show full text]
  • Chapter 12 Monographs of 99Mtc Pharmaceuticals 12
    Chapter 12 Monographs of 99mTc Pharmaceuticals 12 12.1 99mTc-Pertechnetate I. Zolle and P.O. Bremer Chemical name Chemical structure Sodium pertechnetate Sodium pertechnetate 99mTc injection (fission) (Ph. Eur.) Technetium Tc 99m pertechnetate injection (USP) 99m ± Pertechnetate anion ( TcO4) 99mTc(VII)-Na-pertechnetate Physical characteristics Commercial products Ec=140.5 keV (IT) 99Mo/99mTc generator: T1/2 =6.02 h GE Healthcare Bristol-Myers Squibb Mallinckrodt/Tyco Preparation Sodium pertechnetate 99mTc is eluted from an approved 99Mo/99mTc generator with ster- ile, isotonic saline. Generator systems differ; therefore, elution should be performed ac- cording to the manual provided by the manufacturer. Aseptic conditions have to be maintained throughout the operation, keeping the elution needle sterile. The total eluted activity and volume are recorded at the time of elution. The resulting 99mTc ac- tivity concentration depends on the elution volume. Sodium pertechnetate 99mTc is a clear, colorless solution for intravenous injection. The pH value is 4.0±8.0 (Ph. Eur.). Description of Eluate 99mTc eluate is described in the European Pharmacopeia in two specific monographs de- pending on the method of preparation of the parent radionuclide 99Mo, which is generally isolated from fission products (Monograph 124) (Council of Europe 2005a), or produced by neutron activation of metallic 98Mo-oxide (Monograph 283) (Council of Europe 2005b). Sodium pertechnetate 99mTc injection solution satisfies the general requirements of parenteral preparations stated in the European Pharmacopeia (Council of Europe 2004). The specific activity of 99mTc-pertechnetate is not stated in the Pharmacopeia; however, it is recommended that the eluate is obtained from a generator that is eluted regularly, 174 12.1 99mTc-Pertechnetate every 24 h.
    [Show full text]
  • An EANM Procedural Guideline
    European Journal of Nuclear Medicine and Molecular Imaging https://doi.org/10.1007/s00259-018-4052-x GUIDELINES Clinical indications, image acquisition and data interpretation for white blood cells and anti-granulocyte monoclonal antibody scintigraphy: an EANM procedural guideline A. Signore1 & F. Jamar2 & O. Israel3 & J. Buscombe4 & J. Martin-Comin5 & E. Lazzeri6 Received: 27 April 2018 /Accepted: 6 May 2018 # The Author(s) 2018 Abstract Introduction Radiolabelled autologous white blood cells (WBC) scintigraphy is being standardized all over the world to ensure high quality, specificity and reproducibility. Similarly, in many European countries radiolabelled anti-granulocyte antibodies (anti-G-mAb) are used instead of WBC with high diagnostic accuracy. The EANM Inflammation & Infection Committee is deeply involved in this process of standardization as a primary goal of the group. Aim The main aim of this guideline is to support and promote good clinical practice despite the complex environment of a national health care system with its ethical, economic and legal aspects that must also be taken into consideration. Method After the standardization of the WBC labelling procedure (already published), a group of experts from the EANM Infection & Inflammation Committee developed and validated these guidelines based on published evidences. Results Here we describe image acquisition protocols, image display procedures and image analyses as well as image interpre- tation criteria for the use of radiolabelled WBC and monoclonal antigranulocyte antibodies. Clinical application for WBC and anti-G-mAb scintigraphy is also described. Conclusions These guidelines should be applied by all nuclear medicine centers in favor of a highly reproducible standardized practice. Keywords Infection .
    [Show full text]
  • HIPPURIC ACID in Urine 8300
    HIPPURIC ACID in urine 8300 C6H5CONHCH2COOH MW: 179.18 CAS: 495-69-2 RTECS: MR8150000 METHOD: 8300, Issue 2 EVALUATION: PARTIAL Issue 1: 15 February 1984 Issue 2: 15 August 1994 BIOLOGICAL INDICATOR OF: exposure to toluene. SYNONYMS: N-benzoylglycine SAMPLING MEASUREMENT SPECIMEN: urine, end of shift after 2 days exposure TECHNIQUE: VISIBLE ABSORPTION SPECTROPHOTOMETRY VOLUME: 50 to 100 mL in 125-mL plastic bottle ANALYTE: complex of hippuric acid PRESERVATIVE: a few crystals of thymol; keep at about and benzenesulfonyl chloride 4 °C WAVELENGTH: 410 nm SHIPMENT: pack in insulated shipper with bagged refrigerant; ship by air express PATH LENGTH: 1 cm SAMPLE CALIBRATION: aqueous hippuric acid standards STABILITY: stable 1 day @ 20 °C; 1 week @ 4 C; and 2 months @ •20 C QUALITY CONTROLS: frozen pooled urine; correct for creatinine content CONTROLS: collect pre-shift urines as well as urines from non-exposed controls RANGE: 0.005 to 0.5 g/L (1:5 urine dilution) ESTIMATED LOD: 0.002 g/L PRECISION (S r): 0.06 ACCURACY: not determined APPLICABILITY: Toluene is metabolized by the body and is excreted in the urine as hippuric acid, the glycine congugate of benzoic acid. This method is useful in screening workers exposed to toluene in the absence of xylene or styrene. The lat ter 2 compounds produce metabolites that are measured as "hippuric acid." INTERFERENCES: In addition to positive interferences from styrene and xylene in the workplace, the ingestion of sodium benzoate in food, salicylic acid, or aspirin by the worker will produce a positive interference. A careful work history/ questionnaire is suggested.
    [Show full text]
  • Aluminum and Phthalates in Calcium Gluconate: Contribution from Glass and Plastic Packaging
    University of Kentucky UKnowledge Pharmaceutical Sciences Faculty Publications Pharmaceutical Sciences 1-2017 Aluminum and Phthalates in Calcium Gluconate: Contribution from Glass and Plastic Packaging Robert A. Yokel University of Kentucky, [email protected] Jason M. Unrine University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Follow this and additional works at: https://uknowledge.uky.edu/ps_facpub Part of the Pharmacy and Pharmaceutical Sciences Commons, and the Toxicology Commons Aluminum and Phthalates in Calcium Gluconate: Contribution from Glass and Plastic Packaging Digital Object Identifier (DOI) https://doi.org/10.1097/MPG.0000000000001243 Notes/Citation Information Published in Journal of Pediatric Gastroenterology & Nutrition, v. 64, no. 1, p. 109-114. Copyright © 2017 European Society for Pediatric Gastroenterology, Hepatology, and Nutrition and North American Society for Pediatric Gastroenterology. The document available for download is the authors' post-peer-review final draft of the article. It is made available under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) license. This article is available at UKnowledge: https://uknowledge.uky.edu/ps_facpub/69 Title Page Aluminum and phthalates in calcium gluconate; contribution from glass and plastic packaging Robert A. Yokel, PhD 1,2*, Jason M. Unrine, PhD 2,3 1Pharmaceutical Sciences, 2Graduate Center for Toxicology, 3Plant and Soil Sciences, University of Kentucky, Lexington, KY *Corresponding author: Robert A. Yokel, Ph.D. Department of Pharmaceutical Sciences 335 Biopharmaceutical Complex (College of Pharmacy) Building College of Pharmacy University of Kentucky Academic Medical Center Lexington, KY, 40536-0596 phone: 859-257-4855 fax: 859-257-7564 e-mail: [email protected] Word count of manuscript body: ~ 2230 Number of figures: 2 Number of Tables: 2 Conflict of interest: Robert Yokel is a founder and President of ALKYMOS, Inc.
    [Show full text]
  • Or Methionine, for Detoxication Mechanisms
    GROWTH-INHIBITION PRODUCED IN RATS BY THE ORAL ADMINISTRATION OF SODIUM BENZOATE EFFECTS OF VARIOUS DIETARY SUPPLEMENTS* ABRAHAM WHITE Growth inhibition in rats has been produced by the incorpora- tion of a variety of toxic compounds into the diet.2" 22, 23, Further, it has been possible to demonstrate that stimulation of growth occurs under these experimental conditions when one of the sulfur-contain- ing amino acids, cysteine, cystine, or methionine, is superimposed on the basal diet still containing the growth-inhibitory compound. Under these conditions the animals resume growth at a rate com- parable to that observed on the basal diet alone. In addition, other substances, e.g., glutathione and cystine disulfoxide, which are known to stimulate growth in rats stunted by one of the so-called "cystine- deficient" diets, have also been shown to be effective growth stimu- lators when added to the basal, growth-inhibiting diets. Inasmuch as these growth-promoting dietary supplements exert their action when injected subcutaneously, as well as following oral administra- tion, it has been concluded that their effect is a true metabolic one and not due to a reaction occurring in the intestine prior to absorption. The specific and unique capacity of the sulfur-containing amino acids, and of substances behaving in nutrition experiments in a man- ner similar to these amino acids, to stimulate the growth of animals ingesting a growth-inhibitory basal diet has led to the suggestion that the inhibition of the growth of the rat by certain organic compounds "is a manifestation of the production of a specific deficiency in the sulfur-containing amino acids, probably by imposing on the organism an increased requirement for organic sulfur, in the form of cystine or methionine, for detoxication mechanisms."' However, although direct proof for the formation of a detoxication product (mercap- turic acid) is clearly established for the monohalogen benzenes, and * From the Department of Physiological Chemistry, Yale University School of Medicine.
    [Show full text]