Or Methionine, for Detoxication Mechanisms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metabolomics Analysis Reveals Large Effects of Gut Microflora on Mammalian Blood Metabolites
Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites William R. Wikoffa, Andrew T. Anforab, Jun Liub, Peter G. Schultzb,1, Scott A. Lesleyb, Eric C. Petersb, and Gary Siuzdaka,1 aDepartment of Molecular Biology and Center for Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and bGenomics Institute of the Novartis Research Foundation, San Diego, CA 92121 Communicated by Steve A. Kay, University of California at San Diego, La Jolla, CA, December 19, 2008 (received for review December 12, 2008) Although it has long been recognized that the enteric community of found to extract energy from their food more efficiently compared bacteria that inhabit the human distal intestinal track broadly impacts with lean counterparts due to alterations in the composition of their human health, the biochemical details that underlie these effects gut microflora that resulted in an increased complement of genes remain largely undefined. Here, we report a broad MS-based metabo- for polysaccharide metabolism (10). It has also been observed that lomics study that demonstrates a surprisingly large effect of the gut bile salt hydrolase encoding genes are enriched in the gut micro- ‘‘microbiome’’ on mammalian blood metabolites. Plasma extracts biome, and that enteric bacteria carry out a wide range of bile acid from germ-free mice were compared with samples from conventional modifications (6, 14). These metagenomic studies suggest that the (conv) animals by using various MS-based methods. Hundreds of metabolites derived from this diverse microbial community can features were detected in only 1 sample set, with the majority of have a direct role in human health and disease. -
Metabolism of [IC ]Methamphetamine in Man, the Guinea Pig and the Rat
Biochem. J. (1972) 129, 11-22 11 Printed in Great Britain Metabolism of [IC ]Methamphetamine in Man, the Guinea Pig and the Rat By J. CALDWELL, L. G. DRING and R. T. WILLIAMS Department of Biochemistry, St. Mary's Hospital Medical School, London W.2, U.K. (Received 2 March 1972) 1. The metabolites of (±)-2-methylamino-1-phenyl[1-14C]propane ([14C]methamphet- amine) in urine were examined in man, rat and guinea pig. 2. In two male human subjects receiving the drug orally (20mg per person) about 90% ofthe 14C was excreted in the urine in 4 days. The urine ofthe first day was examined for metabolites, and the main metabolites were the unchanged drug (22% of the dose) and 4-hydroxymethamphetamine (15 %). Minor metabolites were hippuric acid, norephedrine, 4-hydroxyamphetamine, 4-hydroxy- norephedrine and an acid-labile precursor of benzyl methyl ketone. 3. In the rat some 82 % of the dose of '4C (45mg/kg) was excreted in the urine and 2-3 % in the faeces in 3-4 days. In 2 days the main metabolites in the urine were 4-hydroxymethamphetamine (31 % ofdose), 4-hydroxynorephedrine (16 %) and unchanged drug (11 %). Minor metabo- lites were amphetamine, 4-hydroxyamphetamine and benzoic acid. 4. The guinea pig was injected intraperitoneally with the drug at two doses, 10 and 45mg/kg. In both cases nearly 90% of the 14C was excreted, mainly in the urine after the lower dose, but in the urine (69%) and faeces (18%) after the higher dose. The main metabolites in the guinea pig were benzoic acid and its conjugates. -
HIPPURIC ACID in Urine 8300
HIPPURIC ACID in urine 8300 C6H5CONHCH2COOH MW: 179.18 CAS: 495-69-2 RTECS: MR8150000 METHOD: 8300, Issue 2 EVALUATION: PARTIAL Issue 1: 15 February 1984 Issue 2: 15 August 1994 BIOLOGICAL INDICATOR OF: exposure to toluene. SYNONYMS: N-benzoylglycine SAMPLING MEASUREMENT SPECIMEN: urine, end of shift after 2 days exposure TECHNIQUE: VISIBLE ABSORPTION SPECTROPHOTOMETRY VOLUME: 50 to 100 mL in 125-mL plastic bottle ANALYTE: complex of hippuric acid PRESERVATIVE: a few crystals of thymol; keep at about and benzenesulfonyl chloride 4 °C WAVELENGTH: 410 nm SHIPMENT: pack in insulated shipper with bagged refrigerant; ship by air express PATH LENGTH: 1 cm SAMPLE CALIBRATION: aqueous hippuric acid standards STABILITY: stable 1 day @ 20 °C; 1 week @ 4 C; and 2 months @ •20 C QUALITY CONTROLS: frozen pooled urine; correct for creatinine content CONTROLS: collect pre-shift urines as well as urines from non-exposed controls RANGE: 0.005 to 0.5 g/L (1:5 urine dilution) ESTIMATED LOD: 0.002 g/L PRECISION (S r): 0.06 ACCURACY: not determined APPLICABILITY: Toluene is metabolized by the body and is excreted in the urine as hippuric acid, the glycine congugate of benzoic acid. This method is useful in screening workers exposed to toluene in the absence of xylene or styrene. The lat ter 2 compounds produce metabolites that are measured as "hippuric acid." INTERFERENCES: In addition to positive interferences from styrene and xylene in the workplace, the ingestion of sodium benzoate in food, salicylic acid, or aspirin by the worker will produce a positive interference. A careful work history/ questionnaire is suggested. -
Α-Chlorinated Toluenes and Benzoyl Chloride
α-CHLORINATED TOLUENES AND BENZOYL CHLORIDE Data were last reviewed in IARC (1982) and the compounds were classified in IARC Monographs Supplement 7 (1987a). 1. Exposure Data Benzyl chloride 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 100-44-7 Chem. Abstr. Name: (Chloromethyl)benzene IUPAC Systematic Name: α-Chlorotoluene Synonyms: Chloromethyl benzene; chlorophenylmethane; α-tolyl chloride 1.1.2 Structural and molecular formulae and relative molecular mass CH2Cl C7H7Cl Relative molecular mass: 126.6 1.1.3 Chemical and physical properties of the pure substance From Lide (1997), unless otherwise specified (a) Description: Colourless liquid with a pungent odour (Lewis, 1993) (b) Boiling-point: 179°C (c) Melting-point: –45°C 20 (d) Density: d10 1.10 (e) Solubility: Insoluble in water; slightly soluble in carbon tetrachloride; miscible with chloroform, diethyl ether and ethanol (Budavari, 1996) (f) Vapour pressure: 133 Pa at 22°C; relative vapour density (air = 1), 4.36 (Ver- schueren, 1996) (g) Stability: Decomposes in hot water to benzyl alcohol (United States Environ- mental Protection Agency, 1980); decomposes rapidly when heated in the pre- sence of iron (Budavari, 1996); combustible (Lewis, 1993) (h) Reactivity: Undergoes reactions both at the side-chain containing the chlorine and at the aromatic ring (Gelfand, 1979) –453– 454 IARC MONOGRAPHS VOLUME 71 (i) Flash-point: 67°C (closed cup); 74°C (open cup) (Lin & Bieron, 1993) (j) Explosive limit: Lower, 1.1% by volume of air (Lin & Bieron, 1993) (k) Octanol/water partition coefficient (P): log P, 2.30 (Verschueren, 1996) (l) Conversion factor: mg/m3 = 5.18 × ppm 1.2 Production and use The chemical processes associated with the manufacture of chlorinated toluenes are summarized in Figure 1. -
Provisional Peer-Reviewed Toxicity Values for Benzotrichloride (Casrn 98-07-7)
FINAL 12-19-2011 Provisional Peer-Reviewed Toxicity Values for Benzotrichloride (CASRN 98-07-7) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGER Harlal Choudhury, DVM, PhD, DABT National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY ICF International 9300 Lee Highway Fairfax, VA 22031 PRIMARY INTERNAL REVIEWERS Dan D. Petersen, PhD, DABT National Center for Environmental Assessment, Cincinnati, OH Paul G. Reinhart, PhD, DABT National Center for Environmental Assessment, Research Triangle Park, NC This document was externally peer reviewed under contract to Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the contents of this document may be directed to the U.S. EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS ................................................................................... iv BACKGROUND ............................................................................................................................ 1 DISCLAIMERS .............................................................................................................................. 1 QUESTIONS REGARDING PPRTVS ......................................................................................... -
ORGANIC ACID TESTING: a Clinicians Perspective
ORGANIC ACID TESTING: A clinicians perspective Elizma Lambert Realize Health Family Clinic Loganholme, QLD WHAT IS AN ORGANIC ACID? 1 2 Copyright© 2017 belongs to Elizma Lambert. LEVELS OF INTERPRETATION LEVEL 1 Read the report and find combination products that match the suggestions made. Don’t forget to still give your usual dietary and lifestyle advice. LEVEL 2 Dividing the OAT into body systems for better clinical perspective. LEVEL 3 In-depth analysis of individual biomarkers and their place in biochemical pathways. Provides a deeper understanding. Copyright© 2017 belongs to Elizma Lambert. YEAST/FUNGAL markers Arabinose is the most common candida marker. This is a sign of connective tissue break down. Consider individual reactions based on sensitivities and genetic SNPs. Tartaric acid the second most common candida marker. Copyright© 2017 belongs to Elizma Lambert. MOULD markers Associated with aspergillus and/or penicillium mould. Most common exposures are mouldy food – fruits, grains, cheese, old nuts and peanuts, tomato pastes/sauces Absence of markers DOES NOT exclude Mould Biotoxins or CIRS Copyright© 2017 belongs to Elizma Lambert. OXALATE markers Oxalic acid is the most common and comes up 90% of the time. Usually related to diet and/or yeast overgrowth. Glyceric and Glycolic acid is more suggestive of endogenous oxalate production or genetic involvement. May indicate the need for B6 supplementation. Copyright© 2017 belongs to Elizma Lambert. CLOSTRIDIA markers Both HPHPA and 4-cresol have a 6-hydrocarbon benzene ring. HPHPA has 3 groups attached to its benzene ring – hydroxyl, phenyl and propionic acid group. It tests high more often than 4-cresol. -
Benzotrichloride (CASRN 98-07-7) | IRIS
Integrated Risk Information System (IRIS) U.S. Environmental Protection Agency Chemical Assessment Summary National Center for Environmental Assessment Benzotrichloride; CASRN 98-07-7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data, as outlined in the IRIS assessment development process. Sections I (Health Hazard Assessments for Noncarcinogenic Effects) and II (Carcinogenicity Assessment for Lifetime Exposure) present the conclusions that were reached during the assessment development process. Supporting information and explanations of the methods used to derive the values given in IRIS are provided in the guidance documents located on the IRIS website. STATUS OF DATA FOR Benzotrichloride File First On-Line 07/01/1990 Category (section) Assessment Available? Last Revised Oral RfD (I.A.) not evaluated Inhalation RfC (I.B.) not evaluated Carcinogenicity Assessment (II.) yes 07/01/1990* *A comprehensive review of toxicological studies was completed (July 13, 2006) - please see section II.D.2. for more information. I. Chronic Health Hazard Assessments for Noncarcinogenic Effects I.A. Reference Dose for Chronic Oral Exposure (RfD) Substance Name — Benzotrichloride CASRN — 98-07-7 Not available at this time. 1 Integrated Risk Information System (IRIS) U.S. Environmental Protection Agency Chemical Assessment Summary National Center for Environmental Assessment I.B. Reference Concentration for Chronic Inhalation Exposure (RfC) Substance Name — Benzotrichloride CASRN — 98-07-7 Not available at this time. II. Carcinogenicity Assessment for Lifetime Exposure Substance Name — Benzotrichloride CASRN — 98-07-7 Last Revised — 07/01/1990 Section II provides information on three aspects of the carcinogenic assessment for the substance in question; the weight-of-evidence judgment of the likelihood that the substance is a human carcinogen, and quantitative estimates of risk from oral exposure and from inhalation exposure. -
The Excretion of Dexamphetamine and Its Derivatives
Brit. J. Pharmacol. (1965), 24, 293-300. THE EXCRETION OF DEXAMPHETAMINE AND ITS DERIVATIVES BY A. M. ASATOOR, B. R. GALMAN, J. R. JOHNSON AND M. D. MILNE From the Department ofMedicine, Westminster Medical School, London, S. W.1 (Received June 2, 1964) The urinary excretion of amphetamine has been studied by Richter (1938), Jacobsen & Gad (1940), Beyer & Skinner (1940), Keller & Ellenbogen (1952) and Axelrod (1954). These investigators, however, have not examined the effect of acid-base changes on the excretion of the drug. Since amphetamine is a weak base with a high partition coefficient between lipoid solvents and water when in the un-ionized form, it was considered likely that its excretion would be influenced by changes in urinary pH (Milne, Scribner & Crawford, 1958). We have, therefore, examined the excretion and fate of dexamphetamine in man and in the rat when the urinary pH was varied. METHODS Rats. Albino rats (Wistar) weighing 250k 15 g were used. In six rats, the urine was made acid by giving ammonium chloride (100 mg as a loading dose followed by 50 mg three-times daily). In six other rats, the urine was made alkaline by giving sodium bicarbonate (100 mg as a loading dose followed by 50 mg three- times daily). The ammonium chloride and sodium bicarbonate were administered in glucose solution by intragastric tube, beginning 24 hr before the test and continuing throughout the test. The rats were placed in metabolic cages and the urine was collected. After a 24-hr control period, 3.5 mg of dexamphetamine sulphate was administered to each rat by subcutaneous injection. -
Studies on Amino Acid Metabolism. Iii. Plasma Glycine Concentration and Hippuric Acid Formation Following the Ingestion of Benzoate
STUDIES ON AMINO ACID METABOLISM. III. PLASMA GLYCINE CONCENTRATION AND HIPPURIC ACID FORMATION FOLLOWING THE INGESTION OF BENZOATE A. de Vries, … , B. Alexander, Y. Quamo J Clin Invest. 1948;27(5):665-668. https://doi.org/10.1172/JCI102014. Research Article Find the latest version: https://jci.me/102014/pdf STUDIES ON AMINO ACID METABOLISM. III. PLASMA GLYCINE CONCENTRATION AND HIPPURIC ACID FORMATION FOLLOWING THE INGESTION OF BENZOATE1 By A. DE VRIES AND B. ALEXANDER, WITH THE TECHNICAL ASSISTANCE OF Y. QUAMO (From the Medical Research Laboratory, Beth Israel Hospital, and the Department of Medicine, Harvard Medical School, Boston) (Received for publication January 16, 1948) The conjugation of benzoic acid with glycine, within one hour (Nos. 3, 4, 10); in two subjects resulting in the formation of hippuric acid, takes (Nos. 5, 6) it started to rise again during the pe- place in liver (1) and kidney (2). The urinary riod of observation. The largest drop in plasma output of this conjugate after the administration glycine amounted to 2.04 mgm. per cent (52 per of benzoate is used to measure this aspect of cent of the initial concentration); in general, how- hepatic function (3). over, the extent of the drop was between 20 and 32 Theoretically, decreased hippuric acid forma- per cent of the fasting glycine concentration, and tion may be due to hepatic and/or renal disease or was unrelated to this value. to an inadequate supply of glycine. In this re- The amounts of hippuric acid excreted varied gard it is not clear to what extent this amino acid widely. -
01 Excipients Prelims 1..9
Benzoic Acid B 1 Nonproprietary Names Table II: Pharmacopeial specifications for benzoic acid. BP: Benzoic Acid Test JP XV PhEur 6.4 USP 32 JP: Benzoic Acid þþþ PhEur: Benzoic Acid Identification Characters — þ — USP: Benzoic Acid Melting point 121–1248C 121–1248C 121–1238C Water 40.5% — 40.7% 2 Synonyms Residue on ignition 40.05% 40.1% 40.05% Readily carbonizable þþþ Acidum benzoicum; benzenecarboxylic acid; benzeneformic acid; substances carboxybenzene; dracylic acid; E210; phenylcarboxylic acid; Readily oxidizable þþþ phenylformic acid. substances Heavy metals 420 ppm 410 ppm 410 ppm 3 Chemical Name and CAS Registry Number Halogenated þ 4300 ppm — compounds and Benzoic acid [65-85-0] halides Appearance of — þ — 4 Empirical Formula and Molecular Weight solution Phthalic acid þ —— C7H6O2 122.12 Assay (anhydrous 599.5% 99.0–100.5% 99.5–100.5% basis) 5 Structural Formula 10 Typical Properties Acidity/alkalinity pH = 2.8 (saturated aqueous solution at 258C) Antimicrobial activity Only the undissociated acid shows anti- microbial properties; the activity therefore depends on the pH of the medium. Optimum activity occurs at pH values below 4.5; at values above pH 5, benzoic acid is almost inactive.(5) It has been reported that antimicrobial activity is enhanced by the addition (6) 6 Functional Category of protamine, a basic protein. Bacteria Moderate bacteriostatic activity against most species Antimicrobial preservative; therapeutic agent. of Gram-positive bacteria. Typical MIC is 100 mg/mL. Activity is less, in general, against Gram-negative bacteria. 7 Applications in Pharmaceutical Formulation or MIC for Gram-negative bacteria may be up to 1600 mg/mL. -
The Effects of Fasting on Toluene Metabolite (Hipp Uric Acid) Excretion in Urine (A Case Study of Shoe-Makers in Tambak Oso Wilangun Village -Surabaya)
The Effects of Fasting on Toluene Metabolite (Hipp uric Acid) Excretion in Urine (A Case Study of Shoe-Makers in Tambak Oso Wilangun Village -Surabaya) Erwin Dyah Nawawinetu1, Abdul Rohim Tualeka2 1Health Department, Vocational Faculty, Airlangga University, 2Department of Occupational Health and Safety, School of Public Health, Airlangga University, Indonesia Abstract Background: An increase in toluene metabolite (hippuric acid) excretion in urine can be stimulated by such factors as fasting, smoking and coffee consumption. This research aimed at studying the effects of fasting on urinary toluene excretion of shoemakers in Tambak Oso Wilangun-Surabaya. Method : This controlled case-study was conducted to 20 workers with purposive sampling method from the population. The independent variables of the study include toluene concentration, fasting or not fasting condition, smoking, and coffee consumption. The dependent variable was urinary hippuric acid concentration. Pearson Correlation test was conducted to identify the correlation between toluene concentration and hippuric acid concentration. Paired-t-test was used to compare hippuric acid concentration in fasting and non-fasting condition. The correlations between coffee consumption and smoking and hippuric acid concentration were analyzed by using chi-square test ( a=0,05). Risk assessment was used to identify the health risk from occupational toluene exposure. Result: The research showed that most of the respondents ( 65%) were at risk to health problems related to toluene exposure (RQ> 1 ). The statistical tests showed no significant correlation between toluene concentration and hippuric acid concentration; there was a significant difference between hippuric acid concentration before and after fasting (p=0,016; p<a); there was a significant correlation between hippuric acid concentration (non fasting) with smoking habit (p=0,022), coffee consuming habit (p=0,025); and between hippuric acid concentration (in fasting condition) with coffee consuming (p=0,039). -
Organic Acids Support Guide
ORGANIC ACIDS SUPPORT GUIDE RETURN TO TABLE OF CONTENTS ORGANIC ACIDS Serotonin Markers .....................................................................22 Organic Acids ...................................................................................... 3 5-Hydroxyindolacetic Acid (5-HIAA) ..............................22 Malabsorption and Dysbiosis Markers ................................... 4 Toxin and Detoxification Markers ...........................................23 Malabsorption Markers ............................................................. 4 Pyroglutamic Acid ................................................................23 Indoleacetic Acid .................................................................... 4 α-Ketophenylacetic Acid ....................................................24 Phenylacetic Acid .................................................................... 4 α-Hydroxyisobutyric Acid ..................................................24 Dysbiosis Markers ........................................................................ 5 Orotic Acid ...............................................................................25 Dihydroxyphenylpropionic Acid (DHPPA) ..................... 5 Oxalate Markers ..............................................................................26 3-Hydroxyphenylacetic Acid and Glyceric Acid ...........................................................................27 4-Hydroxyphenylacetic Acid ............................................... 5 Glycolic Acid ...........................................................................28