Zonally Contrasting Shifts of the Tropical Rainbelt in Response to Climate Change
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Science Journals — AAAS
SCIENCE ADVANCES | RESEARCH ARTICLE CLIMATOLOGY 2017 © The Authors, some rights reserved; Human-induced changes in the distribution of rainfall exclusive licensee American Association 1,2 2 for the Advancement Aaron E. Putnam * and Wallace S. Broecker of Science. Distributed under a Creative ’ A likely consequence of global warming will be the redistribution of Earth s rain belts, affecting water availability Commons Attribution ’ for many of Earth s inhabitants. We consider three ways in which planetary warming might influence the global NonCommercial distribution of precipitation. The first possibility is that rainfall in the tropics will increase and that the subtropics License 4.0 (CC BY-NC). and mid-latitudes will become more arid. A second possibility is that Earth’s thermal equator, around which the planet’s rain belts and dry zones are organized, will migrate northward. This northward shift will be a consequence of the Northern Hemisphere, with its large continental area, warming faster than the Southern Hemisphere, with its large oceanic area. A third possibility is that both of these scenarios will play out simultaneously. We review paleoclimate evidence suggesting that (i) the middle latitudes were wetter during the last glacial maximum, (ii) a northward shift of the thermal equator attended the abrupt Bølling-Allerød climatic transition ~14.6 thousand years ago, and (iii) a southward shift occurred during the more recent Little Ice Age. We also inspect trends in Downloaded from seasonal surface heating between the hemispheres over the past several decades. From these clues, we predict that there will be a seasonally dependent response in rainfall patterns to global warming. -
An Observational Study of the Tropical Tropospheric Circulation
An Observational Study of the Tropical Tropospheric Circulation Ioana M. Dima A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2005 Program Authorized to Offer Degree: Department of Atmospheric Sciences University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Ioana M. Dima and have found that it is complete and satisfactory in all respects, and that any and all revisions by the final examining committee have been made. Chair of the Supervisory Committee: ______________________________________________________________________ John M. Wallace Reading Committee: ______________________________________________________________________ John M. Wallace ______________________________________________________________________ Dennis L. Hartmann ______________________________________________________________________ Edward S. Sarachik Date: ______________________ In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of the dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be referred to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, to whom the -
Final Corals Supplemental Information Report
Supplemental Information Report on Status Review Report And Draft Management Report For 82 Coral Candidate Species November 2012 Southeast and Pacific Islands Regional Offices National Marine Fisheries Service National Oceanic and Atmospheric Administration Department of Commerce Table of Contents INTRODUCTION ............................................................................................................................................. 1 Background ............................................................................................................................................... 1 Methods .................................................................................................................................................... 1 Purpose ..................................................................................................................................................... 2 MISCELLANEOUS COMMENTS RECEIVED ...................................................................................................... 3 SRR EXECUTIVE SUMMARY ........................................................................................................................... 4 1. Introduction ........................................................................................................................................... 4 2. General Background on Corals and Coral Reefs .................................................................................... 4 2.1 Taxonomy & Distribution ............................................................................................................. -
FINAL DRAFT Technical Summary IPCC SR Ocean and Cryosphere
FINAL DRAFT Technical Summary IPCC SR Ocean and Cryosphere Technical Summary Editorial Team): Hans-Otto Pörtner (Germany), Debra Roberts (South Africa), Valerie Masson-Delmotte (France), Panmao Zhai (China), Elvira Poloczanska (UK/Australia), Katja Mintenbeck (Germany), Melinda Tignor (USA), Jan Petzold (Germany), Nora Weyer (Germany), Andrew Okem (Nigeria), Marlies Craig (South Africa), Maike Nicolai (Germany), Andrés Alegría (Honduras), Stefanie Langsdorf (Germany), Bard Rama (Kosovo), Anka Freund (Germany) Authors: Amro Abd-Elgawad (Egypt), Nerilie Abram (Australia), Carolina Adler (Switzerland/Australia), Andrés Alegría (Honduras), Javier Arístegui (Spain), Nathaniel L. Bindoff (Australia), Laurens Bouwer (Netherlands), Bolívar Cáceres (Ecuador), Rongshuo Cai (China), Sandra Cassotta (Denmark), Lijing Cheng (China), So-Min Cheong (Republic of Korea), William W. L. Cheung (Canada), Maria Paz Chidichimo (Argentina), Miguel Cifuentes-Jara (Costa Rica), Matthew Collins (UK), Susan Crate (USA), Rob Deconto (USA), Chris Derksen (Canada), Alexey Ekaykin (Russian Federation), Hiroyuki Enomoto (Japan), Thomas Frölicher (Switzerland), Matthias Garschagen (Germany), Jean-Pierre Gattuso (France), Tuhin Ghosh (India), Bruce Glavovic (New Zealand), Nicolas Gruber (Switzerland), Stephan Gruber (Canada/Germany), Valeria A. Guinder (Argentina), Robert Hallberg (USA), Sherilee Harper (Canada), John Hay (Cook Islands), Nathalie Hilmi (France), Jochen Hinkel (Germany), Yukiko Hirabayashi (Japan), Regine Hock (USA), Elisabeth Holland (Fiji), Anne Hollowed -
Bjerknes, 1966: a Possible Response of the Atmospheric Hadley
A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature By J. BJERKNES, University of California, Los Angeles (Manuscript received January 18, 1966) ABSTRACT Weakness and temporary elimination of the equatorial easterly winds over the eastern and central Pacific in late 1957 and early 1958 brought about a brief cessation of equatorial upwelling which in turn caused the occurrence of above-normal surface water temperatures in the tropical Pacific from the American coast westward to the dateline. This sudden introduction of a large anomalous heat source for the atmosphere intensified its thermodynamic circulation, especially in the wintertime (northern) hemisphere. Record intensity of the westerlies resulted in the eastern North Pacific. The anomalous depth of the Low in the Gulf of Alaska had the downwind effect of weakening the Iceland Low and setting the stage for a cold winter in northern Europe. Introduction tion run faster than normal in the affected longitude sector and transport absolute angular The concept of the Hadley circulation as used momentum to the subtropical jet stream at a in this article refers to the rising motion at the faster rate than normal. The continued pole- thermal equator and simultaneous sinking mo- ward flux of absolute angular momentum and tion in the belt of subtropical highs mutually the downward flux of the same in the belt of connected by the equatorward component of surface westerlies can then also be assumed to the tradewinds in the lower troposphere and by maintain stronger than normal westerlies in the compensating flow away from the equator in middle latitudes of t,he longitude sector under the upper troposphere. -
The Intertropical Convergence Zone (ITCZ)
9/19/2018 Dr. Hoch RGPL 103 Global Cities: Planning and Development Dr. Hoch Email: [email protected] 1 9/19/2018 2 9/19/2018 Earth’s Orbit Around Sun Aphelion Perihelion July 6 (12:00) Jan 3 (00:00) 152.5 Million Km 147.5 Mil. Km EARTH SUN Dates for 2010 Earth Rotation Earth’s axis N Pole Ecliptic Plane (Plane of earth revolution around sun) 23 1/2° 3 9/19/2018 Northern Hemisphere Seasons • Summer • North pole tilted toward Sun • Days are longer than the nights • Get more energy - higher temperatures •Fall • Neither pole tilted toward the Sun • Days about equal with nights • Less energy than in the summer • Cooler temperatures Northern Hemisphere Seasons cont. •Winter • North pole tilted away from the Sun • Days shorter than the nights • Get less energy-Cold temperatures • Spring • Neither pole tilted toward the Sun • Days about equal to nights • More energy than winter- Warmer temperatures 4 9/19/2018 Global regions • Tropics (23 ½°N ‐ 23 ½°S) • Low latitudes (30°N ‐ 30°S) • Mid latitudes (30°N ‐ 60°N and 30°S ‐ 60°S ) • High latitudes (60°N ‐ 90°N and 60°S ‐ 90°S ) 5 9/19/2018 Key positional relationships •Tropic of Cancer - 23 1/2° N •Highest latitude in the Northern Hemisphere that the suns vertical rays ever reach •Tropic of Capricorn- 23 1/2° S •Highest latitude in the Southern Hemisphere that the suns vertical rays ever reach •Arctic circle- 66 1/2° N •24 hrs of daylight-summer solstice •24 hrs of darkness at winter solstice •Antarctic circle- 66 1/2° S •24 hrs of daylight-winter solstice •24 hrs of darkness at summer solstice Circle -
Archipiélago De Revillagigedo
LATIN AMERICA / CARIBBEAN ARCHIPIÉLAGO DE REVILLAGIGEDO MEXICO Manta birostris in San Benedicto - © IUCN German Soler Mexico - Archipiélago de Revillagigedo WORLD HERITAGE NOMINATION – IUCN TECHNICAL EVALUATION ARCHIPIÉLAGO DE REVILLAGIGEDO (MEXICO) – ID 1510 IUCN RECOMMENDATION TO WORLD HERITAGE COMMITTEE: To inscribe the property under natural criteria. Key paragraphs of Operational Guidelines: Paragraph 77: Nominated property meets World Heritage criteria (vii), (ix) and (x). Paragraph 78: Nominated property meets integrity and protection and management requirements. 1. DOCUMENTATION (2014). Evaluación de la capacidad de carga para buceo en la Reserva de la Biosfera Archipiélago de a) Date nomination received by IUCN: 16 March Revillagigedo. Informe Final para la Direción de la 2015 Reserva de la Biosiera, CONANP. La Paz, B.C.S. 83 pp. Martínez-Gomez, J. E., & Jacobsen, J.K. (2004). b) Additional information officially requested from The conservation status of Townsend's shearwater and provided by the State Party: A progress report Puffinus auricularis auricularis. Biological Conservation was sent to the State Party on 16 December 2015 116(1): 35-47. Spalding, M.D., Fox, H.E., Allen, G.R., following the IUCN World Heritage Panel meeting. The Davidson, N., Ferdaña, Z.A., Finlayson, M., Halpern, letter reported on progress with the evaluation process B.S., Jorge, M.A., Lombana, A., Lourie, S.A., Martin, and sought further information in a number of areas K.D., McManus, E., Molnar, J., Recchia, C.A. & including the State Party’s willingness to extend the Robertson, J. (2007). Marine ecoregions of the world: marine no-take zone up to 12 nautical miles (nm) a bioregionalization of coastal and shelf areas. -
Marine Biodiversity of an Eastern Tropical Pacific Oceanic Island, Isla Del Coco, Costa Rica
Marine biodiversity of an Eastern Tropical Pacific oceanic island, Isla del Coco, Costa Rica Jorge Cortés1, 2 1. Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Ciudad de la Investigación, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica; [email protected] 2. Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica Received 05-I-2012. Corrected 01-VIII-2012. Accepted 24-IX-2012. Abstract: Isla del Coco (also known as Cocos Island) is an oceanic island in the Eastern Tropical Pacific; it is part of the largest national park of Costa Rica and a UNESCO World Heritage Site. The island has been visited since the 16th Century due to its abundance of freshwater and wood. Marine biodiversity studies of the island started in the late 19th Century, with an intense period of research in the 1930’s, and again from the mid 1990’s to the present. The information is scattered and, in some cases, in old publications that are difficult to access. Here I have compiled published records of the marine organisms of the island. At least 1688 species are recorded, with the gastropods (383 species), bony fishes (354 spp.) and crustaceans (at least 263 spp.) being the most species-rich groups; 45 species are endemic to Isla del Coco National Park (2.7% of the total). The number of species per kilometer of coastline and by square kilometer of seabed shallower than 200m deep are the highest recorded in the Eastern Tropical Pacific. Although the marine biodiversity of Isla del Coco is relatively well known, there are regions that need more exploration, for example, the south side, the pelagic environments, and deeper waters. -
The Ecoveg Approach in the Americas: U.S., Canadian and International Vegetation Classifications
Phytocoenologia Vol. 48 (2018), Issue 2, 215–237 Special Issue Classification Approaches Published online December 2017 Review and Synthesis Open Access Article The EcoVeg approach in the Americas: U.S., Canadian and International Vegetation Classifications Don Faber-Langendoen*, Ken Baldwin, Robert K. Peet, Del Meidinger, Este Muldavin, Todd Keeler-Wolf & Carmen Josse Abstract The purpose of the EcoVeg classification approach is to describe the diversity of terrestrial ecosystems across the globe and inform decisions about conservation and resource management. The approach provides the sci- entific basis for the U.S. National Vegetation Classification, Canadian National Vegetation Classification and NatureServe’s International Vegetation Classification, and has encouraged international and national collabora- tions elsewhere in the Americas. The approach is global, but most advanced in the western hemisphere, espe- cially the U.S. and Canada. EcoVeg provides a consistent thematic framework to support extensive vegetation mapping across the U.S. and Latin America. The approach provides an 8-level hierarchy for natural types, with three upper (formation) levels, three mid (physiognomic-biogeographic-floristic) levels and 2 lower (floristic) levels, and a separate 8-level hierarchy for cultural types. Types are maintained through a review board to en- sure consistent definition. All protocols use the best available scientific information, including plot data and secondary sources. Preferred plot sizes typically range from 0.01 to 0.1 ha (to 1.0 ha in tropical vegetation). Plot data include full species lists by strata with cover values, and supporting environmental and site data. The clas- sification approach meets the need for a dynamic, 8- level catalog of types for all existing vegetation. -
Interim Guidelines for Identification and Selection of Coastal Biosphere Reserves
FILE COPY INTERIM GUIDELINES FOR IDENTIFICATION AND SELECTION OF COASTAL BIOSPHERE RESERVES U.S. Man and the Biosphere Program a.S. MAB Report No. 6 INTERIM GUIDELINES FOR IDENTIFICATION AND SELECTION OF COASTAL BIOSPHERE RESERVES A Report to the Directorate on Biosphere Reserves. United States Man and the Biosphere Program (MAB-8) Prepared by an Expert Panel on Coastal Biosphere Reserves G. Carleton Ray, Chairman John R. Clark Nancy M. Foster Paul J. Godfrey Bruce P. Hayden Stephen P. Leatherman. William E. Odum J. Henry Sather William P. Gregg, Jr., MAB Coordinator National Park Service 1981 (These guidelines have been approved by the U.S. MAB Directorate on Biosphere Reserves for use on an interim basis in identification and selection of coastal biosphere reserves. They are now being tested and will be revised as necessary and approved in final form by the Directorate following field testing.) TABLE OF CONTENTS INTRODUCTION . 1 DEFINITION OF THE COASTAL ZONE . 2 CLASSIFICATION OF THE U.S. COASTAL ZONE ................... 3 Regions . 3 Ecosystems . 6 ECOLOGICAL PROCESSES . 13 IDENTIFICATION AND SELECTION OF BIOSPHERE RESERVES ........ 16 Application of UNESCO Selection Criteria............. 16 Responsibilities of the Ad Hoc Selection Panel....... 18 APPENDICES I. List of Biosphere Reserves in the United States . .... 23 II. Expert Panel on Coastal Biosphere Reserves.......... 24 III. Types of Nominations . 25 IV. Biosphere Reserve Nomination Form................... 26 LIST OF TABLES Table 1 Presence of Ecosystem Types in Coastal Zone Regions ..................................... 7 Table 2 Principal Activities Leading to Designation of World Biosphere Reserves ....................... 20 Table 3 Sample Tabulations of Rating Factors for Use in Evaluation of Biosphere Reserve Sites in a Coastal Zone Region ........................... -
Stream Metabolism Heats Up
news & views unique in its spatial collocation with a Karin Sigloch 4. Pierce, K. L. & Morgan, L. A. Geol. Soc. Am. Mem. 179, 1–54 (1992). massive pile of subducted lithosphere. Department of Earth Sciences, University of Oxford, 5. Smith, R. B. et al. J. Volcanol. Geoth. Res. 188, 26–56 (2009). Ying Zhou’s3 observations are thus Oxford, UK. 6. Sigloch, K., McQuarrie, N. & Nolet, G. Nat. Geosci. 1, 458–462 intriguing because they suggest the e-mail: [email protected] (2008). 7. Burdick, S. et al. Seismol. Res. Lett. 79, 384–392 (2008). existence of a semi-deep upwelling within 8. Sigloch, K. Geochem. Geophys. Geosyst. 12, Q02W08 (2011). a deep subduction setting. Her proposed Published online: 21 May 2018 9. Schmandt, B. & Lin, F. C. Geophys. Res. Lett. 41, 6342–6349 explanation, of passive, wet mantle (2014). https://doi.org/10.1038/s41561-018-0150-4 10. Cao, A. & Levander, A. J. Geophys. Res. 115, B07301 (2010). upwelling in reaction to sudden slab 11. Schmandt, B., Dueker, K., Humphreys, E. & Hansen, S. foundering, opens a window to explain References Earth Planet. Sci. Lett. 331, 224–236 (2012). surficial plume indicators and will hopefully 1. Morgan, W. J. Bull. Am. Assoc. Pet. Geol. 56, 203–213 (1972). 12. Gao, S. S. & Liu, K. H. J. Geophys. Res. 119, 6452–6468 (2015). motivate the broader geoscience disciplines 2. Christiansen, R. L., Foulger, G. R. & Evans, J. R. Geol. Soc. Am. 13. Nelson, P. L. & Grand, S. P. Nat. Geosci. 11, 280–284 (2018). Bull. 114, 1245–1256 (2002). -
Pacific Ocean Synthesis
Pacific Ocean Synthesis Scientific Literature Review of Coastal and Ocean Threats, Impacts, and Solutions May 2009 This literature review was completed as of October 2008. The authors comprehensively reviewed the literature, but may have missed important reports and papers. If you know of a report or paper we have not included in this literature review documenting Pacific Ocean threats, impacts, or solutions please send the reference to [email protected]. Center for Ocean Solutions. 2009. Pacific Ocean Synthesis: Scientific Literature Review of Coastal and Ocean Threats, Impacts, and Solutions. The Woods Center for the Environment, Stanford University. California. © 2009 by the Board of Trustees of the Leland Stanford Junior University The Center for Ocean Solutions is a collaboration between Stanford University (including the Hopkins Marine S Station) (www.stanford.edu), the Monterey Bay Aquarium, and the Monterey Bay Aquarium Research Institute (MBARI) (www.mbayaq.org). The Center for Ocean Solutions is administered by the Woods Institute for the Environment at Stanford University. Primary authors: Margaret Caldwell, Tegan Churcher Hoffmann, Stephen Palumbi, Jessica Teisch, Chelsea Tu. Contributors are listed in Appendix A. EAN SOLUTION OC Cover Photo: Schooling Tuna (Danilo Cedrone, Courtesy of United Nations Food and Agriculture Organization) Photo on the right: School of fish in Palau (David Burdick) CENTER FOR B Abstract The objective of this Pacific Ocean synthesis is to comprehensively and systematically survey the published scientific literature, government publications and other peer-reviewed reports to identify Pacific Ocean and regional threats as well as the environmental and socioeconomic impacts of those threats. In addition, the report highlights select regional and Pacific Ocean solutions presented by the literature.