Cloning and Analysis of the Mating-Type Idiomorphs from the Barley Pathogen Septoria Passerinii

Total Page:16

File Type:pdf, Size:1020Kb

Cloning and Analysis of the Mating-Type Idiomorphs from the Barley Pathogen Septoria Passerinii Mol Gen Genomics (2003) 269: 1–12 DOI 10.1007/s00438-002-0795-x ORIGINAL PAPER S. B. Goodwin Æ C. Waalwijk Æ G. H. J. Kema J. R. Cavaletto Æ G. Zhang Cloning and analysis of the mating-type idiomorphs from the barley pathogen Septoria passerinii Received: 15 April 2002 / Accepted: 5 December 2002 / Published online: 11 March 2003 Ó Springer-Verlag 2003 Abstract The genus Septoria contains more than 1000 amplified polymorphic DNA markers revealed that each species of plant pathogenic fungi, most of which have no isolate had a unique genotype. The common occurrence known sexual stage. Species of Septoria without a known of both mating types on the same leaf and the high levels sexual stage could be recent derivatives of sexual species of genotypic diversity indicate that S. passerinii is almost that have lost the ability to mate. To test this hypothesis, certainly not an asexual derivative of a sexual fungus. the mating-type region of S. passerinii, a species with no Instead, sexual reproduction probably plays an integral known sexual stage, was cloned, sequenced, and com- role in the life cycle of S. passerinii and may be much pared to that of its close relative S. tritici (sexual stage: more important than previously believed in this (and Mycosphaerella graminicola). Both of the S. passerinii possibly other) ‘‘asexual’’ species of Septoria. mating-type idiomorphs were approximately 3 kb in size and contained a single reading frame interrupted by one Keywords Cochliobolus Æ Evolution Æ (MAT-2)ortwo(MAT-1) putative introns. The putative Loculoascomycetes Æ Multiplex PCR Æ Mycosphaerella products of MAT-1 and MAT-2 are characterized by graminicola alpha-box and high-mobility-group sequences, respec- tively, similar to those in the mating-type genes of M. graminicola and other fungi. The mating-type genes of Introduction S. passerinii and M. graminicola are evolving rapidly, approximately ten times faster than the internal tran- Many species of fungi have different binomial names for scribed spacer region of the ribosomal DNA, and are not their sexual and asexual life stages. Septoria is a genus closely related to those from Cochliobolus or other lo- that includes the asexual stages of more than 1000 species culoascomycetes in the order Pleosporales. Therefore, the of plant pathogenic fungi. Many economically important class Loculoascomycetes may be polyphyletic. Further- diseases are caused by species of Septoria, including cel- more, differences between the phylogenetic trees may ery leaf spot (caused by S. apiicola), azalea leaf scorch indicate separate evolutionary histories for the MAT-1 (S. azaleae), hard rot and leaf spot of gladiolus (S. glad- and MAT-2 idiomorphs. A three-primer multiplex-PCR ioli), and tomato leaf spot (S. lycopersici). Most species technique was developed that allowed rapid identifica- have a limited host range, but the genus as a whole infects tion of the mating types of isolates of S. passerinii.Both plants ranging from primitive (e.g., ferns and lycopods) mating types were present in approximately equal fre- to advanced (e.g., composites, grasses, and orchids) quencies and often on the same leaf in fields in Minnesota types, and with both herbaceous and arboreal growth and North Dakota. Analyses with isozyme and random forms. Most species have no known sexual stage. How- ever, for those species in which one has been identified, Communicated by E. Cerda´-Olmedo the sexual stage is placed in the genus Mycosphaerella (Hawksworth et al. 1995), another large and economi- S. B. Goodwin (&) Æ J. R. Cavaletto Æ G. Zhang cally important group of plant pathogenic fungi. To- USDA-ARS, Department of Botany and Plant Pathology, gether, the genera Septoria and Mycosphaerella contain Purdue University, 915 West State Street, more than 1500 species that infect most, if not all, of the West Lafayette, IN 47907-2054, USA E-mail: [email protected] major plant families. Fax: +1-765-494-0363 One species with no known sexual stage is Septoria C. Waalwijk Æ G. H. J. Kema passerinii, the cause of speckled leaf blotch of barley Plant Research International B.V., (Hordeum vulgare and closely related species). This P.O. Box 16, 6700 AA Wageningen, The Netherlands pathogen was first described more than 120 years ago, 2 but has never been associated with a sexual stage type sequences of M. graminicola could be used to clone (Cunfer and Ueng 1999). One possible explanation for the homologous region(s) from closely related species this could be that the sexual stage was lost during the such as S. passerinii. evolutionary process and no longer exists. If this is The purpose of this research was to use both direct correct, then the proliferation of the pathogen now oc- and indirect approaches to test the hypothesis that curs solely by asexual reproduction. Another possibility S. passerinii is a recently derived, asexual relative of is that the sexual structures may be small, ephemeral, or M. graminicola. A secondary goal was to estimate the produced only under specific conditions and, because of rates of change in the mating-type genes compared to this, have simply been overlooked. According to this the internal transcribed spacer (ITS) region of the rib- scenario the pathogen should undergo cycles of sexual osomal DNA, in order to test the hypothesis that the reproduction that have remained unobserved. mating-type genes in the Mycosphaerellaceae evolve Recent phylogenetic analyses of S. passerinii revealed rapidly, as they do in the genus Cochliobolus (Turgeon a close evolutionary relationship with the septoria tritici 1998). The final goal was to design primers for multiplex leaf blotch pathogen of wheat, Mycosphaerella gra- PCR that could be used to quickly determine the mating minicola (Goodwin and Zismann 2001). The asexual types of large numbers of isolates of S. passerinii. stage of M. graminicola, S. tritici, is quite similar to S. passerinii morphologically (Goodwin and Zismann 2001). However, the sexual stage of S. tritici has been Materials and methods known since 1972 (Sanderson 1972), and it appears to play an important part in the life cycle of this pathogen Fungal isolates and culture methods (Hunter et al. 1999; Kema et al. 1996; Shaw and Royle Diseased leaves were sampled from one barley field in Minnesota 1989; Zhan et al. 1998). If S. passerinii is truly asexual, it and three in North Dakota, by David Long (USDA-ARS, Cereal could be a recent derivative from the same evolutionary Disease Laboratory, St. Paul, Minn.) during 1995 (Table 1). Leaf lineage as M. graminicola. pieces were surface-sterilized by immersion in a 0.5% solution of In the absence of a known sexual stage, several ap- sodium hypochlorite for 30 s, then placed on glass microscope slides in petri dishes. The petri dishes were lined with filter paper proaches can be used to test for evidence of sexual re- saturated with sterile distilled water to provide humidity and were production (Milgroom 1996). Indirect methods analyze incubated at 20°C for 2–4 days to induce sporulation of the fungus. the observed levels of genotypic diversity. Populations When spore masses became visible under a dissecting microscope, with regular cycles of sexual reproduction should have the conidia were diluted in sterile distilled water and transferred to potato dextrose agar (PDA, Difco Laboratories, Detroit, Mich.) many more genotypes, with consequently higher levels plates. After a few days, single germinated conidia were transferred of genotypic diversity, compared to those with only to fresh PDA plates. At least three germinated conidia were asexual reproduction. This type of genetic structure is transferred from different asexual spore structures on each leaf. seen in most populations of M. graminicola worldwide Following isolation, the cultures were maintained on yeast-malt agar (YMA) plates (4 g yeast extract, 4 g malt extract, 4 g sucrose, (McDonald et al. 1995). Other methods to test for the 15 g agar per liter, with 50 lg kanamycin per ml added after possibility of sexual reproduction involve assaying the autoclaving) at room temperature (22–24°C). Three additional occurrence, frequency, or expression of the mating-type isolates were purchased from the American Type Culture Collec- genes directly. Populations of parasitic fungi in which tion (Accession Nos. 22585, 26515, and 26516). For long-term mating occurs by direct contact on the host substrate are storage, cultures were kept on lyophilized filter-paper pieces at )80°C. expected to have both mating types in approximately Mycelia for isozyme and random amplified polymorphic DNA equal frequencies (Milgroom 1996). In contrast, asexual (RAPD) analyses were grown on YMA plates for 12 days at room fungi often have only one of the two mating types re- temperature. For medium-scale DNA extraction, mycelium was quired to initiate sexual reproduction (Christiansen et al. grown in yeast-malt broth on a shaking platform at room temperature, then harvested, lyophilized and stored as described 1998; Sharon et al. 1996), although some exceptions are previously (Goodwin et al. 2001a). known (Yun et al. 1999, 2000). A direct assay for possible sexual reproduction of species of Septoria became possible recently when both DNA extraction, library construction and Southern analyses mating-type genes were cloned from M. graminicola (Waalwijk et al. 2002). This species has an outcrossing Medium-scale DNA extraction from lyophilized mycelia was car- ried out as described by Biel and Parrish (1986), with major modi- mating system (Kema et al. 1996) with two mating-type fications. One gram of mycelium was frozen in liquid nitrogen and genes designated MAT1-1 and MAT1-2 (Waalwijk ground to a fine powder with a mortar and pestle. Approximately et al. 2002). Because only one mating-type locus is pre- 500 mg of the powder was transferred to a microcentrifuge tube, sent, these can be referred to as MAT-1 and MAT-2 suspended in 1 ml of lysis buffer (50 mM TRIS-HCl pH 7.5, 5 mM EDTA, 2% SDS, and 250 lg proteinase K per ml), and incubated at according to the informal nomenclature of Turgeon and 37°C for 1 h.
Recommended publications
  • The Taxonomy, Phylogeny and Impact of Mycosphaerella Species on Eucalypts in South-Western Australia
    The Taxonomy, Phylogeny and Impact of Mycosphaerella species on Eucalypts in South-Western Australia By Aaron Maxwell BSc (Hons) Murdoch University Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological Sciences and Biotechnology Murdoch University Perth, Western Australia April 2004 Declaration I declare that the work in this thesis is of my own research, except where reference is made, and has not previously been submitted for a degree at any institution Aaron Maxwell April 2004 II Acknowledgements This work forms part of a PhD project, which is funded by an Australian Postgraduate Award (Industry) grant. Integrated Tree Cropping Pty is the industry partner involved and their financial and in kind support is gratefully received. I am indebted to my supervisors Associate Professor Bernie Dell and Dr Giles Hardy for their advice and inspiration. Also, Professor Mike Wingfield for his generosity in funding and supporting my research visit to South Africa. Dr Hardy played a great role in getting me started on this road and I cannot thank him enough for opening my eyes to the wonders of mycology and plant pathology. Professor Dell’s great wit has been a welcome addition to his wealth of knowledge. A long list of people, have helped me along the way. I thank Sarah Jackson for reviewing chapters and papers, and for extensive help with lab work and the thinking through of vexing issues. Tania Jackson for lab, field, accommodation and writing expertise. Kar-Chun Tan helped greatly with the RAPD’s research. Chris Dunne and Sarah Collins for writing advice.
    [Show full text]
  • Isolation and Characterization of the Mating Type Locus Of
    MOLECULAR PLANT PATHOLOGY (2007) 8(1), 111–120 DOI: 10.1111/J.1364-3703.2006.00376.X IsolationBlackwell Publishing Ltd and characterization of the mating type locus of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana LAURA CONDE-FERRÁEZ1,*, CEES WAALWIJK2, BLONDY B. CANTO-CANCHÉ1, GERT H. J. KEMA2, PEDRO W. CROUS3, ANDREW C. JAMES1 AND EDWIN C. A. ABELN3,† 1Centro de Investigación Científica de Yucatán (CICY), Calle 43 no. 130, Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, México 2Plant Research International B.V., PO Box 16, 6700 AA, Wageningen, The Netherlands 3Centraalbureau voor Schimmelcultures, Fungal Diversity Centre, PO Box 85167, 3508 AD, Utrecht, The Netherlands The crop is affected by several diseases and pests such as the SUMMARY foliar fungal pathogens Mycosphaerella fijiensis, M. musicola and Idiomorphs mat1-1 and mat1-2 from Mycosphaerella fijiensis, M. eumusae, which all share similar morphologies and symptom the causal agent of black leaf streak disease of banana, were development. M. fijiensis (anamorph Pseudocercospora fijiensis; isolated. Degenerate oligos were used to amplify the HMG box Mycosphaerellaceae) is the causal agent of Black Sigatoka or of the mat1-2 idiomorph from M. fijiensis, showing homology black leaf streak disease (BLSD), which rapidly became the most with the HMG box of Mycosphaerella graminicola. Using a DNA devastating disease of banana production world-wide. It decreases walking strategy, anchored on the DNA lyase gene towards the photosynthesis, reduces fruit size and induces premature HMG box, a 9-kb-long region of mat1-2 was obtained. A 5-kb maturation. The cost of controlling the disease in large fragment from the mat1-1 region was obtained by long-range plantations is about US$1000 per hectare (Arias et al., 2003), but PCR using primers on the flanking regions, which have close to it is higher in smaller plantations where fungicides cannot be 100% identity between both idiomorphs.
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • View a Copy of This Licence, Visit
    Hilton et al. Microbiome (2021) 9:19 https://doi.org/10.1186/s40168-020-00972-0 RESEARCH Open Access Identification of microbial signatures linked to oilseed rape yield decline at the landscape scale Sally Hilton1* , Emma Picot1, Susanne Schreiter2, David Bass3,4, Keith Norman5, Anna E. Oliver6, Jonathan D. Moore7, Tim H. Mauchline2, Peter R. Mills8, Graham R. Teakle1, Ian M. Clark2, Penny R. Hirsch2, Christopher J. van der Gast9 and Gary D. Bending1* Abstract Background: The plant microbiome plays a vital role in determining host health and productivity. However, we lack real-world comparative understanding of the factors which shape assembly of its diverse biota, and crucially relationships between microbiota composition and plant health. Here we investigated landscape scale rhizosphere microbial assembly processes in oilseed rape (OSR), the UK’s third most cultivated crop by area and the world's third largest source of vegetable oil, which suffers from yield decline associated with the frequency it is grown in rotations. By including 37 conventional farmers’ fields with varying OSR rotation frequencies, we present an innovative approach to identify microbial signatures characteristic of microbiomes which are beneficial and harmful to the host. Results: We show that OSR yield decline is linked to rotation frequency in real-world agricultural systems. We demonstrate fundamental differences in the environmental and agronomic drivers of protist, bacterial and fungal communities between root, rhizosphere soil and bulk soil compartments. We further discovered that the assembly of fungi, but neither bacteria nor protists, was influenced by OSR rotation frequency. However, there were individual abundant bacterial OTUs that correlated with either yield or rotation frequency.
    [Show full text]
  • Ricardo De Nardi Fonoff
    1 Universidade de São Paulo Escola Superior de Agricultura “Luiz de Queiroz” Sclerotinia sclerotiorum: características morfológicas, agressividade, sensibilidade “in vitro” a fungicidas e resistência de isolados a tiofanato metílico Patrícia Fabretti Kreyci Tese apresentada para obtenção do título de Doutora em Ciências. Área de concentração: Fitopatologia Piracicaba 2016 2 Patricia Fabretti Kreyci Engenheira Agrônoma Sclerotinia sclerotiorum: características morfológicas, agressividade, sensibilidade “in vitro” a fungicidas e resistência de isolados a tiofanato metílico versão revisada de acordo com a resolução CoPGr 6018 de 2011 Orientador: Prof. Dr. JOSÉ OTAVIO MACHADO MENTEN Tese apresentada para obtenção do título de Doutora em Ciências. Área de concentração: Fitopatologia Piracicaba 2016 Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA - DIBD/ESALQ/USP Kreyci, Patrícia Fabretti Sclerotinia sclerotiorum: características morfológicas, agressividade, sensibilidade “in vitro” a fungicidas e resistência de isolados a tiofanato metílico / Patrícia Fabretti Kreyci. - - versão revisada de acordo com a resolução CoPGr 6018 de 2011. - - Piracicaba, 2016. 146 p. : il. Tese (Doutorado) - - Escola Superior de Agricultura “Luiz de Queiroz”. 1. Sclerotinia sclerotiorum 2. Mofo-branco 3. Caracterização morfológica 4. Sensibilidade a fungicidas 5. Resistência 6. Tiofanato metílico I. Título CDD 632.43 K92s “Permitida a cópia total ou parcial deste documento, desde que citada a fonte – O autor” 3 Aos meus pais José e Magali, Que me ensinaram o valor da luta, E a felicidade da conquista, OFEREÇO À minha irmã Ana Paula, Meu exemplo de superação E meu sobrinho Mario, Por todo amor e afeto, DEDICO 4 5 AGRADECIMENTOS À Escola Superior de Agricultura “Luiz de Queiroz” – Universidade de São Paulo, pela formação nos cursos de Graduação e Pós Graduação.
    [Show full text]
  • Supplementary Table S1 18Jan 2021
    Supplementary Table S1. Accurate scientific names of plant pathogenic fungi and secondary barcodes. Below is a list of the most important plant pathogenic fungi including Oomycetes with their accurate scientific names and synonyms. These scientific names include the results of the change to one scientific name for fungi. For additional information including plant hosts and localities worldwide as well as references consult the USDA-ARS U.S. National Fungus Collections (http://nt.ars- grin.gov/fungaldatabases/). Secondary barcodes, where available, are listed in superscript between round parentheses after generic names. The secondary barcodes listed here do not represent all known available loci for a given genus. Always consult recent literature for which primers and loci are required to resolve your species of interest. Also keep in mind that not all barcodes are available for all species of a genus and that not all species/genera listed below are known from sequence data. GENERA AND SPECIES NAME AND SYNONYMYS DISEASE SECONDARY BARCODES1 Kingdom Fungi Ascomycota Dothideomycetes Asterinales Asterinaceae Thyrinula(CHS-1, TEF1, TUB2) Thyrinula eucalypti (Cooke & Massee) H.J. Swart 1988 Target spot or corky spot of Eucalyptus Leptostromella eucalypti Cooke & Massee 1891 Thyrinula eucalyptina Petr. & Syd. 1924 Target spot or corky spot of Eucalyptus Lembosiopsis eucalyptina Petr. & Syd. 1924 Aulographum eucalypti Cooke & Massee 1889 Aulographina eucalypti (Cooke & Massee) Arx & E. Müll. 1960 Lembosiopsis australiensis Hansf. 1954 Botryosphaeriales Botryosphaeriaceae Botryosphaeria(TEF1, TUB2) Botryosphaeria dothidea (Moug.) Ces. & De Not. 1863 Canker, stem blight, dieback, fruit rot on Fusicoccum Sphaeria dothidea Moug. 1823 diverse hosts Fusicoccum aesculi Corda 1829 Phyllosticta divergens Sacc. 1891 Sphaeria coronillae Desm.
    [Show full text]
  • Reduction in the Use of Fungicides in Apple and Sour Cherry Production by Preventative Methods and Warning Systems
    Reduction in the use of fungicides in apple and sour cherry production by preventative methods and warning systems Pesticides Research No. 139 2012 Title: Authors & contributors: Reduction in the use of fungicides in apple and 1Hanne Lindhard Pedersen, 2Birgit Jensen, 3Lisa Munk, 2,4Marianne Bengtsson and 5Marc Trapman sour cherry production by preventative methods and warning systems 1Department of Food Science, Aarhus University, Denmark. (AU- Aarslev) 2Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Denmark 3Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Denmark 4present address: Patent & Science Information Research, Novo Nordisk A/S, Denmark 5BioFruit Advies, The Netherlands. 1 Institut for Fødevarer, Aarhus Universitet, (AU-Aarslev) 2 Institut for Plantebiologi og Bioteknologi, Det Biovidenskabelige Fakultet, Københavns Universitet 3 Institut for Jordbrug og Økologi, Det Biovidenskabelige Fakultet, Københavns Universitet. 4 Patent & Science Information Research, Novo Nordisk A/S, Danmark. 5 BioFruit Advies, Holland. Publisher: Miljøstyrelsen Strandgade 29 1401 København K www.mst.dk Year: 2012 ISBN no. 978-87-92779-70-0 Disclaimer: The Danish Environmental Protection Agency will, when opportunity offers, publish reports and contributions relating to environmental research and development projects financed via the Danish EPA. Please note that publication does not signify that the contents of the reports necessarily reflect the views of the Danish EPA. The reports are, however, published because the Danish EPA finds that the studies represent a valuable contribution to the debate on environmental policy in Denmark. May be quoted provided the source is acknowledged. 2 Reduction in the use of fungicides in apple and sour cherry production by preventative methods and warning systems Content PREFACE 5 SAMMENFATNING OG KONKLUSIONER 7 SUMMARY AND CONCLUSIONS 9 1.
    [Show full text]
  • Isolation and Characterization of the Mating-Type Locus of the Barley
    855 Isolation and characterization of the mating-type locus of the barley pathogen Pyrenophora teres and frequencies of mating-type idiomorphs within and among fungal populations collected from barley landraces Domenico Rau, Frank J. Maier, Roberto Papa, Anthony H.D. Brown, Virgilio Balmas, Eva Saba, Wilhelm Schaefer, and Giovanna Attene Abstract: Pyrenophora teres f. sp. teres mating-type genes (MAT-1: 1190 bp; MAT-2: 1055 bp) have been identified. Their predicted proteins, measuring 379 and 333 amino acids, respectively, are similar to those of other Pleosporales, such as Pleospora sp., Cochliobolus sp., Alternaria alternata, Leptosphaeria maculans, and Phaeosphaeria nodorum. The structure of the MAT locus is discussed in comparison with those of other fungi. A mating-type PCR assay has also been developed; with this assay we have analyzed 150 isolates that were collected from 6 Sardinian barley land- race populations. Of these, 68 were P. t e re s f. sp. teres (net form; NF) and 82 were P. t e re s f. sp. maculata (spot form; SF). Within each mating type, the NF and SF amplification products were of the same length and were highly similar in sequence. The 2 mating types were present in both the NF and the SF populations at the field level, indicating that they have all maintained the potential for sexual reproduction. Despite the 2 forms being sympatric in 5 fields, no in- termediate isolates were detected with amplified fragment length polymorphism (AFLP) analysis. These results suggest that the 2 forms are genetically isolated under the field conditions. In all of the samples of P.
    [Show full text]
  • Host„&Ndash;„Pathogen Interactions in Relation To
    CSIRO PUBLISHING Crop & Pasture Science, 2018, 69,9–19 http://dx.doi.org/10.1071/CP16445 Host–pathogen interactions in relation to management of light leaf spot disease (caused by Pyrenopeziza brassicae) on Brassica species Chinthani S. Karandeni Dewage A,B, Coretta A. Klöppel A, Henrik U. Stotz A, and Bruce D. L. Fitt A ASchool of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK. BCorresponding author. Email: [email protected] Abstract. Light leaf spot, caused by Pyrenopeziza brassicae, is the most damaging disease problem in oilseed rape (Brassica napus) in the United Kingdom. According to recent survey data, the severity of epidemics has increased progressively across the UK, with yield losses of up to £160M per annum in England and more severe epidemics in Scotland. Light leaf spot is a polycyclic disease, with primary inoculum consisting of airborne ascospores produced on diseased debris from the previous cropping season. Splash-dispersed conidia produced on diseased leaves are the main component of the secondary inoculum. Pyrenopeziza brassicae is also able to infect and cause considerable yield losses on vegetable brassicas, especially Brussels sprouts. There may be spread of light leaf spot among different Brassica species. Since they have a wide host range and frequent occurrence of sexual reproduction, P. brassicae populations are likely to have considerable genetic diversity, and evidence suggests population variations between different geographic regions, which need further study. Available disease-management tools are not sufficient to provide adequate control of the disease. There is a need to identify new sources of resistance, which can be integrated with fungicide applications to achieve sustainable management of light leaf spot.
    [Show full text]
  • Identify New Resistant Genes for Eyespot Diseases of Wheat In
    IDENTIFICATION AND MAPPING OF RESISTANCE GENES FOR EYESPOT OF WHEAT IN AEGILOPS LONGISSIMA By HONGYAN SHENG i A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy WASHINGTON STATE UNIVERSITY Department of Plant Pathology May 2011 © Copyright by HONGYAN SHENG, 2011 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of HONGYAN SHENG find it satisfactory and recommend that it be accepted. _________________________________________ Timothy D. Murray, Ph. D., Chair _________________________________________ Xianming Chen, Ph. D. _________________________________________ Scot H. Hulbert, Ph. D. _________________________________________ Tobin L. Peever, Ph. D. _________________________________________ Stephen S. Jones, Ph. D. ii ACKNOWLEDGMENT I would like to express my sincere gratitude and appreciation to my mentor and major advisor, Dr. Timothy D. Murray, for all his guidance, support, patience, and encouragement throughout my entire Ph. D. process at Washington State University. I am grateful to Dr. Murray for sharing his knowledge of plant pathology, providing insight into this dissertation, and leading me to the complex and fascinating world of genetics. My grateful appreciation goes to my committee members, Dr. Tobin L. Peever, Dr. Xianming Chen, Dr. Scot H. Hulbert, and Dr. Stephen S. Jones for their helpful advice and guidance during my graduate work and critical review of my dissertation. I would especially like to thank Dr. Deven R. See (USDA-ARS Regional Small Grains Genotyping Laboratory at Pullman, WA) for providing techniques and equipments for marker analysis work. Most of all, I am grateful for his critical suggestion leading to successful results.
    [Show full text]
  • Stemphylium Revisited
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 87: 77–103 (2017). Stemphylium revisited J.H.C. Woudenberg1, B. Hanse2, G.C.M. van Leeuwen3, J.Z. Groenewald1, and P.W. Crous1,4,5* 1Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2IRS, P.O. Box 32, 4600 AA Bergen op Zoom, The Netherlands; 3National Plant Protection Organization (NPPO-NL), P.O. Box 9102, 6700 HC, Wageningen, The Netherlands; 4Wageningen University, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 5Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa *Correspondence: P.W. Crous, [email protected] Abstract: In 2007 a new Stemphylium leaf spot disease of Beta vulgaris (sugar beet) spread through the Netherlands. Attempts to identify this destructive Stemphylium sp. in sugar beet led to a phylogenetic revision of the genus. The name Stemphylium has been recommended for use over that of its sexual morph, Pleospora, which is polyphyletic. Stemphylium forms a well-defined monophyletic genus in the Pleosporaceae, Pleosporales (Dothideomycetes), but lacks an up-to-date phylogeny. To address this issue, the internal transcribed spacer 1 and 2 and intervening 5.8S nr DNA (ITS) of all available Stemphylium and Pleospora isolates from the CBS culture collection of the Westerdijk Institute (N = 418), and from 23 freshly collected isolates obtained from sugar beet and related hosts, were sequenced to construct an overview phylogeny (N = 350). Based on their phylogenetic informativeness, parts of the protein-coding genes calmodulin and glyceraldehyde-3-phosphate dehydro- genase were also sequenced for a subset of isolates (N = 149).
    [Show full text]
  • Duke University Dissertation Template
    Systematics, Phylogeography and Ecology of Elaphomycetaceae by Hannah Theresa Reynolds Department of Biology Duke University Date:_______________________ Approved: ___________________________ Rytas Vilgalys, Supervisor ___________________________ Marc Cubeta ___________________________ Katia Koelle ___________________________ François Lutzoni ___________________________ Paul Manos Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biology in the Graduate School of Duke University 2011 iv ABSTRACTU Systematics, Phylogeography and Ecology of Elaphomycetaceae by Hannah Theresa Reynolds Department of Biology Duke University Date:_______________________ Approved: ___________________________ Rytas Vilgalys, Supervisor ___________________________ Marc Cubeta ___________________________ Katia Koelle ___________________________ François Lutzoni ___________________________ Paul Manos An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biology in the Graduate School of Duke University 2011 Copyright by Hannah Theresa Reynolds 2011 Abstract This dissertation is an investigation of the systematics, phylogeography, and ecology of a globally distributed fungal family, the Elaphomycetaceae. In Chapter 1, we assess the literature on fungal phylogeography, reviewing large-scale phylogenetics studies and performing a meta-data analysis of fungal population genetics. In particular, we examined
    [Show full text]