Trans-Diatonic Theory and the Harmonic Analysis of Nineteenth-Century Music De Andrade Negri, Alexandre Jorge Jr De Andrade Negri, A

Total Page:16

File Type:pdf, Size:1020Kb

Trans-Diatonic Theory and the Harmonic Analysis of Nineteenth-Century Music De Andrade Negri, Alexandre Jorge Jr De Andrade Negri, A University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2018-04-25 Trans-Diatonic Theory and the Harmonic Analysis of Nineteenth-Century Music de Andrade Negri, Alexandre Jorge Jr de Andrade Negri, A. J. (2018). Trans-Diatonic Theory and the Harmonic Analysis of Nineteenth-Century Music (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/31872 http://hdl.handle.net/1880/106586 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Trans-Diatonic Theory and the Harmonic Analysis of Nineteenth-Century Music by Alexandre Jorge de Andrade Negri Júnior A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS GRADUATE PROGRAM IN MUSIC CALGARY, ALBERTA APRIL, 2018 © Alexandre Jorge de Andrade Negri Júnior 2018 ii Abstract A hallmark of nineteenth-century music is the conscious and systematic exploration of ‘non- normative’ harmonic relations especially by composers such as Liszt, Brahms, Wagner, and others. Non-normative in this context is taken to refer to any harmonic relation that fulfills the following two conditions: (1) at least one, but normally both chords (or harmonic regions) are chromatic to each other and/or to their context; and (2) the intervallic relationship between their roots is derived from a symmetrical division of the octave (i.e., they must be either a semitone, a whole-tone, a minor third, a major third, or a tritone apart). By their nature, diatonic-based analytical systems do not have the necessary tools or flexibility to explain Romantic non- normative harmonic relations, as defined above. This thesis proposes a new approach to analysis of later nineteenth-century harmony. In chapter 1, this thesis considers four modern theories of harmony that were developed to address the issues raised above. The theories examined are by Gregory Proctor (1978), Harald Krebs (1980), David Kopp (2002), and Richard Cohn (1996, 2000, 2012). Because all of these theories are ultimately rooted in an adaptation of conventional diatonic analytical practices or concentrate upon very limited aspects of non-normative harmonic relations (mainly, chromatic mediant relations), they are found to be inadequate to deal with characteristically difficult passages of nineteenth-century harmony. In chapter 2, this thesis proposes a new theory of harmony, entitled ‘trans-diatonic theory.’ The key concept of trans-diatonic theory is the ‘diptych principle,’ which fuses parallel keys (and chords) into a new, greater unit. The diptych principle generates a trans-diatonic scale, which provides richer, more complex harmonic relations that, in turn, allows for a more logical understanding of non-normative harmonic relations. The final chapter shows the practical advantages of the trans-diatonic system through the analysis of a variety of harmonically challenging passages from different works. These analyses demonstrate the use and effectiveness of the trans-diatonic theory. iii Preface This thesis is original, unpublished, independent work by the author, Alexandre Negri. iv Acknowledgements My first debt is to my advisor, Dr. Kenneth DeLong, whose never-ending support and steady guidance have been of the utmost importance to me during these last two years. Without his invaluable advices, this thesis would not have been possible. To my exam committee members, Drs. Joelle Welling, Allan Bell, Leonard Manzara and Adam Bell, my deepest gratitude for their engagement with my work and invaluable insights and contributions. My heartfelt thanks to the music faculty as well, specially to Drs. Friedemann Sallis and Laurie Radford for their comments on earlier stages of my research. To my friends and colleagues, Dr. J. Orlando Alves and Lauro Pecktor, my sincere thanks for their candid observations during various stages of my work. My sincere gratitude to the School of Creative and Performing Arts staff members, especially to Alison Schmal, for their constant help and support. I would like to extend my gratitude to my dear friends, Júlio and Andrea, Paulo and Ana Amélia, and Giselle whose sincere friendship and sense of community have made the absence and distance from home less daunting. To my dear wife, Taciana, to whom this work is dedicated, there are no words to express my deepest regard and admiration for her unconditional support and motivation. The greatest gratitude to my family. To my grandmother, Martha, for the first lessons in music and theory. To my sister, Camila, for always believing in me. To my parents, Alexandre and Fátima, for the precious gift of life and unwavering, enthusiastic support. None of this would have been possible without them. v For Taciana vi Table of Contents Abstract............................................................................................................................................ii Preface.............................................................................................................................................iii Acknowledgments...........................................................................................................................iv Dedication........................................................................................................................................v Table of Contents............................................................................................................................vi List of Tables..................................................................................................................................vii List of Figures...............................................................................................................................viii List of Musical Examples................................................................................................................ix Introduction: The Need for a New Harmonic System..................................................................1 1. Chapter 1: Modern Theories of Harmony................................................................................8 1.1 Gregory Proctor..................................................................................................................8 1.2 Harald Krebs.....................................................................................................................11 1.3 David Kopp......................................................................................................................13 1.4 Richard Cohn....................................................................................................................20 2. Chapter 2: The Trans-Diatonic Theory..................................................................................35 2.1 The Diptych Principle.......................................................................................................35 2.1.1 Towards Mode Fusion...............................................................................................36 2.1.2 The Trans-Diatonic Scale..........................................................................................38 2.2 Orders of Complexity and Tonnetzing..............................................................................46 2.2.1 Third Order of Complexity........................................................................................48 2.2.2 Second Order of Complexity.....................................................................................54 2.2.3 First Order of Complexity..........................................................................................57 2.3 Trans-Diatonic Transformational System........................................................................60 3. Chapter 3: Trans-Diatonic Analyses.......................................................................................67 3.1 Franz Schubert..................................................................................................................67 3.1.1 Mass in Eb Major, Sanctus, mm. 1-13........................................................................67 3.1.2 Piano Sonata in D Major, I, mm. 1-16........................................................................69 3.1.3 Die Zauberharfe, Overture, mm. 1-47.......................................................................71 3.1.4 Die Sterne..................................................................................................................72 3.1.5 String Quartet in G Major, I, three excerpts...............................................................73 3.2 Johannes Brahms, Ein deutsches Requiem, II, mm. 261-273............................................77 3.3 Franz Liszt........................................................................................................................79 3.3.1 Polonaise I from Die legend vom heiligen Stanislaus, two excerpts...........................79 3.3.2 Lélio Fantasy, mm. 195-198......................................................................................82 3.4 Cesar
Recommended publications
  • Theory Placement Examination (D
    SAMPLE Placement Exam for Incoming Grads Name: _______________________ (Compiled by David Bashwiner, University of New Mexico, June 2013) WRITTEN EXAM I. Scales Notate the following scales using accidentals but no key signatures. Write the scale in both ascending and descending forms only if they differ. B major F melodic minor C-sharp harmonic minor II. Key Signatures Notate the following key signatures on both staves. E-flat minor F-sharp major Sample Graduate Theory Placement Examination (D. Bashwiner, UNM, 2013) III. Intervals Identify the specific interval between the given pitches (e.g., m2, M2, d5, P5, A5). Interval: ________ ________ ________ ________ ________ Note: the sharp is on the A, not the G. Interval: ________ ________ ________ ________ ________ IV. Rhythm and Meter Write the following rhythmic series first in 3/4 and then in 6/8. You may have to break larger durations into smaller ones connected by ties. Make sure to use beams and ties to clarify the meter (i.e. divide six-eight bars into two, and divide three-four bars into three). 2 Sample Graduate Theory Placement Examination (D. Bashwiner, UNM, 2013) V. Triads and Seventh Chords A. For each of the following sonorities, indicate the root of the chord, its quality, and its figured bass (being sure to include any necessary accidentals in the figures). For quality of chord use the following abbreviations: M=major, m=minor, d=diminished, A=augmented, MM=major-major (major triad with a major seventh), Mm=major-minor, mm=minor-minor, dm=diminished-minor (half-diminished), dd=fully diminished. Root: Quality: Figured Bass: B.
    [Show full text]
  • Models of Octatonic and Whole-Tone Interaction: George Crumb and His Predecessors
    Models of Octatonic and Whole-Tone Interaction: George Crumb and His Predecessors Richard Bass Journal of Music Theory, Vol. 38, No. 2. (Autumn, 1994), pp. 155-186. Stable URL: http://links.jstor.org/sici?sici=0022-2909%28199423%2938%3A2%3C155%3AMOOAWI%3E2.0.CO%3B2-X Journal of Music Theory is currently published by Yale University Department of Music. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/yudm.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Mon Jul 30 09:19:06 2007 MODELS OF OCTATONIC AND WHOLE-TONE INTERACTION: GEORGE CRUMB AND HIS PREDECESSORS Richard Bass A bifurcated view of pitch structure in early twentieth-century music has become more explicit in recent analytic writings.
    [Show full text]
  • MTO 20.2: Wild, Vicentino's 31-Tone Compositional Theory
    Volume 20, Number 2, June 2014 Copyright © 2014 Society for Music Theory Genus, Species and Mode in Vicentino’s 31-tone Compositional Theory Jonathan Wild NOTE: The examples for the (text-only) PDF version of this item are available online at: http://www.mtosmt.org/issues/mto.14.20.2/mto.14.20.2.wild.php KEYWORDS: Vicentino, enharmonicism, chromaticism, sixteenth century, tuning, genus, species, mode ABSTRACT: This article explores the pitch structures developed by Nicola Vicentino in his 1555 treatise L’Antica musica ridotta alla moderna prattica . I examine the rationale for his background gamut of 31 pitch classes, and document the relationships among his accounts of the genera, species, and modes, and between his and earlier accounts. Specially recorded and retuned audio examples illustrate some of the surviving enharmonic and chromatic musical passages. Received February 2014 Table of Contents Introduction [1] Tuning [4] The Archicembalo [8] Genus [10] Enharmonic division of the whole tone [13] Species [15] Mode [28] Composing in the genera [32] Conclusion [35] Introduction [1] In his treatise of 1555, L’Antica musica ridotta alla moderna prattica (henceforth L’Antica musica ), the theorist and composer Nicola Vicentino describes a tuning system comprising thirty-one tones to the octave, and presents several excerpts from compositions intended to be sung in that tuning. (1) The rich compositional theory he develops in the treatise, in concert with the few surviving musical passages, offers a tantalizing glimpse of an alternative pathway for musical development, one whose radically augmented pitch materials make possible a vast range of novel melodic gestures and harmonic successions.
    [Show full text]
  • Harmonic Resources in 1980S Hard Rock and Heavy Metal Music
    HARMONIC RESOURCES IN 1980S HARD ROCK AND HEAVY METAL MUSIC A thesis submitted to the College of the Arts of Kent State University in partial fulfillment of the requirements for the degree of Master of Arts in Music Theory by Erin M. Vaughn December, 2015 Thesis written by Erin M. Vaughn B.M., The University of Akron, 2003 M.A., Kent State University, 2015 Approved by ____________________________________________ Richard O. Devore, Thesis Advisor ____________________________________________ Ralph Lorenz, Director, School of Music _____________________________________________ John R. Crawford-Spinelli, Dean, College of the Arts ii Table of Contents LIST OF FIGURES ............................................................................................................................... v CHAPTER I........................................................................................................................................ 1 INTRODUCTION ........................................................................................................................... 1 GOALS AND METHODS ................................................................................................................ 3 REVIEW OF RELATED LITERATURE............................................................................................... 5 CHAPTER II..................................................................................................................................... 36 ANALYSIS OF “MASTER OF PUPPETS” ......................................................................................
    [Show full text]
  • Music Theory Through the Lens of Film
    Journal of Film Music 5.1-2 (2012) 177-196 ISSN (print) 1087-7142 doi:10.1558/jfm.v5i1-2.177 ISSN (online) 1758-860X ARTICLE Music Theory through the Lens of Film FranK LEhman Tufts University [email protected] Abstract: The encounter of a musical repertoire with a theoretical system benefits the latter even as it serves the former. A robustly applied theoretic apparatus hones our appreciation of a given corpus, especially one such as film music, for which comparatively little analytical attention has been devoted. Just as true, if less frequently offered as a motivator for analysis, is the way in which the chosen music theoretical system stands to see its underlying assumptions clarified and its practical resources enhanced by such contact. The innate programmaticism and aesthetic immediacy of film music makes it especially suited to enrich a number of theoretical practices. A habit particularly ripe for this exposure is tonal hermeneutics: the process of interpreting music through its harmonic relationships. Interpreting cinema through harmony not only sharpens our understanding of various film music idioms, but considerably refines the critical machinery behind its analysis. The theoretical approach focused on here is transformation theory, a system devised for analysis of art music (particularly from the nineteenth century) but nevertheless eminently suited for film music. By attending to the perceptually salient changes rather than static objects of musical discourse, transformation theory avoids some of the bugbears of conventional tonal hermeneutics for film (such as the tyranny of the “15 second rule”) while remaining exceptionally well calibrated towards musical structure and detail.
    [Show full text]
  • Lecture Notes
    Notes on Chromatic Harmony © 2010 John Paul Ito Chromatic Modulation Enharmonic modulation Pivot-chord modulation in which the pivot chord is spelled differently in the two keys. Ger +6 (enharmonically equivalent to a dominant seventh) and diminished sevenths are the most popular options. See A/S 534-536 Common-tone modulation Usually a type of phrase modulation. The two keys are distantly related, but the tonic triads share a common tone. (E.g. direct modulation from C major to A-flat major.) In some cases, the common tone may be spelled using an enharmonic equivalent. See A/S 596-599. Common-tone modulations often involve… Chromatic mediant relationships Chromatic mediants were extremely popular with nineteenth-century composers, being used with increasing frequency and freedom as the century progressed. A chromatic mediant relationship is one in which the triadic roots (or tonal centers) are a third apart, and in which at least one of the potential common tones between the triads (or tonic triads of the keys) is not a common tone because of chromatic alterations. In the example above of C major going to A-flat major, the diatonic third relationship with C major would be A minor, which has two common tones (C and E) with C major. Because of the substitution of A-flat major (bVI relative to C) for A minor, there is only one common tone, C, as the C-major triad includes E and the A-flat-major triad contains E-flat. The contrast is even more jarring if A-flat minor is substituted; now there are no common tones.
    [Show full text]
  • Chromatic Sequences
    CHAPTER 30 Melodic and Harmonic Symmetry Combine: Chromatic Sequences Distinctions Between Diatonic and Chromatic Sequences Sequences are paradoxical musical processes. At the surface level they provide rapid harmonic rhythm, yet at a deeper level they function to suspend tonal motion and prolong an underlying harmony. Tonal sequences move up and down the diatonic scale using scale degrees as stepping-stones. In this chapter, we will explore the consequences of transferring the sequential motions you learned in Chapter 17 from the asymmetry of the diatonic scale to the symmetrical tonal patterns of the nineteenth century. You will likely notice many similarities of behavior between these new chromatic sequences and the old diatonic ones, but there are differences as well. For instance, the stepping-stones for chromatic sequences are no longer the major and minor scales. Furthermore, the chord qualities of each individual harmony inside a chromatic sequence tend to exhibit more homogeneity. Whereas in the past you may have expected major, minor, and diminished chords to alternate inside a diatonic sequence, in the chromatic realm it is not uncommon for all the chords in a sequence to manifest the same quality. EXAMPLE 30.1 Comparison of Diatonic and Chromatic Forms of the D3 ("Pachelbel") Sequence A. 624 CHAPTER 30 MELODIC AND HARMONIC SYMMETRY COMBINE 625 B. Consider Example 30.1A, which contains the D3 ( -4/ +2)-or "descending 5-6"-sequence. The sequence is strongly goal directed (progressing to ii) and diatonic (its harmonies are diatonic to G major). Chord qualities and distances are not consistent, since they conform to the asymmetry of G major.
    [Show full text]
  • The Perceptual Attraction of Pre-Dominant Chords 1
    Running Head: THE PERCEPTUAL ATTRACTION OF PRE-DOMINANT CHORDS 1 The Perceptual Attraction of Pre-Dominant Chords Jenine Brown1, Daphne Tan2, David John Baker3 1Peabody Institute of The Johns Hopkins University 2University of Toronto 3Goldsmiths, University of London [ACCEPTED AT MUSIC PERCEPTION IN APRIL 2021] Author Note Jenine Brown, Department of Music Theory, Peabody Institute of the Johns Hopkins University, Baltimore, MD, USA; Daphne Tan, Faculty of Music, University of Toronto, Toronto, ON, Canada; David John Baker, Department of Computing, Goldsmiths, University of London, London, United Kingdom. Corresponding Author: Jenine Brown, Peabody Institute of The John Hopkins University, 1 E. Mt. Vernon Pl., Baltimore, MD, 21202, [email protected] 1 THE PERCEPTUAL ATTRACTION OF PRE-DOMINANT CHORDS 2 Abstract Among the three primary tonal functions described in modern theory textbooks, the pre-dominant has the highest number of representative chords. We posit that one unifying feature of the pre-dominant function is its attraction to V, and the experiment reported here investigates factors that may contribute to this perception. Participants were junior/senior music majors, freshman music majors, and people from the general population recruited on Prolific.co. In each trial four Shepard-tone sounds in the key of C were presented: 1) the tonic note, 2) one of 31 different chords, 3) the dominant triad, and 4) the tonic note. Participants rated the strength of attraction between the second and third chords. Across all individuals, diatonic and chromatic pre-dominant chords were rated significantly higher than non-pre-dominant chords and bridge chords. Further, music theory training moderated this relationship, with individuals with more theory training rating pre-dominant chords as being more attracted to the dominant.
    [Show full text]
  • Transfer Theory Placement Exam Guide (Pdf)
    2016-17 GRADUATE/ transfer THEORY PLACEMENT EXAM guide! Texas woman’s university ! ! 1 2016-17 GRADUATE/transferTHEORY PLACEMENTEXAMguide This! guide is meant to help graduate and transfer students prepare for the Graduate/ Transfer Theory Placement Exam. This evaluation is meant to ensure that students have competence in basic tonal harmony. There are two parts to the exam: written and aural. Part One: Written Part Two: Aural ‣ Four voice part-writing to a ‣ Melodic dictation of a given figured bass diatonic melody ‣ Harmonic analysis using ‣ Harmonic Dictation of a Roman numerals diatonic progression, ‣ Transpose a notated notating the soprano, bass, passage to a new key and Roman numerals ‣ Harmonization of a simple ‣ Sightsinging of a melody diatonic melody that contains some functional chromaticism ! Students must achieve a 75% on both the aural and written components of the exam. If a passing score is not received on one or both sections of the exam, the student may be !required to take remedial coursework. Recommended review materials include most of the commonly used undergraduate music theory texts such as: Tonal Harmony by Koska, Payne, and Almén, The Musician’s Guide to Theory and Analysis by Clendinning and Marvin, and Harmony in Context by Francoli. The exam is given prior to the beginning of both the Fall and Spring Semesters. Please check the TWU MUSIc website (www.twu.edu/music) ! for the exact date and time. ! For further information, contact: Dr. Paul Thomas Assistant Professor of Music Theory and Composition [email protected] 2 2016-17 ! ! ! ! table of Contents ! ! ! ! ! 04 Part-Writing ! ! ! ! ! 08 melody harmonization ! ! ! ! ! 13 transposition ! ! ! ! ! 17 Analysis ! ! ! ! ! 21 melodic dictation ! ! ! ! ! harmonic dictation ! 24 ! ! ! ! Sightsinging examples ! 28 ! ! ! 31 terms ! ! ! ! ! 32 online resources ! 3 PART-Writing Part-writing !Realize the following figured bass in four voices.
    [Show full text]
  • Parallel Keys and Remote Modulation in Selected String
    1 MacKay, James. “Another Look at Chromatic Third-Related Key Relationships in Late Haydn: Parallel Keys and Remote Modulation in Selected String Quartet Minuets.”.” HAYDN: Online Journal of the Haydn Society of North America 8.2 (Fall 2018), http://haydnjournal.org. © RIT Press and Haydn Society of North America, 2018. Duplication without the express permission of the author, RIT Press, and/or the Haydn Society of North America is prohibited. Another Look at Chromatic Third-Related Key Relationships in Late Haydn: Parallel Keys and Remote Modulation in Selected String Quartet Minuets by James MacKay Loyola University Abstract As asserted by Ethan Haimo in a 1990 article, Joseph Haydn’s Piano Trio in A-flat major, Hob. XV: 14 (1789-90), comprises his first use of a chromatic third relationship between movements of an instrumental work, with a I—flat VI—I tonal plan. This harmonic strategy, immediately taken up by Beethoven in his Piano Trio in G major, Op. 1 no. 2 (slow movement in E, VI) and his Piano Sonata in C major, Op. 2 no. 3 (slow movement in E, III), quickly became a conventional feature of early 19th-century tonality. Such third-related shifts in Haydn’s instrumental music occur earlier than 1790, especially in his string quartet Minuet-Trio movements, often built around a parallel major-parallel minor pairing of keys and their relatives. For instance, in Haydn’s String Quartet in F major, Op. 50 no. 5 (Der Traum), third movement, Haydn effects a chromatic third modulation in two stages: touching briefly upon the parallel key (f minor) in the trio, then moving immediately to its relative major, A-flat (i.e.
    [Show full text]
  • MTO 10.1: Bass, Review of David Kopp, Chromatic Transformations in Nineteenth-Century Music
    Volume 10, Number 1, February 2004 Copyright © 2004 Society for Music Theory Richard Bass Received December 2003 [1] In light of the number of articles on transformational harmony appearing recently in scholarly journals, one might expect a book of this title to be a full-blown study in what has come to be called “neo-Riemannian” theory. Instead, however, it is a view of harmony based on a transformational system of the author’s own invention. And while he acknowledges some indebtedness to the work of other theorists, David Kopp’s specific goal is to account for and incorporate chromatic mediant relations within a functional system that is applicable to nineteenth-century harmonic practice. His notion of “functional” does not rely on traditional categories of tonic, dominant and subdominant chords and their syntactic roles within harmonic progressions; nor does he focus on diatonic scale degrees and the harmonies built on them, as in Roman-numeral analysis. Rather, Kopp defines functions as transformations between chords sharing one or more common tones. In these respects, his work is distinctive. [2] In the book’s first chapter, which follows a thoughtful forward by Ian Bent, Kopp identifies the common-tone relationships that comprise his transformational system and examines in particular the role of chromatic mediants. Unlike definitions in other sources, which often include third-related triads that share no pitch classes (e.g., C major and E flat minor), Kopp appropriately limits his “chromatic mediant” designation to those with one common tone. The second chapter illustrates and discusses the use of chromatic mediants in three pieces by Schubert, and is the first of several such presentations that contribute to the book’s cogency by presenting the author’s views in relevant musical contexts.
    [Show full text]
  • Expanded Tonality: the Rt Eatment of Upper and Lower Leading Tones As Evidenced in Sonata "Undine,” IV by Carl Reinecke Joshua Blizzard University of South Florida
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 7-13-2007 Expanded Tonality: The rT eatment of Upper and Lower Leading Tones As Evidenced in Sonata "Undine,” IV by Carl Reinecke Joshua Blizzard University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Blizzard, Joshua, "Expanded Tonality: The rT eatment of Upper and Lower Leading Tones As Evidenced in Sonata "Undine,” IV by Carl Reinecke" (2007). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/638 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Expanded Tonality: The Treatment of Upper and Lower Leading Tones As Evidenced in Sonata "Undine,” IV by Carl Reinecke by Joshua Blizzard A thesis submitted in partial fulfillment of the requirements for the degree of Master of Music College of Visual and Performing Arts University of South Florida Major Professor: Ann Hawkins, M.A. Kim McCormick, D.M.A. David A. Williams, Ph.D. Date of Approval: July 13, 2007 Keywords: tonic substitution, wedge, prolongation, delayed resolution, chromaticism © Copyright 2007, Joshua Blizzard Dedication To my wife for her tireless support of me both emotionally and monetarily, to my Aunt Susie who played a significant role in my musical development from my youth, to my parents who worked to instill a sense of discipline in my studies, and, ultimately, to the glory of God, without whom nothing is possible.
    [Show full text]