Lepidoptera: Noctuidae): Developmental Parameters and Host Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Entomology of the Aucklands and Other Islands South of New Zealand: Lepidoptera, Ex Cluding Non-Crambine Pyralidae
Pacific Insects Monograph 27: 55-172 10 November 1971 ENTOMOLOGY OF THE AUCKLANDS AND OTHER ISLANDS SOUTH OF NEW ZEALAND: LEPIDOPTERA, EX CLUDING NON-CRAMBINE PYRALIDAE By J. S. Dugdale1 CONTENTS Introduction 55 Acknowledgements 58 Faunal Composition and Relationships 58 Faunal List 59 Key to Families 68 1. Arctiidae 71 2. Carposinidae 73 Coleophoridae 76 Cosmopterygidae 77 3. Crambinae (pt Pyralidae) 77 4. Elachistidae 79 5. Geometridae 89 Hyponomeutidae 115 6. Nepticulidae 115 7. Noctuidae 117 8. Oecophoridae 131 9. Psychidae 137 10. Pterophoridae 145 11. Tineidae... 148 12. Tortricidae 156 References 169 Note 172 Abstract: This paper deals with all Lepidoptera, excluding the non-crambine Pyralidae, of Auckland, Campbell, Antipodes and Snares Is. The native resident fauna of these islands consists of 42 species of which 21 (50%) are endemic, in 27 genera, of which 3 (11%) are endemic, in 12 families. The endemic fauna is characterised by brachyptery (66%), body size under 10 mm (72%) and concealed, or strictly ground- dwelling larval life. All species can be related to mainland forms; there is a distinctive pre-Pleistocene element as well as some instances of possible Pleistocene introductions, as suggested by the presence of pairs of species, one member of which is endemic but fully winged. A graph and tables are given showing the composition of the fauna, its distribution, habits, and presumed derivations. Host plants or host niches are discussed. An additional 7 species are considered to be non-resident waifs. The taxonomic part includes keys to families (applicable only to the subantarctic fauna), and to genera and species. -
Egyptian Cottonworm Spodoptera Littoralis
Michigan State University’s invasive species factsheets Egyptian cottonworm Spodoptera littoralis The Egyptian cottonworm is a highly polyphagous defoliator of many cultivated plants. Its accidental introduction to Michigan may be a particular concern to vegetable, fruit and ornamental industries. Michigan risk maps for exotic plant pests. Other common names African cotton leafworm, Egyptian cotton leafworm, Mediterranean Brocade moth Systematic position Insecta > Lepidoptera > Noctuidae > Spodoptera littoralis (Boisduval) Global distribution Adult. (Photo: O. Heikinheimo, Bugwood.org) Most parts of Africa. Southern or Mediterranean Europe: Greece, Italy, Malta, Portugal, Spain. Middle East: Israel, Syria, Turkey. Quarantine status The Egyptian cottonworm has been intercepted at least 65 times at U.S. ports of entry since 2004 (Ellis 2004). This insect has been detected in greenhouses in Ohio but was subsequently eradicated (Passoa 2008). It is listed as an exotic organism of high invasive risk to the United States (USDA-APHIS 2008). Plant hosts Larva. (Photo: Biologische Bundesanstalt für Land- und Forstwirtschaft Archive, A wide host range of at least 87 plant species over Biologische Bundesanstalt für Land- und Forstwirtschaft, Bugwood.org) 40 plant families including many vegetable, fruit and ornamental crops. Some examples include alfalfa, white oblique bands; hind wings pale with brown margins. apples, avocados, beets, bell peppers, cabbage, carrots, Larva: Body up to 45 mm long and hairless; newly cauliflower, cereal, clover, corn, cotton, cucurbits, hatched larvae are blackish-grey to dark green; mature eggplants, figs, geraniums, grapes, lettuce, oaks, okra, larvae are reddish-brown or whitish-yellow; larvae have onions, peas, peanuts, pears, pines, poplars, potatoes, dark and light longitudinal bands and two dark, semi- radish, roses, soybeans, spinach, sunflowers, taro, tea, circular spots on their back. -
Jordan Beans RA RMO Dir
Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation. -
Molecular Characterization of Fall Armyworm (Spodoptera Frugiperda) Resistant to Vip3aa20 Protein Expressed in Corn
Molecular Characterization of Fall Armyworm (Spodoptera frugiperda) Resistant to Vip3Aa20 Protein Expressed in Corn Dissertation Presented in partial fulfillment of the requirements for the degree of doctor of philosophy in the Graduate School of The Ohio State University Julio Cesar Fatoretto, B. Sc. Graduate Program in Translational Plant Science The Ohio State University 2017 Dissertation Committee: Andrew P. Michel, Advisor Marcio C. Silva Filho Thomas Mitchell Fernando Consoli Copyright by Julio Cesar Fatoretto 2017 Abstract Transgenic plants containing genes from Bacillus thuringiensis have been used as an alternative to chemical insecticides for insect pest control. The vegetative insecticidal proteins (Vip) secreted during the vegetative growth phase of bacteria are considered a second generation of insecticidal proteins since they do not share any structural or sequence homology with previously used crystal proteins (Cry) as well as having a wide insecticidal spectrum. One of the target pests for this protein is the fall armyworm (FAW) (Spodoptera frugiperda), the most important corn pest in South America. Previously it has been controlled by insecticides and corn expressing Cry proteins, but has rapidly evolved resistance to many control practices and remains a top concern for sustainable biotechnology control efforts. Thus, resistance characterization involving mode of action and genetics of resistance can help with Insect Resistance Management strategies, and improve the durability of control. In this dissertation, using selected FAW population resistant to Vip3Aa20 Bt protein (Vip-R1and Vip-R2) we generated comparative proteomic and transcriptomic data among resistant and susceptible colonies. In the chapter 2, we bring FAW biology/ecology and Brazilian agriculture landscape data to support the high adaptive potential of this pest to genetically modified corn expressing Bt Cry proteins in Brazil. -
Cross-Crop Resistance of Spodoptera Frugiperda Selected on Bt Maize To
www.nature.com/scientificreports OPEN Cross‑crop resistance of Spodoptera frugiperda selected on Bt maize to genetically‑modifed soybean expressing Cry1Ac and Cry1F proteins in Brazil Eduardo P. Machado1, Gerson L. dos S. Rodrigues Junior1, Fábio M. Führ1, Stefan L. Zago1, Luiz H. Marques2*, Antonio C. Santos2, Timothy Nowatzki3, Mark L. Dahmer3, Celso Omoto4 & Oderlei Bernardi1* Spodoptera frugiperda is one of the main pests of maize and cotton in Brazil and has increased its occurrence on soybean. Field‑evolved resistance of this species to Cry1 Bacillus thuringiensis (Bt) proteins expressed in maize has been characterized in Brazil, Argentina, Puerto Rico and southeastern U.S. Here, we conducted studies to evaluate the survival and development of S. frugiperda strains that are susceptible, selected for resistance to Bt‑maize single (Cry1F) or pyramided (Cry1F/Cry1A.105/ Cry2Ab2) events and F 1 hybrids of the selected and susceptible strains (heterozygotes) on DAS‑ 444Ø6‑6 × DAS‑81419‑2 soybean with tolerance to 2,4‑d, glyphosate and ammonium glufosinate herbicides (event DAS‑444Ø6‑6) and insect‑resistant due to expression of Cry1Ac and Cry1F Bt proteins (event DAS‑81419‑2). Susceptible insects of S. frugiperda did not survive on Cry1Ac/Cry1F‑ soybean. However, homozygous‑resistant and heterozygous insects were able to survive and emerge as fertile adults when fed on Cry1Ac/Cry1F‑soybean, suggesting that the resistance is partially recessive. Life history studies revealed that homozygous‑resistant insects had similar development, reproductive performance, net reproductive rate, intrinsic and fnite rates of population increase on Cry1Ac/Cry1F‑soybean and non‑Bt soybean. In contrast, heterozygotes had their fertility life table parameters signifcantly reduced on Cry1Ac/Cry1F‑soybean. -
Insecticidal Activity of Brassica Alba Mustard Oil Against Lepidopteran
Journal of Plant Protection Research ISSN 1427-4345 RAPID COMMUNICATION Insecticidal activity of Brassica alba mustard oil against lepidopteran pests Cydia pomonella (Lepidoptera: Tortricidae), Dendrolimus pini (Lepidoptera: Lasiocampidae), and Spodoptera exigua (Lepidoptera: Noctuidae) Edyta Konecka1*, Adam Kaznowski1, Wirginia Marcinkiewicz1, Damian Tomkowiak1, Mirosław Maciąg2, Małgorzata Stachowiak2 1Department of Microbiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland 2Forest Protecting Unit Łopuchówko, General Directorate of State Forest, Murowana Goślina, Poland Vol. 58, No. 2: 206–209, 2018 Abstract Our research provides novel information concerning the insecticidal activity of Brassica DOI: 10.24425/119129 alba mustard oil applied to the intestinal tract via insects’ diet against pests from the order Lepidoptera: Cydia pomonella, Dendrolimus pini, and Spodoptera exigua. The LC value of Received: December 11, 2017 50 ⋅ –1 Accepted: May 22, 2018 the oil against C. pomonella was 0.422 mg ml . The LC50 of the plant oil against D. pini was ⋅ –1 ⋅ –1 11.74 mg ml . The LC50 of the botanical product against S. exigua was 11.66 mg ml . The *Corresponding address: plant substance was the most active against C. pomonella in comparison with D. pini and [email protected] S. exigua. The LC50 values of the oil against D. pini and S. exigua were similar. The plant oil exhibited high insecticidal activity against pests from the order Lepidoptera and may prove to be an effective biopesticide. Key words: biopesticide, Cydia pomonella, Dendrolimus pini, ingestive application, Spodoptera exigua Botanical pesticides constitute an alternative way of re- The development of novel insecticides based on natu- ducing the use of chemical insecticides. -
Djvu Document
Vol. 5, No. 3-4, September-December 1991 185 Color identification of economically important Spodoptera larvae in Honduras (Lepidoptera: Noctuidae) S Passoa USDftJAPHISlPPQ 8995 E. Main Street Bldg. 3, Room 109 Reynoldsburg, OH 43068 Abstract Spodopterafrugiperda (J. E. Smith), S. exigua (HUbner), S.lati(ascia (Walker), S. ornithogalli (Guenee), S. dolichos (Fabricius), S. sunia (Guenee), and S. eridania (Cramer) are commonly associated with crops in Honduras. A key to these species with color illustrations ofrare and typical forms is presented. Potential problems in identifying Spodoptera species are discussed. Additional key words: morphology. Noctuoidea Introduction mens are misidentified (Figures 9.1, 9.4, and 11.2 label three forms of S odo tera lati ascia as S. pests throughout the world (Kranz etal. 1977, Hill ] 975) At least eight species are known to occur in 1 Honduras. Spodoptera frugiperda (J. E. Smith), azzom e al. mcorrect y la e ed a p oto- Spoooptera exigua (Hubner), Spodoptera lati{Q.scia graph ofS. 8unia as S. eridania. PNalker), and 8podoptera sunia (Guenee) are eon This work should facilitate identification of sidered economically important pests whereas common Spodoptel a 1m vae in Honduras by pI esen- Spodoptera eridania Wratner), Spodoptera orni- ~~;e~~;~:~~~~~o:o~~~~:~:~:~o~;:i~:~~ thogalli (Guenee), and Spodoptera dolichos (Fabri cius) are rarely abundant enough to cause serious allow accfrate identification of most Spodoptera damage to Honduran crops (Passoa 1983). An adult Spodoptera androgea (Cramer) was collected onthe north coast of HondUIas (La Lima, DepaItment of impossible. Cortes) in October, but its larva is unknown. The host range of Spodoptera is very wide including Methods and Materials most vegetable crops and several basic grains (passoa Most ofthe specimens used in this study were 1983, Andrews 1984, King and Saunders 1984). -
Linum Lewisii (Lewis's Blue Flax) (Pdf)
Linum lewisii Lewis’s Blue Flax by Kathy Lloyd Montana Native Plant Society Photo: Drake Barton Linum lewisii (Lewis’s Blue Flax) ewis’s blue flax, Linum lewisii, was col- wether Lewis by Frederick Pursh, who described the lected on July 9, 1806 in Montana. It is plant in his 1814 Flora Americae Septentrionalis or not known for certain who collected the Flora of North America. Pursh attached a label to specimen that is housed in the Lewis & the specimen that reads, “Perennial Flax. Valleys of LClark Her barium in Philadelphia. It could have been the Rocky mountains. July 9th 1806.” This Lewis Meriwether Lewis, who was traveling along the Sun and Clark specimen is one of a group that was feared River from Lewis & Clark County into Cascade lost but was fortunately relocated in 1896 at the County, or William Clark, who was at Camp Fortu- American Philosophical Society and subsequently nate in Beaverhead County. Lewis’s journal entry placed on permanent loan to the Academy of Natural for the day says nothing of blue flax, but does talk Sciences. about the rain and cold, “we then proceeded and it Another sheet of Lewis’s blue flax is currently part rained without intermission wet us to the skin…the of the Lewis & Clark Herbarium, but present-day day continuing rainy and cold…” The preserved botanists question its authenticity as a Lewis and specimen in the Lewis & Clark Herbarium appears Clark collection. James Reveal, a preeminent bota- to be in good shape and has a partially opened nist at the University of Maryland, believes the flower. -
Tropical Insect Chemical Ecology - Edi A
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world. -
Quick Scan Number: QS.ENT.2014.12
National Plant Protection Organization, the Netherlands Quick scan number: QS.ENT.2014.12 Quick scan date : 19 December 2014 1 What is the scientific name (if possible up to Spodoptera cosmioides (Walker, 1858) (Lepidoptera, Noctuidae) (Silvain & Lalanne-Cassou 1997). species level + author, also include (sub)family and Synonyms: Prodenia cosmioides Walker 1858. order) and English/common name of the organism? Note: S.cosmioides was considered a synonym of S.latifascia untill 1997. Add picture of organism/damage if available and publication allowed . Left female, middle male (wingspan 40-45 mm), right 4 th instar larva. 2 What prompted this quick scan? The finding of a young caterpillar at import inspection of 13,634 plants of Dracaena marginata Organism detected in produce for import, export, in (Agavaceae) from Costa Rica, intended for further cultivation in a greenhouse (sample number cultivation, nature, mentioned in publications, e.g. 4715660) on 23 October 2014. EPPO alert list, etc. 3 What is the current area of distribution? Tropical America: Central- and South-America from Costa Rica to Argentina, including: Argentina, Bolivia, Brazil, Colombia, Costa Rica, Ecuador, French Guyana, Guyana, Panama, Paraquay, Peru, Trinidad, Venezuela (Pogue 2002). It has been intercepted on produce (Momordica sp.) from Surinam. 1 4 What are the host plants? Authors refer in the introduction of articles to the polyphagous nature of the pest e.g. Bavaresco et al . (2004): “In Brazil, the cultures of pineapple (seedlings), cotton (bolls), rice, eggplant, onions (green parts), eucalyptus trees (seedlings), mango, peppers and tomatoes, among other vegetables, are considered host plants.” Bavaresco et al. (2004, referring to Nora & Reis Filho (1988) and Nora et al. -
Rigid Flax Linum Medium (Planch.) Britt
Rigid Flax Linum medium (Planch.) Britt. var. texanum (Planch.) Fern State Status: Threatened Federal Status: None Description: Rigid Flax is a perennial herb of the flax family (Linaceae), with yellow five-petaled flowers borne on stiff, ascending branches. Plants grow 2 to 7 dm (~8– 28 in.) in height. The flower petals are 4 to 8 mm long. The styles are distinct (i.e., not united at the base). The sepals are imbricate, and the inner ones have teeth with bulbous glandular tips along their edges. Leaves are entire, lance-shaped, and up to 2.5 cm (1 in.) long with the largest leaves towards the base of the plant. The upper leaves are alternate and usually have pointed tips, while those of the lowest nodes are opposite and blunt tipped. The sepals persist long after the petals have withered and subtend the small (2 mm), dry seed capsules. The species is most often found growing in barren, disturbed areas on sterile soil. Aids to identification: • Plants with stiffly ascending branches • Densely leaved with 30 to 70 leaves below the inflorescence • Lowest leaves opposite; upper leaves alternate • Seed capsules more-or-less spherical with a flattened top • Inner sepals with glandular teeth • Most easily identified when fruit are present Similar species: Four yellow-flowered Linum species that might be mistaken for Rigid Flax occur in Massachusetts. Grooved Yellow Flax (L. sulcatum var. sulcatum) differs from the other three in that it is an annual and its styles are united at the base. Woodland Yellow Flax (L. virginianum) and Panicled Yellow Flax (L. -
Biotic Potential, Fertility and Life Table of Spodoptera Albula (Walker) (Lepidoptera: Noctuidae), Under Controlled Conditions
Anais da Academia Brasileira de Ciências (2014) 86(2): 723-732 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201402812 www.scielo.br/aabc Biotic potential, fertility and life table of Spodoptera albula (Walker) (Lepidoptera: Noctuidae), under controlled conditions DÉBORA G. MONTEZANO1, ALEXANDRE SPECHT1,2, DANIEL R. SOSA-GÓMEZ3, VÂNIA F. ROQUE-SPECHT4, TARCISO M. BORTOLIN5, EDEGAR FRONZA1, PATRÍCIA PEZZI1, PRISCILA C. LUZ1 and NEIVA M. BARROS1 1Universidade de Caxias do Sul, Caixa Postal 1352, 95070-560 Caxias do Sul, RS, Brasil 2Embrapa Cerrados, BR 020, Km 18, Caixa Postal 08223, 73310-970, Planaltina, DF, Brasil 3Embrapa Soja, Rod. Carlos João Strass - Distrito de Warta, Caixa Postal 231, 86001-970 Londrina, PR, Brasil 4Faculdade UnB Planaltina, Área Universitária n. 1, Vila Nossa Senhora de Fátima, 73300-000 Planaltina, DF, Brasil 5Gravena - Pesquisa, Consultoria e Treinamento Agrícola Ltda. Rod. Dep. Cunha Bueno (SP-253), Km 221,5, Caixa Postal 546, 14870-990 Jaboticabal, SP, Brasil Manuscript received on May 16, 2012; accepted for publication on July 30, 2013 ABSTRACT This study aimed to evaluate the biotic potential, life table parameters and fertility of Spodoptera albula (Walker, 1857) under controlled conditions (25 ± 1°C, 70 ± 10% RH and 14 hour photo phase). The longevity, pre, post and oviposition periods, fecundity and fertility of 13 couples were evaluated. The longevity of females (13.500 days) was significantly higher than those of males (11.154 days). The mean durations of the pre, post and oviposition periods were 2.615, 1.769 and 9.385 days, respectively.