Alternaria Diseases of Vegetable Crops and Its Management Control to Reduce the Low Production
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alternaria Brassicicola)
Int.J.Curr.Microbiol.App.Sci (2020) 9(8): 2553-2559 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 8 (2020) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2020.908.292 In-vivo Management of Alternaria Leaf Spot of Cabbage (Alternaria brassicicola) Dwarkadas T. Bhere*, K. M. Solanke, Amrita Subhadarshini, Shashi Tiwari and Mohan K. Narode Department of Plant Pathology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, (U. P), India *Corresponding author ABSTRACT K e yw or ds An experiment was conducted for in-vivo management of Alternaria leaf spot of Cabbage. Alternaria leaf spot, The experiment was analyzed by using RBD (randomized block design) with three 2 Cabbage, replications in a plot size 2x2m . Eight treatments were taken i.e. Neem oil, Eucalyptus oil, Eucalyptus oil and Clove oil, Trichoderma viride, Neem oil + Trichoderma viride, Eucalyptus oil + Clove oil, Trichoderma viride, Clove oil + Trichoderma viride along with the control. Observations Trichoderma viride, were recorded at disease intensity 30, 45 and 60 (days after Transplanting), plant growth Neem oil parameters such a yield (q/ha). Experiment revealed that Neem oil significantly reduced the Alternaria leaf spot of Cabbage, where among the use Neem oil seedling treatment @ Article Info 5% increased the yield. The maximum cost benefit ratio was recorded by Neem oil (1:3.26) Thus according to experimental finding and results discussed in the earlier Accepted: chapter, it is concluded that Neem oil reduced the Alternaria leaf spot of Cabbage, where 22 July 2020 among the Neem oil seedling application found maximum yield was significantly superior Available Online: 10 August 2020 as compare to other treatments. -
Infection Cycle of Alternaria Brassicicola on Brassica Oleracea Leaves Under Growth Room Conditions
Plant Pathology (2018) 67, 1088–1096 Doi: 10.1111/ppa.12828 Infection cycle of Alternaria brassicicola on Brassica oleracea leaves under growth room conditions V. K. Macioszeka, C. B. Lawrenceb and A. K. Kononowicza* aDepartment of Genetics, Plant Molecular Biology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; and bDepartment of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA Development of the necrotrophic fungus Alternaria brassicicola was evaluated during infection of three cabbage vari- eties: Brassica oleracea var. capitata f. alba ‘Stone Head’ (white cabbage), B. oleracea var. capitata f. rubra ‘Langedi- jker Dauer’ (red cabbage) and B. oleracea var. capitata f. sabauda ‘Langedijker Dauerwirsing’ (Savoy cabbage). Following inoculation of cabbage leaves, conidial germination, germ tube growth, and appressorium formation were analysed during the first 24 h of infection. Differences in the dynamics of fungal development on leaves were observed, e.g. approximately 40% of conidia germinated on Savoy cabbage leaves at 4 h post-inoculation (hpi) while only 20% germinated on red and white cabbage leaves. Leaf penetration on the three cabbage varieties mainly occurred through appressoria, rarely through stomata. Formation of infection cushions was found exclusively on red cabbage. Appresso- ria were first observed on red cabbage leaves at 6 hpi, and on white and Savoy cabbage leaves at 8 hpi. Conidiogenesis occurred directly from mature conidia at an early stage of fungal development (10 hpi), but later (48 hpi) it occurred through conidiophores. Disease progress and changes in the morphology of leaf surfaces were also observed. At the final 120 hpi measurement point, necroses on all investigated varieties were approximately the same size. -
Isolation and Identification of Fungi from Leaves Infected with False Mildew on Safflower Crops in the Yaqui Valley, Mexico
Isolation and identification of fungi from leaves infected with false mildew on safflower crops in the Yaqui Valley, Mexico Eber Addi Quintana-Obregón 1, Maribel Plascencia-Jatomea 1, Armando Burgos-Hérnandez 1, Pedro Figueroa-Lopez 2, Mario Onofre Cortez-Rocha 1 1 Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Colonia Centro. C.P. 83000 Hermosillo, Sonora, México. 2 Campo Experimental Norman E. Borlaug-INIFAP. C. Norman Borlaug Km.12 Cd. Obregón, Sonora C.P. 85000 3 1 0 2 Aislamiento e identificación de hongos de las hojas infectadas con la falsa cenicilla , 7 en cultivos de cártamo en el Valle del Yaqui, México 2 - 9 1 Resumen. La falsa cenicilla es una enfermedad que afecta seriamente los cultivos de cártamo en : 7 3 el Valle del Yaqui, México, y es causada por la infección de un hongo perteneciente al género A Ramularia. En el presente estudio, un hongo aislado de hojas contaminadas fue cultivado bajo Í G diferentes condiciones de crecimiento con la finalidad de estudiar su desarrollo micelial y O L producción de esporas, determinándose que el medio sólido de , 18 C de O Septoria tritici ° C I incubación y fotoperiodos de 12 h luz-oscuridad, fueron las condiciones más adecuadas para el M desarrollo del hongo. Este aislamiento fue identificado morfológicamente como Ramularia E D , pero genómicamente como , por lo que no se puede cercosporelloides Cercosporella acroptili A aún concluir que especie causa esta enfermedad. Adicionalmente, en la periferia de las N A C infecciones estudiadas se detectó la presencia de Alternaria tenuissima y Cladosporium I X cladosporioides. -
Biotechnology of Neglected and Underutilized Crops Biotechnology of Neglected and Underutilized Crops Shri Mohan Jain · S
Shri Mohan Jain · S. Dutta Gupta Editors Biotechnology of Neglected and Underutilized Crops Biotechnology of Neglected and Underutilized Crops Shri Mohan Jain · S. Dutta Gupta Editors Biotechnology of Neglected and Underutilized Crops 1 3 Editors Shri Mohan Jain S. Dutta Gupta Department of Agricultural Sciences Department of Agricultural University of Helsinki and Food Engineering Helsinki Indian Institute of Technology Kharagpur Finland Kharagpur India ISBN 978-94-007-5499-7 ISBN 978-94-007-5500-0 (eBook) DOI 10.1007/978-94-007-5500-0 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013934379 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. -
( 12 ) United States Patent ( 10 ) Patent No .: US 10,813,359 B2 Sword ( 45 ) Date of Patent : Oct
US010813359B2 ( 12 ) United States Patent ( 10 ) Patent No .: US 10,813,359 B2 Sword ( 45 ) Date of Patent : Oct. 27 ,2 2020 ( 54 ) FUNGAL ENDOPHYTES FOR IMPROVED 6,689,880 B2 2/2004 Chen et al . CROP YIELDS AND PROTECTION FROM 6,823,623 B2 11/2004 Minato et al . 7,037,879 B2 5/2006 Imada et al . PESTS 7,080,034 B1 7/2006 Reams 7,084,331 B2 8/2006 Isawa et al . ( 71 ) Applicant: THE TEXAS A & M UNIVERSITY 7,335,816 B2 2/2008 Kraus et al . SYSTEM , College Station , TX (US ) 7,341,868 B2 3/2008 Chopade et al . 7,485,451 B2 2/2009 VanderGheynst et al . 7,555,990 B2 7/2009 Beaujot ( 72 ) Inventor: Gregory A. Sword , College Station , 7,632,985 B2 12/2009 Malven et al . TX (US ) 7,763,420 B2 7/2010 Stritzker et al . 7,906,313 B2 3/2011 Henson et al . ( 73 ) Assignee : THE TEXAS A & M UNIVERSITY 7,977,550 B2 7/2011 West et al . SYSTEM , College Station , TX (US ) 8,019,694 B2 9/2011 Fell et al . 8,143,045 B2 3/2012 Miansnikov et al . 8,455,198 B2 6/2013 Gao et al . ( * ) Notice: Subject to any disclaimer , the term of this 8,455,395 B2 6/2013 Miller et al . patent is extended or adjusted under 35 8,465,963 B2 6/2013 Rolston et al . U.S.C. 154 ( b ) by 0 days. 8,728,459 B2 5/2014 Isawa et al. 9,113,636 B2 1/2015 von Maltzahn et al . -
Characterization of Alternaria Alternata Isolates Causing Brown Spot of Potatoes in South Africa
Characterization of Alternaria alternata isolates causing brown spot of potatoes in South Africa By Joel Prince Dube Submitted in partial fulfilment of the requirements for the degree of Master in Science (Agriculture) Plant Pathology In the faculty of Natural and Agricultural Sciences Department of Microbiology and Plant Pathology University of Pretoria Pretoria February 2014 © University of Pretoria DECLARATION I, Joel Prince Dube, declare that the thesis, which I hereby submit for the degree Master of Science (Agriculture) Plant Pathology at the University of Pretoria, is my own work and has not been previously submitted by me for a degree at this or any other tertiary institution. Signed: ___________________________ Date: ____________________________ i © University of Pretoria Acknowledgements I would like to extend my heartfelt thanks the contributions of the following: 1. First and foremost, the Almighty God by whose grace I am where I am today. I owe everything to him. 2. My supervisors, Prof. Jacquie van der Waals and Dr. Mariette Truter, for their unwavering support and guidance throughout my Masters journey. 3. Pathology programme @ UP for the opportunity and funding for my studies. 4. Syngenta for funding one of my chapters. 5. Charles Wairuri, Nelisiwe Khumalo, Alain Misse for their help with all my molecular work. 6. Colleagues in greenhouse for all their help, suggestions and contributions throughout my studies. 7. My family and friends for their financial, spiritual and moral support, it is greatly appreciated. ii © University of Pretoria Characterization of Alternaria alternata isolates causing brown spot of potatoes in South Africa By Joel Prince Dube Supervisor : Prof. J. -
Identification and Characterization of Alternaria Species Causing Leaf Spot
Eur J Plant Pathol (2017) 149:401–413 DOI 10.1007/s10658-017-1190-0 Identification and characterization of Alternaria species causing leaf spot on cabbage, cauliflower, wild and cultivated rocket by using molecular and morphological features and mycotoxin production Ilenia Siciliano & Giovanna Gilardi & Giuseppe Ortu & Ulrich Gisi & Maria Lodovica Gullino & Angelo Garibaldi Accepted: 22 February 2017 /Published online: 11 March 2017 # Koninklijke Nederlandse Planteziektenkundige Vereniging 2017 Abstract Alternaria species are common pathogens of Keywords Crucifers . Toxins . Leaf spot . Tenuazonic fruit and vegetables able to produce secondary metabo- acid lites potentially affecting human health. Twenty-nine isolates obtained from cabbage, cauliflower, wild and cultivated rocket were characterized and identified Introduction based on sporulation pattern and virulence; the phylo- β genetic analysis was based on the -tubulin gene. Most Alternaria species are saprophytes and ubiquitous Isolates were identified as A. alternata, A. tenuissima, in the environment, however some are plant pathogenic, A. arborescens, A. brassicicola and A. japonica. inducing diseases on a large variety of economically Pathogenicity was evaluated on plants under greenhouse important crops like cereals, oil-crops, vegetables and conditions. Two isolates showed low level of virulence fruits (Pitt and Hocking, 1997). Most Alternaria spp. on cultivated rocket while the other isolates showed produce chains of conidia with transverse and longitu- medium or high level of virulence. Isolates were also dinal septa with a tapering apical cell. Conidial size, characterized for their mycotoxin production on a mod- presence and size of a beak, the pattern of catenation ified Czapek-Dox medium. Production of the five and longitudinal and transverse septation are key taxo- Alternaria toxins, tenuazonic acid, alternariol, nomic features for this genus (Joly 1964; Ellis 1971 and alternariol monomethyl ether, altenuene and tentoxin 1976, Simmons 1992). -
The Phylogeny of Plant and Animal Pathogens in the Ascomycota
Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus. -
First Report of Alternaria Carthami Causing Leaf Spots on Carthamus Tinctorius in Brazil
New Disease Reports (2016) 33, 3. http://dx.doi.org/10.5197/j.2044-0588.2016.033.003 First report of Alternaria carthami causing leaf spots on Carthamus tinctorius in Brazil J.L. Alves 1, R.M. Saraiva 1, E.S.G. Mizubuti 1, S.M.T.P.G. Carneiro 2, L.C. Borsato 2, J.H.C. Woudenberg 3 and V. Lourenço Jr. 4* 1 Universidade Federal de Viçosa, Departamento de Fitopatologia, 36570-000, Viçosa, Minas Gerais, Brazil; 2 Instituto Agronômico do Paraná – IAPAR, Área de Proteção de Plantas, 86047-902, Londrina, Paraná, Brazil; 3 CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands; 4 Embrapa Hortaliças, 70351-970, Brasília, Distrito Federal, Brazil *E-mail: [email protected] Received: 01 Oct 2015. Published: 22 Jan 2016. Keywords: Alternaria alternata, safflower Carthamus tinctorius (safflower) is an important commercial flower which The fungus was re-isolated from the inoculated plants and the morphology is cultivated mainly for its seeds, from which vegetable oil can be was the same as the inoculated isolate (Fig. 2). No symptoms developed in extracted. In March 2013, approximately 50% of the safflower cv. Goiás at control plants sprayed with distilled water. the Instituto Agronômico do Paraná in Londrina (Paraná, Brazil) showed At least seven species of Alternaria are recorded from C. tinctorius (Farr & brown spots with concentric rings on leaves and elongated or irregular Rossman, 2014). A. carthami is known as a destructive disease of safflower necrotic lesions on petioles, stems and flower heads. One distinct and is recorded worldwide. -
The Incidence of Alternaria Species Associated with Infected Sesamum Indicum L
Plant Pathol. J. 1-11 (2017) https://doi.org/10.5423/PPJ.OA.04.2017.0081 The Plant Pathology Journal pISSN 1598-2254 eISSN 2093-9280 ©The Korean Society of Plant Pathology Research Article Open Access The Incidence of Alternaria Species Associated with Infected Sesamum indicum L. Seeds from Fields of the Punjab, Pakistan Brian Gagosh Nayyar1*, Steve Woodward2, Luis A. J. Mur3, Abida Akram1, Muhammad Arshad1, S. M. Saqlan Naqvi4, and Shaista Akhund1 1Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan 2Institute of Biological and Environmental Sciences, University of Aberdeen, Cruikshank Building, St. Machar Drive, Aberdeen AB24 3UU, Scotland, UK 3Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Edward Llwyd Building, Penglais Campus, Aberystwyth SY23 3DA, Wales, UK 4Department of Biochemistry, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan (Received on April 10, 2017; Revised on July 9, 2017; Accepted on July 23, 2017) Sesame (Sesamum indicum) is an important oil seed (KP123850.1) in GenBank accessions. The pathogenic- crop of Asia. Yields can be negatively impacted by vari- ity and virulence of these isolates of Alternaria alternata ous factors, including disease, particularly those caused was confirmed in inoculations of sesame plants result- by fungi which create problems in both production and ing in typical symptoms of leaf blight disease. This storage. Foliar diseases of sesame such as Alternaria leaf work confirms the identity of a major source of sesame blight may cause significant yield losses, with reductions leaf blight in Pakistan which will aid in formulating ef- in plant health and seed quality. -
Comparative Genomics of Alternaria Species Provides Insights Into the Pathogenic Lifestyle of Alternaria Brassicae – a Pathoge
Rajarammohan et al. BMC Genomics (2019) 20:1036 https://doi.org/10.1186/s12864-019-6414-6 RESEARCH ARTICLE Open Access Comparative genomics of Alternaria species provides insights into the pathogenic lifestyle of Alternaria brassicae – a pathogen of the Brassicaceae family Sivasubramanian Rajarammohan1,2, Kumar Paritosh3, Deepak Pental3 and Jagreet Kaur1* Abstract Background: Alternaria brassicae, a necrotrophic pathogen, causes Alternaria Leaf Spot, one of the economically important diseases of Brassica crops. Many other Alternaria spp. such as A. brassicicola and A. alternata are known to cause secondary infections in the A. brassicae-infected Brassicas. The genome architecture, pathogenicity factors, and determinants of host-specificity of A. brassicae are unknown. In this study, we annotated and characterised the recently announced genome assembly of A. brassicae and compared it with other Alternaria spp. to gain insights into its pathogenic lifestyle. Results: We also sequenced the genomes of two A. alternata isolates that were co-infecting B. juncea using Nanopore MinION sequencing for additional comparative analyses within the Alternaria genus. Genome alignments within the Alternaria spp. revealed high levels of synteny between most chromosomes with some intrachromosomal rearrangements. We show for the first time that the genome of A. brassicae, a large-spored Alternaria species, contains a dispensable chromosome. We identified 460 A. brassicae-specific genes, which included many secreted proteins and effectors. Furthermore, we have identified the gene clusters responsible for the production of Destruxin-B, a known pathogenicity factor of A. brassicae. Conclusion: The study provides a perspective into the unique and shared repertoire of genes within the Alternaria genus and identifies genes that could be contributing to the pathogenic lifestyle of A. -
A Survey of Endophytic Fungi Associated with High-Risk Plants Imported for Ornamental Purposes
agriculture Review A Survey of Endophytic Fungi Associated with High-Risk Plants Imported for Ornamental Purposes Laura Gioia 1,*, Giada d’Errico 1,* , Martina Sinno 1 , Marta Ranesi 1, Sheridan Lois Woo 2,3,4 and Francesco Vinale 4,5 1 Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; [email protected] (M.S.); [email protected] (M.R.) 2 Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; [email protected] 3 Task Force on Microbiome Studies, University of Naples Federico II, 80128 Naples, Italy 4 National Research Council, Institute for Sustainable Plant Protection, 80055 Portici, Italy; [email protected] 5 Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy * Correspondence: [email protected] (L.G.); [email protected] (G.d.); Tel.: +39-2539344 (L.G. & G.d.) Received: 31 October 2020; Accepted: 11 December 2020; Published: 17 December 2020 Abstract: An extensive literature search was performed to review current knowledge about endophytic fungi isolated from plants included in the European Food Safety Authority (EFSA) dossier. The selected genera of plants were Acacia, Albizia, Bauhinia, Berberis, Caesalpinia, Cassia, Cornus, Hamamelis, Jasminus, Ligustrum, Lonicera, Nerium, and Robinia. A total of 120 fungal genera have been found in plant tissues originating from several countries. Bauhinia and Cornus showed the highest diversity of endophytes, whereas Hamamelis, Jasminus, Lonicera, and Robinia exhibited the lowest. The most frequently detected fungi were Aspergillus, Colletotrichum, Fusarium, Penicillium, Phyllosticta, and Alternaria. Plants and plant products represent an inoculum source of several mutualistic or pathogenic fungi, including quarantine pathogens.