Age Dependence of the Rapid Antidepressant and Synaptic Effects of Acute NMDA Receptor Blockade

Total Page:16

File Type:pdf, Size:1020Kb

Age Dependence of the Rapid Antidepressant and Synaptic Effects of Acute NMDA Receptor Blockade View metadata, citation and similar papers at core.ac.uk brought to you by CORE ORIGINAL RESEARCH ARTICLEprovided by Frontiers - Publisher Connector published: 01 December 2014 doi: 10.3389/fnmol.2014.00094 Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade Elena Nosyreva, Anita E. Autry, Ege T. Kavalali and Lisa M. Monteggia* Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA Edited by: Ketamine is a N-methyl-D-aspartate receptor (NMDAR) antagonist that produces rapid Kimberly Raab-Graham, University of antidepressant responses in individuals with major depressive disorder.The antidepressant Texas at Austin, USA action of ketamine has been linked to blocking NMDAR activation at rest, which inhibits Reviewed by: eukaryotic elongation factor 2 kinase leading to desuppression of protein synthesis and Kuei-YuanTseng, Rosalind Franklin University, USA synaptic potentiation in the CA1 region of the hippocampus. Here, we investigated ChiHye Chung, Konkuk University, ketamine mediated antidepressant response and the resulting synaptic potentiation in South Korea juvenile animals. We found that ketamine did not produce an antidepressant response *Correspondence: in juvenile animals in the novelty suppressed feeding or the forced swim test. In addition Lisa M. Monteggia, Department of ketamine application failed to trigger synaptic potentiation in hippocampal slices obtained Neuroscience, University of Texas Southwestern Medical Center, 5323 from juvenile animals, unlike its action in slices from adult animals.The inability of ketamine Harry Hines Boulevard, Dallas, to trigger an antidepressant response or subsequent synaptic plasticity processes suggests TX 75390-9111, USA a developmental component to ketamine mediated antidepressant efficacy. We also show e-mail: lisa.monteggia@ utsouthwestern.edu that the NMDAR antagonist AP5 triggers synaptic potentiation in mature hippocampus similar to the action of ketamine, demonstrating that global competitive blockade of NMDARs is sufficient to trigger this effect. These findings suggest that global blockade of NMDARs in developmentally mature hippocampal synapses are required for the antidepressant efficacy of ketamine. Keywords: antidepressant, ketamine, behavior, synaptic potentiation, development INTRODUCTION Nosyreva et al., 2013). The behavioral as well as the synaptic Major depressive disorder (MDD) is a serious mental condition in effects of ketamine are dependent on the function of eukary- which there is a need for fast acting treatment. Ketamine, a non- otic elongation factor 2 (eEF2) kinase and protein synthesis as competitive N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine failed to elicit a behavioral response or potentiation has been shown to elicit a rapid antidepressant response in patients on the eEF2 kinase null mice as well as after application of pro- with MDD (Berman et al., 2000; Zarate et al., 2006; Price et al., tein translation blocker anisomycin (Autry et al., 2011; Nosyreva 2009) and bipolar depression (Diazgranados et al., 2010a; Zarate et al., 2013). Although these studies have provided a strong cor- et al., 2012). Ketamine has also been reported to have rapid anti- relation between the synaptic action of ketamine and its rapid suicidal effects (Price et al., 2009; DiazGranados et al., 2010b; antidepressant effects, they have not yet addressed whether this Larkin and Beautrais, 2011; Zarate et al., 2012), an area of crit- effect is dependent on the stage of synapse development. Synaptic ical unmet need. However, ketamine does not present an ideal plasticity related processes are age dependent and their proper- profile as an antidepressant due to its potential psychotomimetic ties vary during synapse development. For instance, NMDAR effects as well as abuse potential. Thus, there has been interest in only postsynaptically silent synapses are more prevalent dur- delineating the cellular mechanisms that underlie ketamine action ing earl stages of synapse development (Wu et al., 1996; Hanse to facilitate development of safer compounds with similar robust et al., 2013). We therefore examined whether ketamine elicits an and rapid antidepressant effects. antidepressant response and triggers similar synaptic potentia- In recent work, the antidepressant effect of ketamine have tion in juvenile animals to that previously observed in adults. been recapitulated in animal models predictive of antidepres- In addition, these earlier studies have not addressed whether the sant efficacy (Maeng et al., 2008; Li et al., 2010; Autry et al., 2011; synaptic effect of ketamine and another use-dependent NMDAR Nosyreva et al., 2013; Gideons et al., 2014), such as the forced blocker MK-801 could be mimicked by the widely used com- swim test (FST), the novelty suppressed feeding (NSF) test, and petitive non-use dependent NMDAR antagonist D-AP5 [D-AP5 learned helplessness test. In parallel, in hippocampal slices we (2R)-amino-5-phosphonopentanoate]. have also observed a form of synaptic potentiation elicited after In this study, we report that ketamine does not trigger a 30-min application of ketamine in the absence of stimulation. behavioral antidepressant response in juvenile animals as it does After ketamine application at rest, we stimulated the Schaffer col- in adults. We also find that ketamine does not trigger synap- lateral/commissural afferents and recorded postsynaptic responses tic potentiation in juvenile animals, demonstrating that the from CA1 dendrites. These responses were significantly enhanced antidepressant and synaptic effects of ketamine require the estab- after ketamine treatment in adult rats and mice (Autry et al., 2011; lishment of mature synaptic contacts. In addition, we show Frontiers in Molecular Neuroscience www.frontiersin.org December 2014 | Volume 7 | Article 94 | 1 Nosyreva et al. Age dependence of rapid antidepressant action that the competitive NMDAR antagonist D-AP5, elicits synaptic EXTRACELLULAR FIELD POTENTIAL RECORDINGS potentiation in developmentally mature slices complementing the Hippocampal slices (400 μm) were prepared from 14 to 21 day earlier observation that the competitive NMDAR antagonist 3- (young) or 6–8 week (adult) old Sprague Dawley rats, as indi- [(R)-2-Carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) cated. Animals were anesthetized with isoflurane and decapitated triggers a rapid antidepressant response in vivo (Autry et al., 2011). soon after the disappearance of corneal reflexes. The brain was removed, dissected, and then sliced using a vibratome (VT 1000S, MATERIALS AND METHODS Leica) in ice–cold dissection buffer containing the following (in ANIMALS mM): 2.6 KCl, 1.25 NaH2PO4, 26 NaHCO3, 0.5 CaCl2, 5 MgCl2, Male C57BL/6 mice from Jackson Labs and male Sprague–Dawley 212 sucrose, and 10 dextrose. Area CA3 was surgically removed rats from Charles River were obtained. For the experimental from each slice immediately after sectioning. The slices were paradigms, mice were 4 weeks of age and rats were either 2–3 transferred into a reservoir chamber filled with ACSF contain- (developmentally immature/juvenile) or 6–8 (developmentally ing the following (in mM): 124 NaCl, 5 KCl, 1.25 NaH2PO4, mature, young adult) weeks of age (McCutcheon and Marinelli, 26 NaHCO3,2CaCl2, 2 MgCl2, and 10 dextrose. Slices were 2009). Animals were maintained on a 12-h light/dark cycle with ad allowedtorecoverfor2–3hat30◦C. ACSF and dissection buffer libitum access to food and water, except when indicated. All exper- were equilibrated with 95% O2 and 5% CO2. For recording, iments were conducted and analyzed blind to treatment group. slices were transferred to a submerged recording chamber, main- Experiments were approved by the Institutional Animal Care and tained at 30◦C, and perfused continuously with ACSF at a rate of Use Committee at the UT Southwestern Medical Center. 2–3 ml/min. Field potentials were recorded with extracellular recording elec- DRUG TREATMENT trodes (1 M) filled with ACSF and placed in stratum radiatum of Ketamine (Fort Dodge Animal Health) and D-AP5 [D-(-)-2- area CA1. FPs were evoked by monophasic stimulation (duration, Amino-5-phosphonopentanoic acid] (Abcam Biochemicals) were 200 μs) of Schaffer collateral/commissural afferents with a con- prepared fresh in artificial cerebral spinal fluid (ACSF) and added centric bipolar tungsten stimulating electrode (Frederick Haer). to solutions as indicated. D-AP5, the active isomer of AP5, Stable baseline responses were collected every 30 s using a stim- was used to avoid potential variability associated with a racemic ulation intensity (10–30 μA), yielding 50–60% of the maximal mixture. The behavioral experiments utilized mice that were response. FPs were filtered at 2 kHz and digitized at 10 kHz on intraperitoneal (i.p.) injected drug to more closely mimic the route a personal computer using custom software (LabVIEW, National of administration in humans. For the field potentials (FPs) record- Instruments). Synaptic strength was measured as the initial slope ings, after 20 min of stable baseline, drugs (ketamine, D-AP5) (10–40% of the rising phase) of the FP. The group data were ana- were applied for 30 min at rest and then one control stimulus lyzed as follows: (1) the initial slopes of the FP were expressed was applied, after which there was no stimulation duringa1h as percentages of the preconditioning baseline average; and (2) washout. Stimulation was resumed for 30 min after washout. the time-matched,
Recommended publications
  • Directvote Election: Candidate Bios
    DirectVote Election: Candidate Bios Councilor Slot 2 Your Voting Status: Select 0 to 1 from below. Selected: 0 Vote For: Lisa Monteggia Lisa Monteggia Administrative Accomplishments: I have been involved in numerous administrative roles at UT Southwestern Medical Center, including Faculty Search Committees, membership in the Animal Resource Center advisory committee, Institutional Animal Care and Use Committee, Graduate Student Admissions committee, as well as the development of the Behavioral Core Facility. These opportunities have provided me with the skills and experience to deal with the needs and operations of basic science —in particular animal research— in a complex medical school campus. Degree, Institute, Year Earned: BS, University of Illinois-Urbana, 1989 MS, University of Illinois-Urbana, 1991 PhD, The Chicago Medical School, 1998 Postdoctoral fellow, Yale University, 1998-2000 Research Areas: My research interest is the molecular and cellular mechanisms underlying psychiatric disorders and neuropsychiatric treatment strategies. My laboratory studies two critical areas of translational brain research, mechanisms underlying antidepressant action and synaptic alterations that lead to the pathophysiology of the Rett syndrome. Our focus is on the role of synaptic plasticity mechanisms that may underlie these disorders and suggest potential targets for therapeutics. Current Position(s) at Your Current Institution: Ginny and John Eulich Professorship in Autism Spectrum Disorders, Professor of Neuroscience, UT Southwestern Medical
    [Show full text]
  • Essential Role of Brain-Derived Neurotrophic Factor in Adult Hippocampal Function
    Essential role of brain-derived neurotrophic factor in adult hippocampal function Lisa M. Monteggia*†, Michel Barrot*, Craig M. Powell*, Olivier Berton*, Victor Galanis*, Terry Gemelli*, Sven Meuth*, Andreas Nagy‡, Robert W. Greene*, and Eric J. Nestler* *Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070; and ‡Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5 Edited by Floyd E. Bloom, The Scripps Research Institute, La Jolla, CA, and approved May 27, 2004 (received for review March 26, 2004) Brain-derived neurotrophic factor (BDNF) regulates neuronal de- specific enolase–tetracycline transcriptional activator (NSE– velopment and function. However, it has been difficult to discern tTA) line are on a BL6͞SJL ϫ ICR background, the TetOp-Cre its role in the adult brain in influencing complex behavior. Here, we are on an ICR background, and the floxed BDNF mice are on use a recently developed inducible knockout system to show that a BL6͞sv129 background. The NSE–tTA mice (14) and the deleting BDNF in broad forebrain regions of adult mice impairs TetOp-Cre mice (15, 16) were maintained as homozygotes then hippocampal-dependent learning and long-term potentiation. We crossed to generate the bigenic mice. The floxed LacZ reporter use the inducible nature of this system to show that the loss of mice (17) or floxed BDNF mice (13) were then crossed with the BDNF during earlier stages of development causes hyperactivity bigenic NSE–tTA͞TetOp-Cre mice to generate the inducible and more pronounced hippocampal-dependent learning deficits. KO mice. All experiments were performed on littermates de- We also demonstrate that the loss of forebrain BDNF attenuates rived from this mating paradigm to ensure analysis by matched the actions of desipramine, an antidepressant, in the forced swim controls.
    [Show full text]
  • LISA M. MONTEGGIA, Ph.D
    LISA M. MONTEGGIA, Ph.D. RANK/TITLE: Barlow Family Director of the Vanderbilt Brain Institute Professor, Department of Pharmacology Address: Vanderbilt University MRBIII, Suite 7140 465 21st Avenue South Nashville, TN 37240-7933 PH: (615) 936-5483 FX: (615) 6936-3613 EM: [email protected] EDUCATION: University of Illinois, Urbana, IL – B.S.- Microbiology – 1989 University of Illinois, Urbana, IL – M.S. – Biology – 1991 The Chicago Medical School, North Chicago, IL – Ph.D. – Neuroscience – 1999 (Dr. Marina Wolf, PI) POSTDOCTORAL TRAINING: 1998-2000 Department of Psychiatry (Dr. Eric Nestler, PI) Yale University, New Haven, CT OTHER TRAINING: 1991-1994 Associate Scientist, Department of Neuroscience, Abbott Laboratories, Abbott Park, IL 1994-1998 Scientist, Department of Neuroscience, Abbott Laboratories, Abbott Park, IL ACADEMIC APPOINTMENTS: 09/2000-10/2002 Research Assistant Professor, Department of Psychiatry, UT Southwestern, Dallas, TX 10/2002-09/2009 Assistant Professor, Department of Psychiatry, UT Southwestern, Dallas, TX 09/2009-09/2013 Associate Professor (tenure), Department of Psychiatry, UT Southwestern, Dallas, TX 06/2010-06/2018 Ginny and John Eulich Professorship in Autism Spectrum Disorders 09/2013-06/2018 Professor, Department of Neuroscience, UT Southwestern, Dallas, TX 07/2018- Director, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 07/2018- Professor of Pharmacology, Vanderbilt University, Nashville, TN AWARDS/HONORS: 1985-1989 University of Illinois, Full Academic Tuition Scholarship 1991 Top 10% of Teaching Assistants for Excellence in Teaching, University of Illinois 1998-2000 NIH/NIDA Postdoctoral Training Grant, Yale University 2001 Young Investigator Award, NARSAD 2002 American College of Neuropsychopharmacology/Bristol-Myers Squibb Travel Award 2003 Developmental Neurobiology and Child Psychiatry, Otsuka Travel Award 2003 College on Problems on Drug Dependence, Center for Addictive Diseases Travel Award 2003 Young Investigator Award, NARSAD 2005 Daniel X.
    [Show full text]
  • Anxiety-Related Interventions in Rodent Defense Behaviors
    bioRxiv preprint doi: https://doi.org/10.1101/020701; this version posted November 18, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Anxiety-related interventions in rodent defense behaviors: systematic review and meta-analyses Authors Farhan Mohammad1, Joses Ho2, Chun Lei Lim, Jia Hern Woo, Dennis Jun Jie Poon2, Bhumika Lamba2 & Adam Claridge-Chang1, 2, 3, 4 Affiliations 1. Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 138673 2. Institute for Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673 3. Department of Physiology, National University of Singapore, Singapore 138673 4. Corresponding author: [email protected] Keywords anxiety, defense, behavior, rodent, stress, serotonin, meta-analysis 1 bioRxiv preprint doi: https://doi.org/10.1101/020701; this version posted November 18, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT Background Assays measuring defense behavior in rodents, including the elevated plus maze, open field and light-dark box assays, have been widely used in preclinical models of anxiety to study the ability of therapeutic interventions to modulate the anxiety-like state. However, many important proposed anxiety-modulating factors, including genes, drugs and stressors have had paradoxical effects in these assays across different studies.
    [Show full text]
  • 9Th Annual Enhancing Neuroscience Diversity Through Undergraduate Research Education Experiences (ENDURE) Meeting
    9th Annual Enhancing Neuroscience Diversity through Undergraduate Research Education Experiences (ENDURE) Meeting October 19, 2019 | Chicago, IL The NIH Office of the Director and these NIH Institutes and Centers participate in the NIH Blueprint for Neuroscience Research: • NCATS • NIAAA • NIDCR • NINR • NCCIH • NIBIB • NIEHS • OBSSR • NEI • NICHD • NIMH • NIA • NIDA • NINDS TABLE OF CONTENTS ENDURE PROGRAM AND MEETING GOALS .................................................................................. 2 NOTICE OF INTENT TO RE-ISSUE BP-ENDURE FOA ...................................................................... 3 ENDURE MEETING AGENDA ........................................................................................................ 4 NIH BLUEPRINT WELCOME AND SPEAKER BIOGRAPHIES .......................................................... 5 ENDURE PROGRAM INFORMATION AND TRAINEE RESEARCH ABSTRACTS • BP-ENDURE AT HUNTER AND NYU ........................................................................................ 8 • BP-ENDURE AT ST. LOUIS: A NEUROSCIENCE PIPELINE ....................................................... 23 • BRAiN: BUILDING RESEARCH ACHIEVEMENT IN NEUROSCIENCE ......................................... 41 • BRIDGE TO THE PH.D. IN NEUROSCIENCE ............................................................................ 48 • ENHANCING NEUROSCIENCE DIVERSITY WITH TENNESSEE STATE UNIVERSITY – NEUROSCIENCE EDUCATION AND RESEARCH VANDERBILT EXPERIENCE (TSU-NERVE)...... 57 • NEUROSCIENCE RESEARCH OPPORTUNITIES TO
    [Show full text]
  • An in Vitro Characterization of the Raphe Nucleus and the Effects of Ssris on Synaptic Function
    AN IN VITRO CHARACTERIZATION OF THE RAPHE NUCLEUS AND THE EFFECTS OF SSRIS ON SYNAPTIC NEUROTRANSMISSION APPROVED BY SUPERVISORY COMMITTEE ________________________________________ Ilya Bezprozvanny, Ph.D. ________________________________________ Lisa Monteggia, Ph.D. ________________________________________ Joseph Albanesi, Ph.D ________________________________________ Melanie Cobb, Ph.D ________________________________________ Ege Kavalali, Ph.D Dedicated to my parents, Funke and Bashir Ashimi, my sister Laide and brother Idris, future husband Taofeek, and the rest of my family and friends for all their unconditional love and continued support. AN IN VITRO CHARACTERIZATION OF THE RAPHE NUCLEUS AND THE EFFECTS OF SSRIS ON SYNAPTIC NEUROTRANSMISSION By SUNBOLA SHEFIAT ASHIMI DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas June 2010 Copyright by Sunbola Shefiat Ashimi, 2010 All Rights Reserved ACKNOWLEDGEMENTS I would like to thank Dr. Lisa Monteggia for her mentorship, support, and friendship over the past five years. I would also like to thank Dr. Ege Kavalali for his guidance and teaching me about the wonderful world of synaptic transmission. Regards to the past and present members of the Monteggia lab for their continued support, especially Erika Nelson, Megumi Adachi, and Waseem Akhtar for their training, scientific advice, and friendship. I want to thank Anita Autry for being such a wonderful and gracious friend to have taken this journey with. Also, I thank Melissa Mahgoub for her treasured friendship and for reminding me that there are still special people in the world.
    [Show full text]
  • LETTER Doi:10.1038/Nature10130
    LETTER doi:10.1038/nature10130 NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses Anita E. Autry1, Megumi Adachi1, Elena Nosyreva2, Elisa S. Na1, Maarten F. Los1, Peng-fei Cheng1, Ege T. Kavalali2 & Lisa M. Monteggia1 Clinical studies consistently demonstrate that a single sub-psycho- mimetic dose of ketamine, an ionotropic glutamatergic NMDAR a * * (N-methyl-D-aspartate receptor) antagonist, produces fast-acting 150 * * antidepressant responses in patients suffering from major depres- sive disorder, although the underlying mechanism is unclear1–3. Depressed patients report the alleviation of major depressive dis- 100 order symptoms within two hours of a single, low-dose intravenous infusion of ketamine, with effects lasting up to two weeks1–3, unlike Immobility (s) traditional antidepressants (serotonin re-uptake inhibitors), which 50 Vehicle take weeks to reach efficacy. This delay is a major drawback to Ketamine current therapies for major depressive disorder and faster-acting 3 antidepressants are needed, particularly for suicide-risk patients . 30 min 3 h 24 h 1 wk The ability of ketamine to produce rapidly acting, long-lasting anti- depressant responses in depressed patients provides a unique b * * opportunity to investigate underlying cellular mechanisms. Here 150 * we show that ketamine and other NMDAR antagonists produce fast-acting behavioural antidepressant-like effects in mouse models, and that these effects depend on the rapid synthesis of brain-derived 100 neurotrophic factor. We find that the ketamine-mediated blockade of NMDAR at rest deactivates eukaryotic elongation factor 2 (eEF2) Immobility (s) kinase (also called CaMKIII), resulting in reduced eEF2 phosphor- 50 Vehicle ylation and de-suppression of translation of brain-derived neuro- CPP trophic factor.
    [Show full text]
  • Biographical Sketch Name
    OMB No. 0925-0001 and 0925-0002 (Rev. 03/2020 Approved Through 02/28/2023) BIOGRAPHICAL SKETCH Provide the following information for the Senior/key personnel and other significant contributors. Follow this format for each person. DO NOT EXCEED FIVE PAGES. NAME: EGE T. KAVALALI eRA COMMONS USER NAME (credential, e.g., agency login): EKAVALALI POSITION TITLE: PROFESSOR EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.) DEGREE Completion (if Date FIELD OF STUDY INSTITUTION AND LOCATION applicable) MM/YYYY Boğaziçi University, Istanbul, Turkey B.S. 1990 Electrical Engineering Rutgers University, New Brunswick, New Jersey Ph.D. 1995 Biomedical Engineering Stanford University School of Medicine, Stanford Postdoctoral 1995-1999 Molecular and Cellular California Fellowship Physiology A. Personal Statement My research interests are focused on the basic mechanisms that underlie the formation and function of synapses in the central nervous system in health and disease. Since its inception, our laboratory has uncovered several novel facets of synaptic transmission, synapse formation as well as synapse maturation in the CNS. The key contribution of our research is the demonstration that spontaneous and evoked neurotransmission processes are segregated both in their presynaptic origins and postsynaptic targets. Our work has identified spontaneous neurotransmission as an autonomous neuronal signaling pathway independent of action potential-evoked synaptic transmission. In the last decade, we used imaging and electrophysiological approaches as well as molecular tools to pursue this novel signaling mechanism on both sides of the synapse. We developed tools to visualize trafficking of multiple synaptic vesicle proteins simultaneously within individual synapses.
    [Show full text]
  • Anita E. Autry, Ph.D
    Anita E. Autry, Ph.D. Department of Molecular and Cellular Biology Email: [email protected] Harvard University Cell: 214-701-8761 16 Divinity Avenue, Biolabs 4023 Cambridge, MA 02138 SCHOLARLY PROFILE Neuroscience researcher using state of the art molecular tools to understand the functional neuroanatomy of circuits controlling behavior. RESEARCH EXPERIENCE 2011-present Postdoctoral Fellow, Harvard University, Department of Molecular and Cellular Biology Advisor: Catherine Dulac, Ph.D EDUCATION 2011 Ph.D. University of Texas Southwestern Medical Center at Dallas Neuroscience Graduate Program Advisor: Lisa Monteggia, Ph.D. 2005 B.A., B.S. University of South Carolina, Honors College Baccalaureus Degree CURRENT FUNDING 2016 K99/R00 Grantee Pathway to Independence Award K99 HD 085188 Sponsored by NICHD to research parental behavior 2015 NARSAD Young Investigator Brain and Behavior Research Foundation Received two years of funding to support research projects 2014 Fellow Ruth L. Kirschstein National Research Service Award F32 HD 078040 Sponsored by NICHD to research parental behavior PUBLICATIONS Selected Publications 1. Wu, Z., Autry, A.E., Bergan, J.F., Watabe-Uchida, M., Dulac, C.G. (2014). Galanin neurons in the medial preoptic area govern parental behavior. Nature, 509 (7500) 325-330. 2. Autry, A.E., Adachi, M., Nosyreva, E., Na, E., Los, M.F., Cheng, P., Kavalali, E.T., Monteggia, L.M. (2011). NMDA Receptor Blockade at Rest Desuppresses Protein Translation and Triggers Rapid Behavioural Antidepressant Responses. Nature, 475(7354) 91-5. 1 Additional Publications 3. Adachi, M.*, Autry, A.E.*, Maghoub, M., Suzuki, K., Monteggia, L.M. (2016). TrkB Signaling in Dorsal Raphe Nucleus is Essential for Antidepressant Efficacy and Normal Aggression Behavior.
    [Show full text]
  • Repeated Administration of Amphetamine Or Cocaine Does Not Alter AMPA Receptor Subunit Expression in the Rat Midbrain Wenxiao Lu, M.D., Lisa M
    Repeated Administration of Amphetamine or Cocaine Does Not Alter AMPA Receptor Subunit Expression in the Rat Midbrain Wenxiao Lu, M.D., Lisa M. Monteggia, Ph.D., and Marina E. Wolf, Ph.D. We previously reported that ventral tegmental area (VTA) withdrawal time. GluR1 immunolabeling was further dopamine neurons are supersensitive to AMPA when examined in rats killed 16–18 hrs or 24 hrs after a single recorded three days after discontinuing repeated injection of amphetamine or repeated injections of saline, amphetamine or cocaine administration. By increasing amphetamine (5 mg/kg ϫ 5 days) or cocaine (20 mg/kg ϫ 7 dopamine cell activity, this may contribute to the induction days). No significant differences were observed in any of behavioral sensitization. The goal of this study was to region. Finally, neither repeated amphetamine or cocaine determine if increased sensitivity to AMPA reflects administration significantly altered GluR1 mRNA levels as increased AMPA receptor expression in the midbrain. quantified by reverse transcriptase-polymerase chain reaction. Immunolabeling for GluR1, GluR2, GluR2/3, and GluR4 Our results suggest that enhanced responsiveness of VTA was quantified by immunohistochemistry with 35S-labeled dopamine neurons to AMPA after withdrawal from repeated secondary antibodies in VTA, substantia nigra, and a stimulant administration involves mechanisms more complex transitional area. First, rats were treated for five days with than increased expression of AMPA receptor subunits. saline or amphetamine (5 mg/kg) and killed three or 14 days [Neuropsychopharmacology 26:1–13, 2002] after the last injection. No significant changes in © 2001 American College of Neuropsychopharmacology. immunolabeling were observed for any subunit at either Published by Elsevier Science Inc.
    [Show full text]
  • Exploring Mechanisms of Depression-Related Behavior and Rapid Antidepressant Action
    MOLECULAR MECHANISMS UNDERLYING DEPRESSION-RELATED BEHAVIOR AND RAPID ANTIDEPRESSANT ACTION APPROVED BY SUPERVISORY COMMITTEE ________________________________________ Lisa Monteggia, Ph.D. ________________________________________ Kimberly Huber, Ph.D. ________________________________________ Ege Kavalali, Ph.D. ________________________________________ Carol Tamminga, M.D. Dedicated to my mom and dad Nick and Rita Autry, To my husband John Dixon, And to my family and friends For their unconditional love and support. EXPLORING MECHANISMS OF DEPRESSION-RELATED BEHAVIOR AND RAPID ANTIDEPRESSANT ACTION By ANITA ELLEN AUTRY DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas April 2011 Copyright By ANITA ELLEN AUTRY, 2011 All rights reserved ACKNOWLEDGEMENTS I must first thank my mentor, Lisa Monteggia, Ph.D., for unwavering support, guidance, excellent mentorship, and being a role model both in and out of the laboratory. I would also like to thank Ege Kavalali, Ph.D. for teaching me neuroscience and for giving experimental advice as well as constructive criticism. I am also grateful to my thesis committee members Kimberly Huber, Ph.D., and Carol Tamminga, M.D., for insightful comments and direction over the years. I would like to thank Larry Reagan, Ph.D. for introducing me to research as well as past and present members of his lab, Claudia Grillo, Ph.D., Gerardo Piroli, Ph.D., and Leah Reznikov, Ph.D. I would like to thank Leslie Jones, Ph.D., for continuing advisement and support.
    [Show full text]
  • Synaptic Mechanisms Underlying Treatment of Depression and Bipolar Disorder Approved by Supervisory Committee
    SYNAPTIC MECHANISMS UNDERLYING TREATMENT OF DEPRESSION AND BIPOLAR DISORDER APPROVED BY SUPERVISORY COMMITTEE __________________________________________ Lisa Monteggia, Ph.D. __________________________________________ Mark Goldberg, M.D. __________________________________________ Ege Kavalali, Ph.D. __________________________________________ Adrian Rothenfluh, Ph.D. Dedicated to my parents, Heinrich and Jo Ann, my brothers Chris and Adam and their families, my grandfather Linwood, my dog Lina, my boyfriend Jerry, and the rest of my family and friends for their unending love and support. ii SYNAPTIC MECHANISMS UNDERLYING TREATMENT OF DEPRESSION AND BIPOLAR DISORDER by ERINN SOMMER GIDEONS DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center Dallas, Texas August 2016 iii Copyright by Erinn Sommer Gideons, 2016 All Rights Reserved iv ACKNOWLEDGEMENTS I would first like to thank my advisor Dr. Lisa Monteggia for her continual support, guidance, and patience during my time at UT-Southwestern. She has taught me how to be a successful scientist on many levels and is a true role model of a successful woman in science. I am extremely grateful for her mentorship and guidance. I would also like to thank Dr. Ege Kavalali not only for his experimental advice, but also for the many conversations about topics not dealing with science. I would not be an electrophysiologist without his influence. I want to think the current and past members of the Monteggia and Kavalali labs, especially Dr. Megumi Adachi, Dr. Anita Autry, and Pei-Yi Lin for taking me under their wings and teaching me about science and their continued friendship.
    [Show full text]