LETTER Doi:10.1038/Nature10130
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells
Int. J. Mol. Sci. 2015, 16, 5572-5589; doi:10.3390/ijms16035572 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells Cheng-Fang Tsai 1,†, Yueh-Hsiung Kuo 1,2,†, Wei-Lan Yeh 3, Caren Yu-Ju Wu 4, Hsiao-Yun Lin 5, 4 4 4 1 5,6, Sheng-Wei Lai , Yu-Shu Liu , Ling-Hsuan Wu , Jheng-Kun Lu and Dah-Yuu Lu * 1 Department of Biotechnology, Asia University, Taichung 413, Taiwan; E-Mails: [email protected] (C.-F.T.); [email protected] (Y.-H.K.); [email protected] (J.-K.L.) 2 Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan 3 Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua 500, Taiwan; E-Mail: [email protected] 4 Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan; E-Mails: [email protected] (C.Y.-J.W.); [email protected] (S.-W.L.); [email protected] (Y.-S.L.); [email protected] (L.-H.W.) 5 Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 404, Taiwan; E-Mail: [email protected] 6 Department of Photonics and Communication Engineering, Asia University, Taichung 413, Taiwan † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +886-4-2205-3366 (ext. 8206); Fax: +886-4-2207-1507. Academic Editor: Guido R. -
Directvote Election: Candidate Bios
DirectVote Election: Candidate Bios Councilor Slot 2 Your Voting Status: Select 0 to 1 from below. Selected: 0 Vote For: Lisa Monteggia Lisa Monteggia Administrative Accomplishments: I have been involved in numerous administrative roles at UT Southwestern Medical Center, including Faculty Search Committees, membership in the Animal Resource Center advisory committee, Institutional Animal Care and Use Committee, Graduate Student Admissions committee, as well as the development of the Behavioral Core Facility. These opportunities have provided me with the skills and experience to deal with the needs and operations of basic science —in particular animal research— in a complex medical school campus. Degree, Institute, Year Earned: BS, University of Illinois-Urbana, 1989 MS, University of Illinois-Urbana, 1991 PhD, The Chicago Medical School, 1998 Postdoctoral fellow, Yale University, 1998-2000 Research Areas: My research interest is the molecular and cellular mechanisms underlying psychiatric disorders and neuropsychiatric treatment strategies. My laboratory studies two critical areas of translational brain research, mechanisms underlying antidepressant action and synaptic alterations that lead to the pathophysiology of the Rett syndrome. Our focus is on the role of synaptic plasticity mechanisms that may underlie these disorders and suggest potential targets for therapeutics. Current Position(s) at Your Current Institution: Ginny and John Eulich Professorship in Autism Spectrum Disorders, Professor of Neuroscience, UT Southwestern Medical -
Essential Role of Brain-Derived Neurotrophic Factor in Adult Hippocampal Function
Essential role of brain-derived neurotrophic factor in adult hippocampal function Lisa M. Monteggia*†, Michel Barrot*, Craig M. Powell*, Olivier Berton*, Victor Galanis*, Terry Gemelli*, Sven Meuth*, Andreas Nagy‡, Robert W. Greene*, and Eric J. Nestler* *Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070; and ‡Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5 Edited by Floyd E. Bloom, The Scripps Research Institute, La Jolla, CA, and approved May 27, 2004 (received for review March 26, 2004) Brain-derived neurotrophic factor (BDNF) regulates neuronal de- specific enolase–tetracycline transcriptional activator (NSE– velopment and function. However, it has been difficult to discern tTA) line are on a BL6͞SJL ϫ ICR background, the TetOp-Cre its role in the adult brain in influencing complex behavior. Here, we are on an ICR background, and the floxed BDNF mice are on use a recently developed inducible knockout system to show that a BL6͞sv129 background. The NSE–tTA mice (14) and the deleting BDNF in broad forebrain regions of adult mice impairs TetOp-Cre mice (15, 16) were maintained as homozygotes then hippocampal-dependent learning and long-term potentiation. We crossed to generate the bigenic mice. The floxed LacZ reporter use the inducible nature of this system to show that the loss of mice (17) or floxed BDNF mice (13) were then crossed with the BDNF during earlier stages of development causes hyperactivity bigenic NSE–tTA͞TetOp-Cre mice to generate the inducible and more pronounced hippocampal-dependent learning deficits. KO mice. All experiments were performed on littermates de- We also demonstrate that the loss of forebrain BDNF attenuates rived from this mating paradigm to ensure analysis by matched the actions of desipramine, an antidepressant, in the forced swim controls. -
Ep 2540295 A1
(19) TZZ Z _T (11) EP 2 540 295 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 02.01.2013 Bulletin 2013/01 A61K 31/404 (2006.01) A61P 25/00 (2006.01) A61P 25/28 (2006.01) (21) Application number: 11171532.2 (22) Date of filing: 27.06.2011 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Briault, Sylvain GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 45000 ORLEANS (FR) PL PT RO RS SE SI SK SM TR • Perche, Olivier Designated Extension States: 45380 LA CHAPELLE SAINT MESMIN (FR) BA ME (74) Representative: Thomas, Dean et al (71) Applicants: Cabinet Ores • Centre national de la recherche scientifique 36 rue de St Pétersbourg 75016 Paris (FR) 75008 Paris (FR) • Centre Hospitalier Régional d’Orléans 45032 Orléans Cédex 1 (FR) (54) Compositions for the treatment of Fragile X syndrome (57) The present invention relates to a composition a fluoro-oxindole or a chloro- oxindole for use in the treat- comprising a maxi-K potassium channel opener the use ment of fragile X syndrome. in the treatment of fragile X syndrome. More specifically the present invention relates to a composition comprising EP 2 540 295 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 2 540 295 A1 2 Description ularly shyness, limited eye contact, memory problems and difficulty with facial encoding and recognition. Many [0001] The present invention relates to compositions individuals with FXS also meet the diagnostic criteria for for the alleviation of neuropsychiatric symptoms and in autism. -
(ESI) for Integrative Biology. This Journal Is © the Royal Society of Chemistry 2017
Electronic Supplementary Material (ESI) for Integrative Biology. This journal is © The Royal Society of Chemistry 2017 Table 1 Enriched GO terms with p-value ≤ 0.05 corresponding to the over-expressed genes upon perturbation with the lung-toxic compounds. Terms with corrected p-value less than 0.001 are shown in bold. GO:0043067 regulation of programmed GO:0010941 regulation of cell death cell death GO:0042981 regulation of apoptosis GO:0010033 response to organic sub- stance GO:0043068 positive regulation of pro- GO:0010942 positive regulation of cell grammed cell death death GO:0006357 regulation of transcription GO:0043065 positive regulation of apop- from RNA polymerase II promoter tosis GO:0010035 response to inorganic sub- GO:0043066 negative regulation of stance apoptosis GO:0043069 negative regulation of pro- GO:0060548 negative regulation of cell death grammed cell death GO:0016044 membrane organization GO:0042592 homeostatic process GO:0010629 negative regulation of gene ex- GO:0001568 blood vessel development pression GO:0051172 negative regulation of nitrogen GO:0006468 protein amino acid phosphoryla- compound metabolic process tion GO:0070482 response to oxygen levels GO:0045892 negative regulation of transcrip- tion, DNA-dependent GO:0001944 vasculature development GO:0046907 intracellular transport GO:0008202 steroid metabolic process GO:0045934 negative regulation of nucle- obase, nucleoside, nucleotide and nucleic acid metabolic process GO:0006917 induction of apoptosis GO:0016481 negative regulation of transcrip- tion GO:0016125 sterol metabolic process GO:0012502 induction of programmed cell death GO:0001666 response to hypoxia GO:0051253 negative regulation of RNA metabolic process GO:0008203 cholesterol metabolic process GO:0010551 regulation of specific transcrip- tion from RNA polymerase II promoter 1 Table 2 Enriched GO terms with p-value ≤ 0.05 corresponding to the under-expressed genes upon perturbation with the lung-toxic compounds. -
Molecular Pharmacology of K Potassium Channels
Cellular Physiology Cell Physiol Biochem 2021;55(S3):87-107 DOI: 10.33594/00000033910.33594/000000339 © 2021 The Author(s).© 2021 Published The Author(s) by and Biochemistry Published online: online: 6 6March March 2021 2021 Cell Physiol BiochemPublished Press GmbH&Co. by Cell Physiol KG Biochem 87 Press GmbH&Co. KG, Duesseldorf Decher et al.: Molecular Pharmacology of K Channels Accepted: 12 January 2021 2P www.cellphysiolbiochem.com This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Interna- tional License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Review Molecular Pharmacology of K2P Potassium Channels Niels Dechera Susanne Rinnéa Mauricio Bedoyab,c Wendy Gonzalezb,c Aytug K. Kipera aVegetative Physiology, Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany, bCentro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile, cMillennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile Key Words Drug binding sites • K2P potassium channels • Ion channels • Molecular pharmacology Abstract Potassium channels of the tandem of two-pore-domain (K2P) family were among the last potassium channels cloned. However, recent progress in understanding their physiological relevance and molecular pharmacology revealed their therapeutic potential and thus these channels evolved as major drug targets against a large variety of diseases. However, after the initial cloning of the fifteen family members there was a lack of potent and/or selective modulators. By now a large variety of K2P channel modulators (activators and blockers) have been described, especially for TASK-1, TASK-3, TREK-1, TREK2, TRAAK and TRESK channels. -
LISA M. MONTEGGIA, Ph.D
LISA M. MONTEGGIA, Ph.D. RANK/TITLE: Barlow Family Director of the Vanderbilt Brain Institute Professor, Department of Pharmacology Address: Vanderbilt University MRBIII, Suite 7140 465 21st Avenue South Nashville, TN 37240-7933 PH: (615) 936-5483 FX: (615) 6936-3613 EM: [email protected] EDUCATION: University of Illinois, Urbana, IL – B.S.- Microbiology – 1989 University of Illinois, Urbana, IL – M.S. – Biology – 1991 The Chicago Medical School, North Chicago, IL – Ph.D. – Neuroscience – 1999 (Dr. Marina Wolf, PI) POSTDOCTORAL TRAINING: 1998-2000 Department of Psychiatry (Dr. Eric Nestler, PI) Yale University, New Haven, CT OTHER TRAINING: 1991-1994 Associate Scientist, Department of Neuroscience, Abbott Laboratories, Abbott Park, IL 1994-1998 Scientist, Department of Neuroscience, Abbott Laboratories, Abbott Park, IL ACADEMIC APPOINTMENTS: 09/2000-10/2002 Research Assistant Professor, Department of Psychiatry, UT Southwestern, Dallas, TX 10/2002-09/2009 Assistant Professor, Department of Psychiatry, UT Southwestern, Dallas, TX 09/2009-09/2013 Associate Professor (tenure), Department of Psychiatry, UT Southwestern, Dallas, TX 06/2010-06/2018 Ginny and John Eulich Professorship in Autism Spectrum Disorders 09/2013-06/2018 Professor, Department of Neuroscience, UT Southwestern, Dallas, TX 07/2018- Director, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 07/2018- Professor of Pharmacology, Vanderbilt University, Nashville, TN AWARDS/HONORS: 1985-1989 University of Illinois, Full Academic Tuition Scholarship 1991 Top 10% of Teaching Assistants for Excellence in Teaching, University of Illinois 1998-2000 NIH/NIDA Postdoctoral Training Grant, Yale University 2001 Young Investigator Award, NARSAD 2002 American College of Neuropsychopharmacology/Bristol-Myers Squibb Travel Award 2003 Developmental Neurobiology and Child Psychiatry, Otsuka Travel Award 2003 College on Problems on Drug Dependence, Center for Addictive Diseases Travel Award 2003 Young Investigator Award, NARSAD 2005 Daniel X. -
Anxiety-Related Interventions in Rodent Defense Behaviors
bioRxiv preprint doi: https://doi.org/10.1101/020701; this version posted November 18, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Anxiety-related interventions in rodent defense behaviors: systematic review and meta-analyses Authors Farhan Mohammad1, Joses Ho2, Chun Lei Lim, Jia Hern Woo, Dennis Jun Jie Poon2, Bhumika Lamba2 & Adam Claridge-Chang1, 2, 3, 4 Affiliations 1. Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 138673 2. Institute for Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673 3. Department of Physiology, National University of Singapore, Singapore 138673 4. Corresponding author: [email protected] Keywords anxiety, defense, behavior, rodent, stress, serotonin, meta-analysis 1 bioRxiv preprint doi: https://doi.org/10.1101/020701; this version posted November 18, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT Background Assays measuring defense behavior in rodents, including the elevated plus maze, open field and light-dark box assays, have been widely used in preclinical models of anxiety to study the ability of therapeutic interventions to modulate the anxiety-like state. However, many important proposed anxiety-modulating factors, including genes, drugs and stressors have had paradoxical effects in these assays across different studies. -
9Th Annual Enhancing Neuroscience Diversity Through Undergraduate Research Education Experiences (ENDURE) Meeting
9th Annual Enhancing Neuroscience Diversity through Undergraduate Research Education Experiences (ENDURE) Meeting October 19, 2019 | Chicago, IL The NIH Office of the Director and these NIH Institutes and Centers participate in the NIH Blueprint for Neuroscience Research: • NCATS • NIAAA • NIDCR • NINR • NCCIH • NIBIB • NIEHS • OBSSR • NEI • NICHD • NIMH • NIA • NIDA • NINDS TABLE OF CONTENTS ENDURE PROGRAM AND MEETING GOALS .................................................................................. 2 NOTICE OF INTENT TO RE-ISSUE BP-ENDURE FOA ...................................................................... 3 ENDURE MEETING AGENDA ........................................................................................................ 4 NIH BLUEPRINT WELCOME AND SPEAKER BIOGRAPHIES .......................................................... 5 ENDURE PROGRAM INFORMATION AND TRAINEE RESEARCH ABSTRACTS • BP-ENDURE AT HUNTER AND NYU ........................................................................................ 8 • BP-ENDURE AT ST. LOUIS: A NEUROSCIENCE PIPELINE ....................................................... 23 • BRAiN: BUILDING RESEARCH ACHIEVEMENT IN NEUROSCIENCE ......................................... 41 • BRIDGE TO THE PH.D. IN NEUROSCIENCE ............................................................................ 48 • ENHANCING NEUROSCIENCE DIVERSITY WITH TENNESSEE STATE UNIVERSITY – NEUROSCIENCE EDUCATION AND RESEARCH VANDERBILT EXPERIENCE (TSU-NERVE)...... 57 • NEUROSCIENCE RESEARCH OPPORTUNITIES TO -
A Computational Tool for Pathway-Based Rational Drug Repositioning Supplementary Information
gene2drug: a Computational Tool for Pathway-based Rational Drug Repositioning Supplementary Information Francesco Napolitano1, Diego Carrella1, Barbara Mandriani1, Sandra Pisonero1, Diego Medina1, Nicola Brunetti-Pierri1,2, and Diego di Bernardo1,3 1Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), 80078, Italy. 2Department of Translational Medicine, Federico II University, 80131 Naples, Italy 3Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy. List of Figures S1 Relation between PPI network-based and pathway based approaches. Given a therapeutic gene and the set of pathways it is annotated to according to the different databases, the other genes in the same pathways are topologically closer to it in the PPI network as compared to randomly chosen genes. The average shortest path from the selected gene to other pathway members is reported on the y axis for each database. 3 S2 Size of intersection between existent evidence scores in the STITCH database (subset matched against the Cmap database) as a percentage of the total number of evidences. Numbers on the diagonal represent how many times a drug-target evidence exists divided by the total number of reported pairs. A \combined score" always exist if one of the other evidences exist, thus \combined score" covers 100% of the pairs. Conversely, an \experimental" score is only present for 14% of the pairs. The \Text mining" evidence strongly drives the \combined score" covering 61% of all the known protein-target interactions in STITCH. 4 S3 Relative luminescence units (RLU) in Hepa1-6 cells transfected with a plasmid ex- pressing the luciferase gene under the control of the GPT promoter and incubated with various concentrations of fulvestrant. -
Current Status of Small Molecule Drug Development for Ebola Virus And
Available online at www.sciencedirect.com ScienceDirect Current status of small molecule drug development for Ebola virus and other filoviruses Megan R Edwards and Christopher F Basler The filovirus family includes some of the deadliest viruses The largest filovirus outbreak on record was caused by known, including Ebola virus and Marburg virus. These viruses EBOV in West Africa between 2013–2016. This resulted cause periodic outbreaks of severe disease that can be spread in more than 28 000 infections, more than 11 000 deaths from person to person, making the filoviruses important public and the export of infected cases to the United States and health threats. There remains a need for approved drugs that Europe [5]. In pregnant women, the fatality rate is esti- target all or most members of this virus family. Small molecule mated to be 70%, and survivors are known to exhibit inhibitors that target conserved functions hold promise as pan- persistent infection with virus residing in immune privi- filovirus therapeutics. To date, compounds that effectively leged sites, including the eye and testes [6–10]. The only target virus entry, genome replication, gene expression, and treatments available were supportive care and experi- virus egress have been described. The most advanced mental therapies, hampering patient treatment and leav- inhibitors are nucleoside analogs that target viral RNA ing healthcare workers at severe risk. The West Africa synthesis reactions. epidemic reinforced the threat posed by the filovirus family and demonstrated that in addition to being a Address bio-terrorism threat, emergences from natural sources Center for Microbial Pathogenesis, Institute for Biomedical Sciences, can have a profound public health impact. -
An in Vitro Characterization of the Raphe Nucleus and the Effects of Ssris on Synaptic Function
AN IN VITRO CHARACTERIZATION OF THE RAPHE NUCLEUS AND THE EFFECTS OF SSRIS ON SYNAPTIC NEUROTRANSMISSION APPROVED BY SUPERVISORY COMMITTEE ________________________________________ Ilya Bezprozvanny, Ph.D. ________________________________________ Lisa Monteggia, Ph.D. ________________________________________ Joseph Albanesi, Ph.D ________________________________________ Melanie Cobb, Ph.D ________________________________________ Ege Kavalali, Ph.D Dedicated to my parents, Funke and Bashir Ashimi, my sister Laide and brother Idris, future husband Taofeek, and the rest of my family and friends for all their unconditional love and continued support. AN IN VITRO CHARACTERIZATION OF THE RAPHE NUCLEUS AND THE EFFECTS OF SSRIS ON SYNAPTIC NEUROTRANSMISSION By SUNBOLA SHEFIAT ASHIMI DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas June 2010 Copyright by Sunbola Shefiat Ashimi, 2010 All Rights Reserved ACKNOWLEDGEMENTS I would like to thank Dr. Lisa Monteggia for her mentorship, support, and friendship over the past five years. I would also like to thank Dr. Ege Kavalali for his guidance and teaching me about the wonderful world of synaptic transmission. Regards to the past and present members of the Monteggia lab for their continued support, especially Erika Nelson, Megumi Adachi, and Waseem Akhtar for their training, scientific advice, and friendship. I want to thank Anita Autry for being such a wonderful and gracious friend to have taken this journey with. Also, I thank Melissa Mahgoub for her treasured friendship and for reminding me that there are still special people in the world.