Directvote Election: Candidate Bios

Total Page:16

File Type:pdf, Size:1020Kb

Directvote Election: Candidate Bios DirectVote Election: Candidate Bios Councilor Slot 2 Your Voting Status: Select 0 to 1 from below. Selected: 0 Vote For: Lisa Monteggia Lisa Monteggia Administrative Accomplishments: I have been involved in numerous administrative roles at UT Southwestern Medical Center, including Faculty Search Committees, membership in the Animal Resource Center advisory committee, Institutional Animal Care and Use Committee, Graduate Student Admissions committee, as well as the development of the Behavioral Core Facility. These opportunities have provided me with the skills and experience to deal with the needs and operations of basic science —in particular animal research— in a complex medical school campus. Degree, Institute, Year Earned: BS, University of Illinois-Urbana, 1989 MS, University of Illinois-Urbana, 1991 PhD, The Chicago Medical School, 1998 Postdoctoral fellow, Yale University, 1998-2000 Research Areas: My research interest is the molecular and cellular mechanisms underlying psychiatric disorders and neuropsychiatric treatment strategies. My laboratory studies two critical areas of translational brain research, mechanisms underlying antidepressant action and synaptic alterations that lead to the pathophysiology of the Rett syndrome. Our focus is on the role of synaptic plasticity mechanisms that may underlie these disorders and suggest potential targets for therapeutics. Current Position(s) at Your Current Institution: Ginny and John Eulich Professorship in Autism Spectrum Disorders, Professor of Neuroscience, UT Southwestern Medical Center Memberships: Society for Neuroscience Government and Public Affairs Committee, 2016-present Program Committee, 2013-2016 Professional Development Committee, 2009-2012 https://www.directvote.net/sfn/app/bio_page.aspx?item=4&option=4001&return=ballot_page.aspx[5/11/2017 3:10:50 PM] DirectVote Election: Candidate Bios American College of Neuropsychopharmcology Fellow Membership Committee, 2016-present Strategic Planning Task Force, 2015 Honorific Awards Committee, 2014 Membership Advisory Task Force, Chair, 2014 The Serotonin Club Member Service Positions: A. Editorial Boards: eLife Board of Reviewing Editors, 2017-present Neuropharmacology Editorial Board, 2017-present Behavioral Neuroscience Consulting Editorial Board, 2014-present Journal of Neuroscience Editorial Board, 2013-present Journal of Biological Chemistry Editorial Board, 2013-present Neuropsychopharmacology Reviewing Editor, 2010-present Biological Psychiatry Editorial Board, 2010-present B. Other Service Positions: NIMH Board of Scientific Counselors Ad hoc review member, 2016 Molecular and Cellular Cognition Society (MCCS) Council Member, 2015-present International Rett Syndrome Foundation Scientific Review Board, 2009-present National Institute of Mental Health Pathway to Independence Award (K99/R00) review panel, 2009-present National Institute of Health Study Section Member (MNPS), 2009-2013 Science Biography: I started my career working in drug discovery for a pharmaceutical company focused on developing treatments for neurological disorders. This experience provided a broad perspective on various aspects of neuroscience towards understanding complex brain disorders. As a graduate student in Dr. Marina Wolf’s laboratory, at Chicago Medical School, I began investigating the role of neuronal plasticity in drug addiction. I joined Dr. Eric Nestler’s laboratory, at Yale University, and studied the role of neurotrophic factors in adult brain with an emphasis on synaptic plasticity mechanisms. As an independent investigator, I have continued to study plasticity mechanisms underlying two areas of research, antidepressant efficacy and Rett syndrome. Our first important finding in the field of antidepressant efficacy was that the growth factor, brain- derived neurotrophic factor (BDNF), is required to mediate an antidepressant effect in preclinical animal models. We extended this finding to show that BDNF, specifically in the hippocampus, is necessary for antidepressant action through presumed effects on synaptic plasticity mechanisms. We also showed that gender differences observed in depressed humans, with females being more vulnerable, can be recapitulated in this BDNF mouse model. More recently, we have been investigating the cellular mechanisms that underlie the ability of ketamine, a compound with NMDA receptor antagonist properties, to produce rapidly acting antidepressant responses. We found that NMDA receptor blockade at rest de-suppresses protein translation and potentiates excitatory https://www.directvote.net/sfn/app/bio_page.aspx?item=4&option=4001&return=ballot_page.aspx[5/11/2017 3:10:50 PM] DirectVote Election: Candidate Bios synapses, thereby triggering rapid behavioral antidepressant responses. These and other results suggest a synaptic basis for the antidepressant effects of ketamine. We have also recently shown that the ketamine metabolite, 2R,6R-HNK, blocks synaptic NMDA receptors and recruits the same signal transduction pathway as ketamine in mediating a rapid antidepressant response. These studies indicate the importance of NMDA receptors, coupled to intracellular signaling, in ketamine- mediated rapid antidepressant effects and provide a framework for points of convergence in understanding antidepressant efficacy. Our work may contribute towards the development of more effective treatments for depression. In a second line of research, we have been studying the role of MeCP2, the gene linked to Rett Syndrome, at the behavioral as well as synaptic levels. Although loss of function mutations of MeCP2 cause Rett syndrome, the mechanisms by which such mutations lead to abnormalities in behavior, as well as the underlying functional mechanisms, have remained unknown. We have shown that mice with altered MeCP2 expression selectively in the forebrain exhibit a range of behavioral abnormalities reminiscent of symptoms seen in humans with Rett syndrome. This loss of MeCP2 function results in dramatic alterations in basal excitatory neurotransmission in hippocampus, which is mediated by presynaptic mechanisms and appears to be due to MeCP2’s role as a transcriptional repressor. MeCP2 is an epigenetic factor that is linked to changes in DNA methylation and histone deacetylase (HDAC) activity. We have extended our work to investigate the role of other epigenetic factors, specifically DNA methyltransferases and individual HDACs, in synaptic transmission and complex behavior. This work delineates how epigenetic mechanisms may regulate properties of neurotransmission in the CNS and may point to strategies for novel treatments. Curriculum vitae (pdf opens in a new window) 2 https://www.directvote.net/sfn/app/bio_page.aspx?item=4&option=4001&return=ballot_page.aspx[5/11/2017 3:10:50 PM].
Recommended publications
  • Essential Role of Brain-Derived Neurotrophic Factor in Adult Hippocampal Function
    Essential role of brain-derived neurotrophic factor in adult hippocampal function Lisa M. Monteggia*†, Michel Barrot*, Craig M. Powell*, Olivier Berton*, Victor Galanis*, Terry Gemelli*, Sven Meuth*, Andreas Nagy‡, Robert W. Greene*, and Eric J. Nestler* *Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070; and ‡Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5 Edited by Floyd E. Bloom, The Scripps Research Institute, La Jolla, CA, and approved May 27, 2004 (received for review March 26, 2004) Brain-derived neurotrophic factor (BDNF) regulates neuronal de- specific enolase–tetracycline transcriptional activator (NSE– velopment and function. However, it has been difficult to discern tTA) line are on a BL6͞SJL ϫ ICR background, the TetOp-Cre its role in the adult brain in influencing complex behavior. Here, we are on an ICR background, and the floxed BDNF mice are on use a recently developed inducible knockout system to show that a BL6͞sv129 background. The NSE–tTA mice (14) and the deleting BDNF in broad forebrain regions of adult mice impairs TetOp-Cre mice (15, 16) were maintained as homozygotes then hippocampal-dependent learning and long-term potentiation. We crossed to generate the bigenic mice. The floxed LacZ reporter use the inducible nature of this system to show that the loss of mice (17) or floxed BDNF mice (13) were then crossed with the BDNF during earlier stages of development causes hyperactivity bigenic NSE–tTA͞TetOp-Cre mice to generate the inducible and more pronounced hippocampal-dependent learning deficits. KO mice. All experiments were performed on littermates de- We also demonstrate that the loss of forebrain BDNF attenuates rived from this mating paradigm to ensure analysis by matched the actions of desipramine, an antidepressant, in the forced swim controls.
    [Show full text]
  • LISA M. MONTEGGIA, Ph.D
    LISA M. MONTEGGIA, Ph.D. RANK/TITLE: Barlow Family Director of the Vanderbilt Brain Institute Professor, Department of Pharmacology Address: Vanderbilt University MRBIII, Suite 7140 465 21st Avenue South Nashville, TN 37240-7933 PH: (615) 936-5483 FX: (615) 6936-3613 EM: [email protected] EDUCATION: University of Illinois, Urbana, IL – B.S.- Microbiology – 1989 University of Illinois, Urbana, IL – M.S. – Biology – 1991 The Chicago Medical School, North Chicago, IL – Ph.D. – Neuroscience – 1999 (Dr. Marina Wolf, PI) POSTDOCTORAL TRAINING: 1998-2000 Department of Psychiatry (Dr. Eric Nestler, PI) Yale University, New Haven, CT OTHER TRAINING: 1991-1994 Associate Scientist, Department of Neuroscience, Abbott Laboratories, Abbott Park, IL 1994-1998 Scientist, Department of Neuroscience, Abbott Laboratories, Abbott Park, IL ACADEMIC APPOINTMENTS: 09/2000-10/2002 Research Assistant Professor, Department of Psychiatry, UT Southwestern, Dallas, TX 10/2002-09/2009 Assistant Professor, Department of Psychiatry, UT Southwestern, Dallas, TX 09/2009-09/2013 Associate Professor (tenure), Department of Psychiatry, UT Southwestern, Dallas, TX 06/2010-06/2018 Ginny and John Eulich Professorship in Autism Spectrum Disorders 09/2013-06/2018 Professor, Department of Neuroscience, UT Southwestern, Dallas, TX 07/2018- Director, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 07/2018- Professor of Pharmacology, Vanderbilt University, Nashville, TN AWARDS/HONORS: 1985-1989 University of Illinois, Full Academic Tuition Scholarship 1991 Top 10% of Teaching Assistants for Excellence in Teaching, University of Illinois 1998-2000 NIH/NIDA Postdoctoral Training Grant, Yale University 2001 Young Investigator Award, NARSAD 2002 American College of Neuropsychopharmacology/Bristol-Myers Squibb Travel Award 2003 Developmental Neurobiology and Child Psychiatry, Otsuka Travel Award 2003 College on Problems on Drug Dependence, Center for Addictive Diseases Travel Award 2003 Young Investigator Award, NARSAD 2005 Daniel X.
    [Show full text]
  • Anxiety-Related Interventions in Rodent Defense Behaviors
    bioRxiv preprint doi: https://doi.org/10.1101/020701; this version posted November 18, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Anxiety-related interventions in rodent defense behaviors: systematic review and meta-analyses Authors Farhan Mohammad1, Joses Ho2, Chun Lei Lim, Jia Hern Woo, Dennis Jun Jie Poon2, Bhumika Lamba2 & Adam Claridge-Chang1, 2, 3, 4 Affiliations 1. Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 138673 2. Institute for Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673 3. Department of Physiology, National University of Singapore, Singapore 138673 4. Corresponding author: [email protected] Keywords anxiety, defense, behavior, rodent, stress, serotonin, meta-analysis 1 bioRxiv preprint doi: https://doi.org/10.1101/020701; this version posted November 18, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT Background Assays measuring defense behavior in rodents, including the elevated plus maze, open field and light-dark box assays, have been widely used in preclinical models of anxiety to study the ability of therapeutic interventions to modulate the anxiety-like state. However, many important proposed anxiety-modulating factors, including genes, drugs and stressors have had paradoxical effects in these assays across different studies.
    [Show full text]
  • 9Th Annual Enhancing Neuroscience Diversity Through Undergraduate Research Education Experiences (ENDURE) Meeting
    9th Annual Enhancing Neuroscience Diversity through Undergraduate Research Education Experiences (ENDURE) Meeting October 19, 2019 | Chicago, IL The NIH Office of the Director and these NIH Institutes and Centers participate in the NIH Blueprint for Neuroscience Research: • NCATS • NIAAA • NIDCR • NINR • NCCIH • NIBIB • NIEHS • OBSSR • NEI • NICHD • NIMH • NIA • NIDA • NINDS TABLE OF CONTENTS ENDURE PROGRAM AND MEETING GOALS .................................................................................. 2 NOTICE OF INTENT TO RE-ISSUE BP-ENDURE FOA ...................................................................... 3 ENDURE MEETING AGENDA ........................................................................................................ 4 NIH BLUEPRINT WELCOME AND SPEAKER BIOGRAPHIES .......................................................... 5 ENDURE PROGRAM INFORMATION AND TRAINEE RESEARCH ABSTRACTS • BP-ENDURE AT HUNTER AND NYU ........................................................................................ 8 • BP-ENDURE AT ST. LOUIS: A NEUROSCIENCE PIPELINE ....................................................... 23 • BRAiN: BUILDING RESEARCH ACHIEVEMENT IN NEUROSCIENCE ......................................... 41 • BRIDGE TO THE PH.D. IN NEUROSCIENCE ............................................................................ 48 • ENHANCING NEUROSCIENCE DIVERSITY WITH TENNESSEE STATE UNIVERSITY – NEUROSCIENCE EDUCATION AND RESEARCH VANDERBILT EXPERIENCE (TSU-NERVE)...... 57 • NEUROSCIENCE RESEARCH OPPORTUNITIES TO
    [Show full text]
  • An in Vitro Characterization of the Raphe Nucleus and the Effects of Ssris on Synaptic Function
    AN IN VITRO CHARACTERIZATION OF THE RAPHE NUCLEUS AND THE EFFECTS OF SSRIS ON SYNAPTIC NEUROTRANSMISSION APPROVED BY SUPERVISORY COMMITTEE ________________________________________ Ilya Bezprozvanny, Ph.D. ________________________________________ Lisa Monteggia, Ph.D. ________________________________________ Joseph Albanesi, Ph.D ________________________________________ Melanie Cobb, Ph.D ________________________________________ Ege Kavalali, Ph.D Dedicated to my parents, Funke and Bashir Ashimi, my sister Laide and brother Idris, future husband Taofeek, and the rest of my family and friends for all their unconditional love and continued support. AN IN VITRO CHARACTERIZATION OF THE RAPHE NUCLEUS AND THE EFFECTS OF SSRIS ON SYNAPTIC NEUROTRANSMISSION By SUNBOLA SHEFIAT ASHIMI DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas June 2010 Copyright by Sunbola Shefiat Ashimi, 2010 All Rights Reserved ACKNOWLEDGEMENTS I would like to thank Dr. Lisa Monteggia for her mentorship, support, and friendship over the past five years. I would also like to thank Dr. Ege Kavalali for his guidance and teaching me about the wonderful world of synaptic transmission. Regards to the past and present members of the Monteggia lab for their continued support, especially Erika Nelson, Megumi Adachi, and Waseem Akhtar for their training, scientific advice, and friendship. I want to thank Anita Autry for being such a wonderful and gracious friend to have taken this journey with. Also, I thank Melissa Mahgoub for her treasured friendship and for reminding me that there are still special people in the world.
    [Show full text]
  • LETTER Doi:10.1038/Nature10130
    LETTER doi:10.1038/nature10130 NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses Anita E. Autry1, Megumi Adachi1, Elena Nosyreva2, Elisa S. Na1, Maarten F. Los1, Peng-fei Cheng1, Ege T. Kavalali2 & Lisa M. Monteggia1 Clinical studies consistently demonstrate that a single sub-psycho- mimetic dose of ketamine, an ionotropic glutamatergic NMDAR a * * (N-methyl-D-aspartate receptor) antagonist, produces fast-acting 150 * * antidepressant responses in patients suffering from major depres- sive disorder, although the underlying mechanism is unclear1–3. Depressed patients report the alleviation of major depressive dis- 100 order symptoms within two hours of a single, low-dose intravenous infusion of ketamine, with effects lasting up to two weeks1–3, unlike Immobility (s) traditional antidepressants (serotonin re-uptake inhibitors), which 50 Vehicle take weeks to reach efficacy. This delay is a major drawback to Ketamine current therapies for major depressive disorder and faster-acting 3 antidepressants are needed, particularly for suicide-risk patients . 30 min 3 h 24 h 1 wk The ability of ketamine to produce rapidly acting, long-lasting anti- depressant responses in depressed patients provides a unique b * * opportunity to investigate underlying cellular mechanisms. Here 150 * we show that ketamine and other NMDAR antagonists produce fast-acting behavioural antidepressant-like effects in mouse models, and that these effects depend on the rapid synthesis of brain-derived 100 neurotrophic factor. We find that the ketamine-mediated blockade of NMDAR at rest deactivates eukaryotic elongation factor 2 (eEF2) Immobility (s) kinase (also called CaMKIII), resulting in reduced eEF2 phosphor- 50 Vehicle ylation and de-suppression of translation of brain-derived neuro- CPP trophic factor.
    [Show full text]
  • Biographical Sketch Name
    OMB No. 0925-0001 and 0925-0002 (Rev. 03/2020 Approved Through 02/28/2023) BIOGRAPHICAL SKETCH Provide the following information for the Senior/key personnel and other significant contributors. Follow this format for each person. DO NOT EXCEED FIVE PAGES. NAME: EGE T. KAVALALI eRA COMMONS USER NAME (credential, e.g., agency login): EKAVALALI POSITION TITLE: PROFESSOR EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.) DEGREE Completion (if Date FIELD OF STUDY INSTITUTION AND LOCATION applicable) MM/YYYY Boğaziçi University, Istanbul, Turkey B.S. 1990 Electrical Engineering Rutgers University, New Brunswick, New Jersey Ph.D. 1995 Biomedical Engineering Stanford University School of Medicine, Stanford Postdoctoral 1995-1999 Molecular and Cellular California Fellowship Physiology A. Personal Statement My research interests are focused on the basic mechanisms that underlie the formation and function of synapses in the central nervous system in health and disease. Since its inception, our laboratory has uncovered several novel facets of synaptic transmission, synapse formation as well as synapse maturation in the CNS. The key contribution of our research is the demonstration that spontaneous and evoked neurotransmission processes are segregated both in their presynaptic origins and postsynaptic targets. Our work has identified spontaneous neurotransmission as an autonomous neuronal signaling pathway independent of action potential-evoked synaptic transmission. In the last decade, we used imaging and electrophysiological approaches as well as molecular tools to pursue this novel signaling mechanism on both sides of the synapse. We developed tools to visualize trafficking of multiple synaptic vesicle proteins simultaneously within individual synapses.
    [Show full text]
  • Anita E. Autry, Ph.D
    Anita E. Autry, Ph.D. Department of Molecular and Cellular Biology Email: [email protected] Harvard University Cell: 214-701-8761 16 Divinity Avenue, Biolabs 4023 Cambridge, MA 02138 SCHOLARLY PROFILE Neuroscience researcher using state of the art molecular tools to understand the functional neuroanatomy of circuits controlling behavior. RESEARCH EXPERIENCE 2011-present Postdoctoral Fellow, Harvard University, Department of Molecular and Cellular Biology Advisor: Catherine Dulac, Ph.D EDUCATION 2011 Ph.D. University of Texas Southwestern Medical Center at Dallas Neuroscience Graduate Program Advisor: Lisa Monteggia, Ph.D. 2005 B.A., B.S. University of South Carolina, Honors College Baccalaureus Degree CURRENT FUNDING 2016 K99/R00 Grantee Pathway to Independence Award K99 HD 085188 Sponsored by NICHD to research parental behavior 2015 NARSAD Young Investigator Brain and Behavior Research Foundation Received two years of funding to support research projects 2014 Fellow Ruth L. Kirschstein National Research Service Award F32 HD 078040 Sponsored by NICHD to research parental behavior PUBLICATIONS Selected Publications 1. Wu, Z., Autry, A.E., Bergan, J.F., Watabe-Uchida, M., Dulac, C.G. (2014). Galanin neurons in the medial preoptic area govern parental behavior. Nature, 509 (7500) 325-330. 2. Autry, A.E., Adachi, M., Nosyreva, E., Na, E., Los, M.F., Cheng, P., Kavalali, E.T., Monteggia, L.M. (2011). NMDA Receptor Blockade at Rest Desuppresses Protein Translation and Triggers Rapid Behavioural Antidepressant Responses. Nature, 475(7354) 91-5. 1 Additional Publications 3. Adachi, M.*, Autry, A.E.*, Maghoub, M., Suzuki, K., Monteggia, L.M. (2016). TrkB Signaling in Dorsal Raphe Nucleus is Essential for Antidepressant Efficacy and Normal Aggression Behavior.
    [Show full text]
  • Repeated Administration of Amphetamine Or Cocaine Does Not Alter AMPA Receptor Subunit Expression in the Rat Midbrain Wenxiao Lu, M.D., Lisa M
    Repeated Administration of Amphetamine or Cocaine Does Not Alter AMPA Receptor Subunit Expression in the Rat Midbrain Wenxiao Lu, M.D., Lisa M. Monteggia, Ph.D., and Marina E. Wolf, Ph.D. We previously reported that ventral tegmental area (VTA) withdrawal time. GluR1 immunolabeling was further dopamine neurons are supersensitive to AMPA when examined in rats killed 16–18 hrs or 24 hrs after a single recorded three days after discontinuing repeated injection of amphetamine or repeated injections of saline, amphetamine or cocaine administration. By increasing amphetamine (5 mg/kg ϫ 5 days) or cocaine (20 mg/kg ϫ 7 dopamine cell activity, this may contribute to the induction days). No significant differences were observed in any of behavioral sensitization. The goal of this study was to region. Finally, neither repeated amphetamine or cocaine determine if increased sensitivity to AMPA reflects administration significantly altered GluR1 mRNA levels as increased AMPA receptor expression in the midbrain. quantified by reverse transcriptase-polymerase chain reaction. Immunolabeling for GluR1, GluR2, GluR2/3, and GluR4 Our results suggest that enhanced responsiveness of VTA was quantified by immunohistochemistry with 35S-labeled dopamine neurons to AMPA after withdrawal from repeated secondary antibodies in VTA, substantia nigra, and a stimulant administration involves mechanisms more complex transitional area. First, rats were treated for five days with than increased expression of AMPA receptor subunits. saline or amphetamine (5 mg/kg) and killed three or 14 days [Neuropsychopharmacology 26:1–13, 2002] after the last injection. No significant changes in © 2001 American College of Neuropsychopharmacology. immunolabeling were observed for any subunit at either Published by Elsevier Science Inc.
    [Show full text]
  • Exploring Mechanisms of Depression-Related Behavior and Rapid Antidepressant Action
    MOLECULAR MECHANISMS UNDERLYING DEPRESSION-RELATED BEHAVIOR AND RAPID ANTIDEPRESSANT ACTION APPROVED BY SUPERVISORY COMMITTEE ________________________________________ Lisa Monteggia, Ph.D. ________________________________________ Kimberly Huber, Ph.D. ________________________________________ Ege Kavalali, Ph.D. ________________________________________ Carol Tamminga, M.D. Dedicated to my mom and dad Nick and Rita Autry, To my husband John Dixon, And to my family and friends For their unconditional love and support. EXPLORING MECHANISMS OF DEPRESSION-RELATED BEHAVIOR AND RAPID ANTIDEPRESSANT ACTION By ANITA ELLEN AUTRY DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas April 2011 Copyright By ANITA ELLEN AUTRY, 2011 All rights reserved ACKNOWLEDGEMENTS I must first thank my mentor, Lisa Monteggia, Ph.D., for unwavering support, guidance, excellent mentorship, and being a role model both in and out of the laboratory. I would also like to thank Ege Kavalali, Ph.D. for teaching me neuroscience and for giving experimental advice as well as constructive criticism. I am also grateful to my thesis committee members Kimberly Huber, Ph.D., and Carol Tamminga, M.D., for insightful comments and direction over the years. I would like to thank Larry Reagan, Ph.D. for introducing me to research as well as past and present members of his lab, Claudia Grillo, Ph.D., Gerardo Piroli, Ph.D., and Leah Reznikov, Ph.D. I would like to thank Leslie Jones, Ph.D., for continuing advisement and support.
    [Show full text]
  • Synaptic Mechanisms Underlying Treatment of Depression and Bipolar Disorder Approved by Supervisory Committee
    SYNAPTIC MECHANISMS UNDERLYING TREATMENT OF DEPRESSION AND BIPOLAR DISORDER APPROVED BY SUPERVISORY COMMITTEE __________________________________________ Lisa Monteggia, Ph.D. __________________________________________ Mark Goldberg, M.D. __________________________________________ Ege Kavalali, Ph.D. __________________________________________ Adrian Rothenfluh, Ph.D. Dedicated to my parents, Heinrich and Jo Ann, my brothers Chris and Adam and their families, my grandfather Linwood, my dog Lina, my boyfriend Jerry, and the rest of my family and friends for their unending love and support. ii SYNAPTIC MECHANISMS UNDERLYING TREATMENT OF DEPRESSION AND BIPOLAR DISORDER by ERINN SOMMER GIDEONS DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center Dallas, Texas August 2016 iii Copyright by Erinn Sommer Gideons, 2016 All Rights Reserved iv ACKNOWLEDGEMENTS I would first like to thank my advisor Dr. Lisa Monteggia for her continual support, guidance, and patience during my time at UT-Southwestern. She has taught me how to be a successful scientist on many levels and is a true role model of a successful woman in science. I am extremely grateful for her mentorship and guidance. I would also like to thank Dr. Ege Kavalali not only for his experimental advice, but also for the many conversations about topics not dealing with science. I would not be an electrophysiologist without his influence. I want to think the current and past members of the Monteggia and Kavalali labs, especially Dr. Megumi Adachi, Dr. Anita Autry, and Pei-Yi Lin for taking me under their wings and teaching me about science and their continued friendship.
    [Show full text]
  • Trkb Signaling in Dorsal Raphe Nucleus Is Essential for Antidepressant Efficacy and Normal Aggression Behavior
    Neuropsychopharmacology (2017) 42, 886–894 © 2017 American College of Neuropsychopharmacology. All rights reserved 0893-133X/17 www.neuropsychopharmacology.org TrkB Signaling in Dorsal Raphe Nucleus is Essential for Antidepressant Efficacy and Normal Aggression Behavior Megumi Adachi1,2, Anita E Autry1,2, Melissa Mahgoub1, Kanzo Suzuki1 and Lisa M Monteggia*,1 1 Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, USA Brain-derived neurotrophic factor (BDNF) and its high affinity receptor, tropomyosin receptor kinase B (TrkB), have important roles in neural plasticity and are required for antidepressant efficacy. Studies examining the role of BDNF-TrkB signaling in depression and antidepressant efficacy have largely focused on the limbic system, leaving it unclear whether this signaling is important in other brain regions. BDNF and TrkB are both highly expressed in the dorsal raphe nucleus (DRN), a brain region that has been suggested to have a role in depression and antidepressant action, although it is unknown whether BDNF and TrkB in the dorsal raphe nucleus are involved in these processes. We combined the adeno-associated virus (AAV) with the Cre-loxP site-specific recombination system to selectively knock down either Bdnf or TrkB in the DRN. These mice were then characterized in several behavioral paradigms including measures of depression-related behavior and antidepressant efficacy. We show that knockdown of TrkB, but not Bdnf, in the DRN results in loss of antidepressant efficacy and increased aggression-related behavior. We also show that knockdown of TrkB or Bdnf in this brain region does not have an impact on weight, activity levels, anxiety, or depression-related behaviors.
    [Show full text]