4 New Launchpad for Cutting-Edge Research 16 Genomics: a Field on Fire 30 Pathfinder

Total Page:16

File Type:pdf, Size:1020Kb

4 New Launchpad for Cutting-Edge Research 16 Genomics: a Field on Fire 30 Pathfinder HELIXMAGAZINE RESEARCH ISSUE 4 NEW LAUNCHPAD FOR CUTTING-EDGE RESEARCH The Innovation and Research Park 16 GENOMICS: A FIELD ON FIRE The Center for Genetic Diseases aims to deliver options 30 PATHFINDER Alumna named director of the Vanderbilt Brain Institute PLEASE JOIN US AS WE HONOR...YOU! CONNECT • DISCOVER • UNITE an interprofessional celebration for alumni, trustees, students, faculty and staff OCTOBER 19–20, 2018 REGISTER TODAY at https://rfu.ms/rfufest RESEARCH ISSUE SUMMER 2018 HELIX Rosalind Franklin University of Medicine and Science proudly presents the summer issue of Helix magazine, dedicated to the exceptional research of its many investigators who are working to improve the health of all people. 2 MESSAGE FROM DR. MICHAEL WELCH AND DR. RONALD KAPLAN INNOVATION AND RESEARCH PARK 4 NEW LAUNCHPAD FOR CUTTING-EDGE RESEARCH The new Innovation and Research Park helps fulfill RFU’s mission to create and translate knowledge that will improve the health of the population. 8 WORLD EXPERTISE IN NEUROSCIENCE The Brain Science Institute 10 NEW DIRECTIONS IN ALZHEIMER’S RESEARCH The Center for Neurodegenerative Diseases and Therapeutics 12 DECODING THE SECRETS OF THE BRAIN The Center for Brain Function and Repair Helix is the official triannual magazine of Rosalind Franklin University of 14 SPEAKING THE LANGUAGE OF RESILIENCE Medicine and Science. The Center for Neurobiology of Stress Resilience and Psychiatric Disorders Produced by the 16 GENOMICS: A FIELD ON FIRE Office of Marketing and The Center for Genetic Diseases Communications 18 BIG DATA, HUGE DISEASE TARGETS 3333 Green Bay Road North Chicago, IL The Center for Proteomics and Molecular Therapeutics 60064-3095 INTEGRATIVE IN APPROACH TO CANCER RESEARCH phone: 847-578-8313 20 www.rosalindfranklin.edu The Center for Cancer Cell Biology, Immunology and Infection FEATURES 22 SUMMER LABS INVITATION FOR PUBLIC COMMENT Students explore the exciting world of academic research. Rosalind Franklin University of Medicine and Science is seeking comments from the public about the university in preparation for its periodic 26 BENCH STRENGTH evaluation by the Higher Learning Commission, RFU researchers and Captain James A. Lovell Federal Health Care Center its regional accrediting agency. The university will host a visit, Oct. 1-2, 2018, with a team representing clinicians collaborate to improve the lives of veterans and active duty military. the commission. The team will review the institution’s ongoing ability to meet HLC’s criteria 30 PATHFINDER for accreditation. The public is invited to submit Lisa Monteggia, PhD ’99, is the new director of the Vanderbilt Brain Institute. comments regarding the university to the following address: Public Comment on Rosalind Franklin University Higher Learning Commission RFU GIVING SOCIETIES 230 South LaSalle Street, Suite 7-500 Chicago, IL 60604-1411 32 LIVING LEGACY The public may also submit comments on HLC’s Mrs. Monica Ply honors her late husband through gifts to RFU medical website at www.hlcommission.org/comment. research and Lovell FHCC. Comments must address substantive matters related to the quality of the institution or its academic programs. Comments must be in writing and should include the name, address and telephone number of the person providing the comments. Please note that comments will not be treated as confidential. They must be signed and they must be sent to HLC no later than one month prior to Oct. 1, 2018. Cover photo: Michelle Hastings, PhD, director of the Center for Genetic Diseases MESSAGE FROM UNIVERSITY LEADERSHIP OUR LATEST RESEARCH EXPANSION AND REORGANIZATION SPEAKS VOLUMES ABOUT OUR UNIVERSITY AND SENDS AN IMPORTANT MESSAGE TO OUR COMMUNITY, OUR PEER INSTITUTIONS, THE BIOSCIENCE INDUSTRY, OUR CLINICAL AND RESEARCH PARTNERS AND ALL WHO SUPPORT OUR MISSION. It says that we are moving forward with confidence and purpose by renewing our investment in discovery while building our capabilities for translational research as a means to producing new diagnostics and therapeutics that will improve the health and well-being of individuals and populations. It says that we are committed to overcoming barriers to innovation, to taking risks, to adapting and evolving to help solve seemingly intractable problems of chronic, preventable and genetic diseases. “Our new disease-focused Innovation and Research Park, which you will read about in this issue of Helix, will create new synergies and new stimulus and vitality that will foster the progress of our research.” It says that we are determined to break down the silos that so easily rise up between fields of research and institutions and their communities through our interprofessional culture of teamwork, civility, inclusion and excellence in scholarship. Our new disease-focused Innovation and Research Park, which you will read about in this issue of Helix, will create new synergies and new stimulus and vitality that will foster the progress of our research. Designed to increase interaction, the free exchange of ideas and a sharing of expertise and scientific tools, the new building will provide a supportive environment and enriching milieu for investigators, postdocs, students and life science partners. This highly collegial environment will facilitate workforce pathways, intensive mentoring and informal networking that will help launch young scientists, biomedical and health professionals from diverse backgrounds and experiences who are the lifeblood of our future. We must continue to look to the future, to move forward by building upon core ideas and expanding our scientific knowledge. We continue to rely on your commitment and our nation’s support for the basic and applied research that, generation upon generation, fuels scholarship and innovations that improve health and an ever deeper understanding of life and the world in which we live. K. MICHAEL WELCH, MB, ChB, FRCP RONALD S. KAPLAN, PhD PRESIDENT AND CEO EXECUTIVE VICE PRESIDENT FOR RESEARCH 2 ROSALIND FRANKLIN UNIVERSITY RFU RESEARCH TOTAL AND FEDERAL RESEARCH DOLLARS PER YEAR $14M $12M $10M 13,548,865 13,502,650 13,108,172 $8M 12,751,095 12,172,767 11,266,157 11,262,865 11,019,485 10,992,661 10,890,674 $6M 10,584,761 9,998,724 9,615,142 9,533,655 9,196,004 9,165,321 8,815,534 $4M 7,960,370 7,464,506 7,207,420 $2M $0M 2008/2009 2009/2010 2010/2011 2011/2012 2012/2013 2013/2014 2014/2015 2015/2016 2016/2017 2017/2018* Total Research Dollars Federal Research Dollars * As of June 30, 2018, also includes recommended awards 2008/2009 2009/2010 20010/2011 2011/2012 2012/2013 2013/2014 2014/2015 2015/2016 2016/2017 2017/2018 MENTORING201718 19 37 UNDERGRADUATE 11 TOTAL: 85 AND HIGH SCHOOL STUDENTS IN OUR RESEARCH LABORATORIES 2016 15 9 35 20 TOTAL: 79 201718 19 37 11 TOTAL: 85 2015 18 25 13 11 TOTAL: 67 2016 15 9 35 20 TOTAL: 79 2014 23 14 14 15 TOTAL: 66 2015 18 25 13 11 TOTAL: 67 2013 10 23 12 13 TOTAL: 58 2014 23 14 14 15 TOTAL: 66 9 9 7 18 2012TOTAL: 7 43 9 9 2013 10 23 12 13 TOTAL: 58 0 10 20 30 40 50 60 70 80 90 9 9 7 18 2012TOTAL: 7 43 9 9 0 10 20 30 40 50 60 70 80 90 NUMBER OF STUDENTS DePaul Lake Forest College INSPIRE Undergraduate and high school volunteers RESEARCH PUBLICATIONS AND EXTRAMURAL FUNDING Visit https://rfu.ms/research2018 Rosalind Franklin University’s more than 50 researchers are nationally recognized for their work in basic and clinical sciences. They are making important contributions to the scientific literature in major disease-related research areas, including neuroscience, neurodegenerative disease, proteomics, diabetes and cancer. Our research funding is substantial, despite an increasingly competitive grant environment. HELIX SUMMER 2018 3 RFU RESEARCH THE INNOVATION AND RESEARCH PARK AND ITS DISEASE- FOCUSED CENTERS WILL DRIVE THE TRANSLATION OF NOVEL MEDICAL DISCOVERIES VIA EXPANDED COLLABORATIONS WITH INDUSTRY AND BIOTECH ENTREPRENEURS, RENEWED EMPHASIS ON CAPTURING AND COMMERCIALIZING THE UNIVERSITY’S INVENTIONS, AND SUPPORT OF THOSE FACULTY ENGAGED IN FORMING NEW COMPANIES. “We’re fulfilling our mission of not only advancing knowledge but creating knowledge that can be translated into improving the health of the population,” said Executive Vice President for Research Ronald Kaplan, PhD. “That’s part of our mission that we’re seeking to better fulfill, including capturing and commercializing our high- impact inventions.” “The centers will serve as focal points for industry collaborations, whether or not potential partners choose to actually locate within the park,” said Steven Kuemmerle, PhD, RFU’s special advisor for innovation and industry partnerships. “They serve as a signal to industry that we are collaboration ready, that we’re disease- and platform-focused, that we’re giving these initiatives the best possible launchpad for conducting novel and cutting-edge research. Our renewed effort to commercialize our patent portfolio shows that we are serious about deploying our discoveries to benefit patients.” “We’re aiming for center grants, program project grants and philanthropic disease- oriented funding.” RONALD S. KAPLAN, PhD RFU’s shift to disease-focused research represents an holistic approach to translational medicine, said Chicago Medical School alumnus Jeffrey W. Sherman, MD ’81, FACP, chief medical officer and executive vice president for Lake Forest, IL-based Horizon Pharma. “People can relate to disease-focused research, understand it and it resonates with everyone,” Dr. Sherman said. “There are finite government dollars to support research with more and more emphasis on the translation of basic science into possible therapies that can impact health and well-being. We’re seeing that at the NIH level and in foundations and patient groups eager to fund translational research.” Universities that leverage translational research into commercial therapeutics help improve both human health and their own financial health through diverse revenue streams, Dr.
Recommended publications
  • Directvote Election: Candidate Bios
    DirectVote Election: Candidate Bios Councilor Slot 2 Your Voting Status: Select 0 to 1 from below. Selected: 0 Vote For: Lisa Monteggia Lisa Monteggia Administrative Accomplishments: I have been involved in numerous administrative roles at UT Southwestern Medical Center, including Faculty Search Committees, membership in the Animal Resource Center advisory committee, Institutional Animal Care and Use Committee, Graduate Student Admissions committee, as well as the development of the Behavioral Core Facility. These opportunities have provided me with the skills and experience to deal with the needs and operations of basic science —in particular animal research— in a complex medical school campus. Degree, Institute, Year Earned: BS, University of Illinois-Urbana, 1989 MS, University of Illinois-Urbana, 1991 PhD, The Chicago Medical School, 1998 Postdoctoral fellow, Yale University, 1998-2000 Research Areas: My research interest is the molecular and cellular mechanisms underlying psychiatric disorders and neuropsychiatric treatment strategies. My laboratory studies two critical areas of translational brain research, mechanisms underlying antidepressant action and synaptic alterations that lead to the pathophysiology of the Rett syndrome. Our focus is on the role of synaptic plasticity mechanisms that may underlie these disorders and suggest potential targets for therapeutics. Current Position(s) at Your Current Institution: Ginny and John Eulich Professorship in Autism Spectrum Disorders, Professor of Neuroscience, UT Southwestern Medical
    [Show full text]
  • Essential Role of Brain-Derived Neurotrophic Factor in Adult Hippocampal Function
    Essential role of brain-derived neurotrophic factor in adult hippocampal function Lisa M. Monteggia*†, Michel Barrot*, Craig M. Powell*, Olivier Berton*, Victor Galanis*, Terry Gemelli*, Sven Meuth*, Andreas Nagy‡, Robert W. Greene*, and Eric J. Nestler* *Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070; and ‡Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5 Edited by Floyd E. Bloom, The Scripps Research Institute, La Jolla, CA, and approved May 27, 2004 (received for review March 26, 2004) Brain-derived neurotrophic factor (BDNF) regulates neuronal de- specific enolase–tetracycline transcriptional activator (NSE– velopment and function. However, it has been difficult to discern tTA) line are on a BL6͞SJL ϫ ICR background, the TetOp-Cre its role in the adult brain in influencing complex behavior. Here, we are on an ICR background, and the floxed BDNF mice are on use a recently developed inducible knockout system to show that a BL6͞sv129 background. The NSE–tTA mice (14) and the deleting BDNF in broad forebrain regions of adult mice impairs TetOp-Cre mice (15, 16) were maintained as homozygotes then hippocampal-dependent learning and long-term potentiation. We crossed to generate the bigenic mice. The floxed LacZ reporter use the inducible nature of this system to show that the loss of mice (17) or floxed BDNF mice (13) were then crossed with the BDNF during earlier stages of development causes hyperactivity bigenic NSE–tTA͞TetOp-Cre mice to generate the inducible and more pronounced hippocampal-dependent learning deficits. KO mice. All experiments were performed on littermates de- We also demonstrate that the loss of forebrain BDNF attenuates rived from this mating paradigm to ensure analysis by matched the actions of desipramine, an antidepressant, in the forced swim controls.
    [Show full text]
  • LISA M. MONTEGGIA, Ph.D
    LISA M. MONTEGGIA, Ph.D. RANK/TITLE: Barlow Family Director of the Vanderbilt Brain Institute Professor, Department of Pharmacology Address: Vanderbilt University MRBIII, Suite 7140 465 21st Avenue South Nashville, TN 37240-7933 PH: (615) 936-5483 FX: (615) 6936-3613 EM: [email protected] EDUCATION: University of Illinois, Urbana, IL – B.S.- Microbiology – 1989 University of Illinois, Urbana, IL – M.S. – Biology – 1991 The Chicago Medical School, North Chicago, IL – Ph.D. – Neuroscience – 1999 (Dr. Marina Wolf, PI) POSTDOCTORAL TRAINING: 1998-2000 Department of Psychiatry (Dr. Eric Nestler, PI) Yale University, New Haven, CT OTHER TRAINING: 1991-1994 Associate Scientist, Department of Neuroscience, Abbott Laboratories, Abbott Park, IL 1994-1998 Scientist, Department of Neuroscience, Abbott Laboratories, Abbott Park, IL ACADEMIC APPOINTMENTS: 09/2000-10/2002 Research Assistant Professor, Department of Psychiatry, UT Southwestern, Dallas, TX 10/2002-09/2009 Assistant Professor, Department of Psychiatry, UT Southwestern, Dallas, TX 09/2009-09/2013 Associate Professor (tenure), Department of Psychiatry, UT Southwestern, Dallas, TX 06/2010-06/2018 Ginny and John Eulich Professorship in Autism Spectrum Disorders 09/2013-06/2018 Professor, Department of Neuroscience, UT Southwestern, Dallas, TX 07/2018- Director, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 07/2018- Professor of Pharmacology, Vanderbilt University, Nashville, TN AWARDS/HONORS: 1985-1989 University of Illinois, Full Academic Tuition Scholarship 1991 Top 10% of Teaching Assistants for Excellence in Teaching, University of Illinois 1998-2000 NIH/NIDA Postdoctoral Training Grant, Yale University 2001 Young Investigator Award, NARSAD 2002 American College of Neuropsychopharmacology/Bristol-Myers Squibb Travel Award 2003 Developmental Neurobiology and Child Psychiatry, Otsuka Travel Award 2003 College on Problems on Drug Dependence, Center for Addictive Diseases Travel Award 2003 Young Investigator Award, NARSAD 2005 Daniel X.
    [Show full text]
  • Anxiety-Related Interventions in Rodent Defense Behaviors
    bioRxiv preprint doi: https://doi.org/10.1101/020701; this version posted November 18, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Anxiety-related interventions in rodent defense behaviors: systematic review and meta-analyses Authors Farhan Mohammad1, Joses Ho2, Chun Lei Lim, Jia Hern Woo, Dennis Jun Jie Poon2, Bhumika Lamba2 & Adam Claridge-Chang1, 2, 3, 4 Affiliations 1. Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 138673 2. Institute for Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673 3. Department of Physiology, National University of Singapore, Singapore 138673 4. Corresponding author: [email protected] Keywords anxiety, defense, behavior, rodent, stress, serotonin, meta-analysis 1 bioRxiv preprint doi: https://doi.org/10.1101/020701; this version posted November 18, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT Background Assays measuring defense behavior in rodents, including the elevated plus maze, open field and light-dark box assays, have been widely used in preclinical models of anxiety to study the ability of therapeutic interventions to modulate the anxiety-like state. However, many important proposed anxiety-modulating factors, including genes, drugs and stressors have had paradoxical effects in these assays across different studies.
    [Show full text]
  • 9Th Annual Enhancing Neuroscience Diversity Through Undergraduate Research Education Experiences (ENDURE) Meeting
    9th Annual Enhancing Neuroscience Diversity through Undergraduate Research Education Experiences (ENDURE) Meeting October 19, 2019 | Chicago, IL The NIH Office of the Director and these NIH Institutes and Centers participate in the NIH Blueprint for Neuroscience Research: • NCATS • NIAAA • NIDCR • NINR • NCCIH • NIBIB • NIEHS • OBSSR • NEI • NICHD • NIMH • NIA • NIDA • NINDS TABLE OF CONTENTS ENDURE PROGRAM AND MEETING GOALS .................................................................................. 2 NOTICE OF INTENT TO RE-ISSUE BP-ENDURE FOA ...................................................................... 3 ENDURE MEETING AGENDA ........................................................................................................ 4 NIH BLUEPRINT WELCOME AND SPEAKER BIOGRAPHIES .......................................................... 5 ENDURE PROGRAM INFORMATION AND TRAINEE RESEARCH ABSTRACTS • BP-ENDURE AT HUNTER AND NYU ........................................................................................ 8 • BP-ENDURE AT ST. LOUIS: A NEUROSCIENCE PIPELINE ....................................................... 23 • BRAiN: BUILDING RESEARCH ACHIEVEMENT IN NEUROSCIENCE ......................................... 41 • BRIDGE TO THE PH.D. IN NEUROSCIENCE ............................................................................ 48 • ENHANCING NEUROSCIENCE DIVERSITY WITH TENNESSEE STATE UNIVERSITY – NEUROSCIENCE EDUCATION AND RESEARCH VANDERBILT EXPERIENCE (TSU-NERVE)...... 57 • NEUROSCIENCE RESEARCH OPPORTUNITIES TO
    [Show full text]
  • An in Vitro Characterization of the Raphe Nucleus and the Effects of Ssris on Synaptic Function
    AN IN VITRO CHARACTERIZATION OF THE RAPHE NUCLEUS AND THE EFFECTS OF SSRIS ON SYNAPTIC NEUROTRANSMISSION APPROVED BY SUPERVISORY COMMITTEE ________________________________________ Ilya Bezprozvanny, Ph.D. ________________________________________ Lisa Monteggia, Ph.D. ________________________________________ Joseph Albanesi, Ph.D ________________________________________ Melanie Cobb, Ph.D ________________________________________ Ege Kavalali, Ph.D Dedicated to my parents, Funke and Bashir Ashimi, my sister Laide and brother Idris, future husband Taofeek, and the rest of my family and friends for all their unconditional love and continued support. AN IN VITRO CHARACTERIZATION OF THE RAPHE NUCLEUS AND THE EFFECTS OF SSRIS ON SYNAPTIC NEUROTRANSMISSION By SUNBOLA SHEFIAT ASHIMI DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas June 2010 Copyright by Sunbola Shefiat Ashimi, 2010 All Rights Reserved ACKNOWLEDGEMENTS I would like to thank Dr. Lisa Monteggia for her mentorship, support, and friendship over the past five years. I would also like to thank Dr. Ege Kavalali for his guidance and teaching me about the wonderful world of synaptic transmission. Regards to the past and present members of the Monteggia lab for their continued support, especially Erika Nelson, Megumi Adachi, and Waseem Akhtar for their training, scientific advice, and friendship. I want to thank Anita Autry for being such a wonderful and gracious friend to have taken this journey with. Also, I thank Melissa Mahgoub for her treasured friendship and for reminding me that there are still special people in the world.
    [Show full text]
  • LETTER Doi:10.1038/Nature10130
    LETTER doi:10.1038/nature10130 NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses Anita E. Autry1, Megumi Adachi1, Elena Nosyreva2, Elisa S. Na1, Maarten F. Los1, Peng-fei Cheng1, Ege T. Kavalali2 & Lisa M. Monteggia1 Clinical studies consistently demonstrate that a single sub-psycho- mimetic dose of ketamine, an ionotropic glutamatergic NMDAR a * * (N-methyl-D-aspartate receptor) antagonist, produces fast-acting 150 * * antidepressant responses in patients suffering from major depres- sive disorder, although the underlying mechanism is unclear1–3. Depressed patients report the alleviation of major depressive dis- 100 order symptoms within two hours of a single, low-dose intravenous infusion of ketamine, with effects lasting up to two weeks1–3, unlike Immobility (s) traditional antidepressants (serotonin re-uptake inhibitors), which 50 Vehicle take weeks to reach efficacy. This delay is a major drawback to Ketamine current therapies for major depressive disorder and faster-acting 3 antidepressants are needed, particularly for suicide-risk patients . 30 min 3 h 24 h 1 wk The ability of ketamine to produce rapidly acting, long-lasting anti- depressant responses in depressed patients provides a unique b * * opportunity to investigate underlying cellular mechanisms. Here 150 * we show that ketamine and other NMDAR antagonists produce fast-acting behavioural antidepressant-like effects in mouse models, and that these effects depend on the rapid synthesis of brain-derived 100 neurotrophic factor. We find that the ketamine-mediated blockade of NMDAR at rest deactivates eukaryotic elongation factor 2 (eEF2) Immobility (s) kinase (also called CaMKIII), resulting in reduced eEF2 phosphor- 50 Vehicle ylation and de-suppression of translation of brain-derived neuro- CPP trophic factor.
    [Show full text]
  • Biographical Sketch Name
    OMB No. 0925-0001 and 0925-0002 (Rev. 03/2020 Approved Through 02/28/2023) BIOGRAPHICAL SKETCH Provide the following information for the Senior/key personnel and other significant contributors. Follow this format for each person. DO NOT EXCEED FIVE PAGES. NAME: EGE T. KAVALALI eRA COMMONS USER NAME (credential, e.g., agency login): EKAVALALI POSITION TITLE: PROFESSOR EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.) DEGREE Completion (if Date FIELD OF STUDY INSTITUTION AND LOCATION applicable) MM/YYYY Boğaziçi University, Istanbul, Turkey B.S. 1990 Electrical Engineering Rutgers University, New Brunswick, New Jersey Ph.D. 1995 Biomedical Engineering Stanford University School of Medicine, Stanford Postdoctoral 1995-1999 Molecular and Cellular California Fellowship Physiology A. Personal Statement My research interests are focused on the basic mechanisms that underlie the formation and function of synapses in the central nervous system in health and disease. Since its inception, our laboratory has uncovered several novel facets of synaptic transmission, synapse formation as well as synapse maturation in the CNS. The key contribution of our research is the demonstration that spontaneous and evoked neurotransmission processes are segregated both in their presynaptic origins and postsynaptic targets. Our work has identified spontaneous neurotransmission as an autonomous neuronal signaling pathway independent of action potential-evoked synaptic transmission. In the last decade, we used imaging and electrophysiological approaches as well as molecular tools to pursue this novel signaling mechanism on both sides of the synapse. We developed tools to visualize trafficking of multiple synaptic vesicle proteins simultaneously within individual synapses.
    [Show full text]
  • Anita E. Autry, Ph.D
    Anita E. Autry, Ph.D. Department of Molecular and Cellular Biology Email: [email protected] Harvard University Cell: 214-701-8761 16 Divinity Avenue, Biolabs 4023 Cambridge, MA 02138 SCHOLARLY PROFILE Neuroscience researcher using state of the art molecular tools to understand the functional neuroanatomy of circuits controlling behavior. RESEARCH EXPERIENCE 2011-present Postdoctoral Fellow, Harvard University, Department of Molecular and Cellular Biology Advisor: Catherine Dulac, Ph.D EDUCATION 2011 Ph.D. University of Texas Southwestern Medical Center at Dallas Neuroscience Graduate Program Advisor: Lisa Monteggia, Ph.D. 2005 B.A., B.S. University of South Carolina, Honors College Baccalaureus Degree CURRENT FUNDING 2016 K99/R00 Grantee Pathway to Independence Award K99 HD 085188 Sponsored by NICHD to research parental behavior 2015 NARSAD Young Investigator Brain and Behavior Research Foundation Received two years of funding to support research projects 2014 Fellow Ruth L. Kirschstein National Research Service Award F32 HD 078040 Sponsored by NICHD to research parental behavior PUBLICATIONS Selected Publications 1. Wu, Z., Autry, A.E., Bergan, J.F., Watabe-Uchida, M., Dulac, C.G. (2014). Galanin neurons in the medial preoptic area govern parental behavior. Nature, 509 (7500) 325-330. 2. Autry, A.E., Adachi, M., Nosyreva, E., Na, E., Los, M.F., Cheng, P., Kavalali, E.T., Monteggia, L.M. (2011). NMDA Receptor Blockade at Rest Desuppresses Protein Translation and Triggers Rapid Behavioural Antidepressant Responses. Nature, 475(7354) 91-5. 1 Additional Publications 3. Adachi, M.*, Autry, A.E.*, Maghoub, M., Suzuki, K., Monteggia, L.M. (2016). TrkB Signaling in Dorsal Raphe Nucleus is Essential for Antidepressant Efficacy and Normal Aggression Behavior.
    [Show full text]
  • Repeated Administration of Amphetamine Or Cocaine Does Not Alter AMPA Receptor Subunit Expression in the Rat Midbrain Wenxiao Lu, M.D., Lisa M
    Repeated Administration of Amphetamine or Cocaine Does Not Alter AMPA Receptor Subunit Expression in the Rat Midbrain Wenxiao Lu, M.D., Lisa M. Monteggia, Ph.D., and Marina E. Wolf, Ph.D. We previously reported that ventral tegmental area (VTA) withdrawal time. GluR1 immunolabeling was further dopamine neurons are supersensitive to AMPA when examined in rats killed 16–18 hrs or 24 hrs after a single recorded three days after discontinuing repeated injection of amphetamine or repeated injections of saline, amphetamine or cocaine administration. By increasing amphetamine (5 mg/kg ϫ 5 days) or cocaine (20 mg/kg ϫ 7 dopamine cell activity, this may contribute to the induction days). No significant differences were observed in any of behavioral sensitization. The goal of this study was to region. Finally, neither repeated amphetamine or cocaine determine if increased sensitivity to AMPA reflects administration significantly altered GluR1 mRNA levels as increased AMPA receptor expression in the midbrain. quantified by reverse transcriptase-polymerase chain reaction. Immunolabeling for GluR1, GluR2, GluR2/3, and GluR4 Our results suggest that enhanced responsiveness of VTA was quantified by immunohistochemistry with 35S-labeled dopamine neurons to AMPA after withdrawal from repeated secondary antibodies in VTA, substantia nigra, and a stimulant administration involves mechanisms more complex transitional area. First, rats were treated for five days with than increased expression of AMPA receptor subunits. saline or amphetamine (5 mg/kg) and killed three or 14 days [Neuropsychopharmacology 26:1–13, 2002] after the last injection. No significant changes in © 2001 American College of Neuropsychopharmacology. immunolabeling were observed for any subunit at either Published by Elsevier Science Inc.
    [Show full text]
  • Exploring Mechanisms of Depression-Related Behavior and Rapid Antidepressant Action
    MOLECULAR MECHANISMS UNDERLYING DEPRESSION-RELATED BEHAVIOR AND RAPID ANTIDEPRESSANT ACTION APPROVED BY SUPERVISORY COMMITTEE ________________________________________ Lisa Monteggia, Ph.D. ________________________________________ Kimberly Huber, Ph.D. ________________________________________ Ege Kavalali, Ph.D. ________________________________________ Carol Tamminga, M.D. Dedicated to my mom and dad Nick and Rita Autry, To my husband John Dixon, And to my family and friends For their unconditional love and support. EXPLORING MECHANISMS OF DEPRESSION-RELATED BEHAVIOR AND RAPID ANTIDEPRESSANT ACTION By ANITA ELLEN AUTRY DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas April 2011 Copyright By ANITA ELLEN AUTRY, 2011 All rights reserved ACKNOWLEDGEMENTS I must first thank my mentor, Lisa Monteggia, Ph.D., for unwavering support, guidance, excellent mentorship, and being a role model both in and out of the laboratory. I would also like to thank Ege Kavalali, Ph.D. for teaching me neuroscience and for giving experimental advice as well as constructive criticism. I am also grateful to my thesis committee members Kimberly Huber, Ph.D., and Carol Tamminga, M.D., for insightful comments and direction over the years. I would like to thank Larry Reagan, Ph.D. for introducing me to research as well as past and present members of his lab, Claudia Grillo, Ph.D., Gerardo Piroli, Ph.D., and Leah Reznikov, Ph.D. I would like to thank Leslie Jones, Ph.D., for continuing advisement and support.
    [Show full text]
  • Synaptic Mechanisms Underlying Treatment of Depression and Bipolar Disorder Approved by Supervisory Committee
    SYNAPTIC MECHANISMS UNDERLYING TREATMENT OF DEPRESSION AND BIPOLAR DISORDER APPROVED BY SUPERVISORY COMMITTEE __________________________________________ Lisa Monteggia, Ph.D. __________________________________________ Mark Goldberg, M.D. __________________________________________ Ege Kavalali, Ph.D. __________________________________________ Adrian Rothenfluh, Ph.D. Dedicated to my parents, Heinrich and Jo Ann, my brothers Chris and Adam and their families, my grandfather Linwood, my dog Lina, my boyfriend Jerry, and the rest of my family and friends for their unending love and support. ii SYNAPTIC MECHANISMS UNDERLYING TREATMENT OF DEPRESSION AND BIPOLAR DISORDER by ERINN SOMMER GIDEONS DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center Dallas, Texas August 2016 iii Copyright by Erinn Sommer Gideons, 2016 All Rights Reserved iv ACKNOWLEDGEMENTS I would first like to thank my advisor Dr. Lisa Monteggia for her continual support, guidance, and patience during my time at UT-Southwestern. She has taught me how to be a successful scientist on many levels and is a true role model of a successful woman in science. I am extremely grateful for her mentorship and guidance. I would also like to thank Dr. Ege Kavalali not only for his experimental advice, but also for the many conversations about topics not dealing with science. I would not be an electrophysiologist without his influence. I want to think the current and past members of the Monteggia and Kavalali labs, especially Dr. Megumi Adachi, Dr. Anita Autry, and Pei-Yi Lin for taking me under their wings and teaching me about science and their continued friendship.
    [Show full text]