2015 SMC Paper

Total Page:16

File Type:pdf, Size:1020Kb

2015 SMC Paper Web Audio Modules Jari Kleimola Oliver Larkin Dept. of Computer Science Music Department Aalto University University of York Espoo, Finland York, UK [email protected] [email protected] ABSTRACT scope of applicability. For instance, the recent Web Au- dio API extends the browser sandbox to fit in musical This paper introduces Web Audio Modules (WAMs), applications such as those presented in this work (see which are high-level audio processing/synthesis units Figure 1). Browser functionality may be further in- that represent the equivalent of Digital Audio Work- creased with novel secure extension formats such as Em- station (DAW) plug-ins in the browser. Unlike traditional scripten and Portable Native Client (PNaCl) that are run- browser plugins WAMs load from the open web with the ning close to native speeds, and without manual installa- rest of the page content without manual installation. We tion. propose the WAM API – which integrates into the exist- ing Web Audio API – and provide its implementation for JavaScript and C++ bindings. Two proof-of-concept WAM virtual instruments were implemented in Emscrip- ten, and evaluated in terms of latency and performance. We found that the performance is sufficient for reasona- ble polyphony, depending on the complexity of the pro- cessing algorithms. Latency is higher than in native DAW environments, but we expect that the forthcoming W3C standard AudioWorkerNode as well as browser developments will reduce it. 1. INTRODUCTION Digital Audio Workstations (DAWs) have evolved from Figure 1. Detail of webCZ-101 user interface. simple MIDI sequencers into professional quality music production environments. Contemporary DAWs equip With these things in mind, we argue that enabling home studios with multi-track audio and MIDI record- DAW-style virtual instruments and effects processors in ing/editing capabilities, which enable musicians to turn their compositions into publication-ready master tracks. web browsers – and integrating them with existing web DAWs are standalone native applications, whose func- APIs – introduces novel use cases that go beyond tionality may be extended using plug-ins. Plug-ins im- standalone DAW host scenarios. We give examples of plement custom virtual instruments and effects pro- four categories. cessing devices, which co-operate inside the DAW host First, the Internet infrastructure may be utilized in di- environment through host-specific application program- rect distribution of software synthesizers, effects devices ming interfaces (APIs). and their presets. Online DAW plug-ins may also be used The primary application scope of a DAW is limited to in demoing native plug-ins without installation. More music making in a local single user environment. In this elaborate use cases include collaborative music making sense, web browsers may be regarded as functional op- and live coding performances. Second, seamless integra- posites of DAWs: browsers target a wide range of use tion with online web pages and strong support for multi- cases, focus on networked connectivity between many media suggests use cases for plug-in tutorials, interactive users, and provide remote resource access in a global documentation, music theory lessons, online musical scope. Like DAWs, browsers have also matured in time score rendering, audiovisual installations, and parameter- from simple document viewing applications into rich ized audio assets for online games. Third, wireless net- interactive multimedia platforms. Moreover, the ever- working and support for various local communication increasing number of standardized web APIs and open protocols afford new interaction paradigms for software source third party libraries continues to expand their synthesizer control. Browsers also provide versatile tools for traditional graphical user interface (GUI) implemen- Copyright: © 2015 Jari Kleimola and Oliver Larkin. This is an open- tations. Fourth, the direct development approach – based access article dis- tributed under the terms of the Creative Commons on JavaScript (JS), HTML and CSS – encourages proto- Attribution License 3.0 Unported, which permits unrestricted use, distri- typing and exploration of novel audio synthesis and pro- bution, and reproduction in any medium, provided the original author cessing algorithms. Finally, when conforming to existing and source are credited. web standards, these four categories are available in ble C++ SDK2 allowed developers to create their prod- cross-platform and cross-device manner without plug-in ucts as plug-ins – dynamic libraries conforming to a spe- host vendor control. We envision that many more scenar- cific API, to be loaded by a “Host” application, which ios will emerge. would typically be a DAW. A small industry had devel- This work introduces Web Audio Modules (WAMs), oped around the technology by the early-2000s with which are DAW-style plug-ins optimized for web brows- companies adopting the format along with a hobbyist ers. Unlike most existing online synthesizer and audio community. Some host vendors, such as Apple and AV- effects implementations that build on top of Web Audio ID created competing APIs allowing them a tighter con- API, WAMs integrate into the Web Audio API via its trol of the market and better integration with their plat- form. Although it represents a small fraction of musical script-based backend node: each WAM thus implements instrument retail sales, the industry is still growing (at a full-blown software synthesizer or effects device inside least in the USA) as can be seen in the NAMM 2014 a single Web Audio API node. The proposed WAM API global report3. strives to make these nodes reusable a) by standardizing Several plug-in APIs have prevailed and are used wide- how the enclosing web page loads and controls them, and ly at the time of writing, including Steinberg’s own b) by standardizing their DSP interface. The former ena- VST2.4 and VST3, Apple’s AudioUnit and AVID’s bles development of novel application scenarios enlisted AAX. In the open source community LADSPA and LV2 in the previous paragraph, while the latter enables audio (LADSPA version 2) have been widely adopted. In the algorithm development in JavaScript or cross-compiled commercial arena the success and adoption of a particu- C/C++. This, in turn, affords single code base for native lar API is often dictated by the host vendors and the mar- and web audio plug-in implementation. However, in con- ket share they control, more than the merits of the API trast to traditional web plugins, the cross-compiled itself. VST plug-ins are supported by many hosts on the WAMs load directly from the open web without manual Mac and PC platforms, although the VST3 format, which installation (hence the term “module” instead of “plug- is substantially different from VST2.4, has not yet seen in”). The primary contribution of this work consists of: widespread support outside of Steinberg’s DAWs. The AudioUnit format only runs on the Mac platform and is • a proposal for a streamlined API that enables DAW- the only format supported by Apple’s popular Logic style virtual instruments and effects devices in web DAW. Access to the AAX SDK is controlled by AVID browsers. and only AVID can produce AAX hosting applications • an implementation of the API in JS and C/C++. (such as ProTools). LV2 is platform agnostic and entirely • a minimal WAM example and two proof-of-concept open source with the most liberal license, but to date up- WAM virtual instruments conforming to the API. take has been mainly on Linux. • a web service to aggregate WAMs and their presets. In 2003 a working group of the MIDI Manufacturer’s Association (MMA) was set up to develop a non vendor This work also explores how WAMs integrate with ex- controlled plug-in API Generalized Music Plug-in Inter- isting and emerging APIs such as Web MIDI, WebGL, face (GMPI). Although this API never materialized, a and Web Components. draft of a list of requirements was produced based on the The remainder of this paper is structured as follows. members’ discussions4. This has informed the LV2 plug- Section 2 reviews related work in native and web plat- in specification5 and serves as a useful reference for the forms. Section 3 details the API and its architecture, design of audio plug-in APIs. while section 4 explains how web pages and applications Audio plug-in developers who want to make their soft- may embed WAMs, and describes their proof-of-concept ware compatible with a variety of hosts and platforms implementations. Section 5 evaluates the implementa- and reach a wide market have to support multiple APIs tions in terms of latency and performance, and finally, and the complexity is increased by the need to provide Section 6 concludes. cross platform GUI and file system features. For this reason many developers use an intermediate C++ frame- Source code, documentation, demos, and the web ser- 6 7 1 work such as JUCE or IPlug (or a proprietary solution) vice are available via links at the accompanying website in order to develop an abstracted version of the plug-in https://mediatech.aalto.fi/publications/webservices/wams which can then be compiled to multiple formats, plat- forms and architectures, saving development time. 2. RELATED WORK Although we aim to introduce the functionality offered by the concept of native audio plug-ins to the web, the 2.1 Native Plugin APIs differences of the environment require a different ap- proach to the API design, and the development of a new In 1996 Steinberg introduced Virtual Studio Technology (VST) and started a trend towards “in the box” audio 2 http://www.steinberg.net/en/company/developers.html production, where hardware effects and instruments 3 https://www.namm.org/files/ihdp-viewer/global-report-2014/ could be replaced by native software equivalents running 4 http://retropaganda.info/archives/gmpi/gmpi-requirements-2005-04- inside a DAW on personal computers.
Recommended publications
  • Synchronous Programming in Audio Processing Karim Barkati, Pierre Jouvelot
    Synchronous programming in audio processing Karim Barkati, Pierre Jouvelot To cite this version: Karim Barkati, Pierre Jouvelot. Synchronous programming in audio processing. ACM Computing Surveys, Association for Computing Machinery, 2013, 46 (2), pp.24. 10.1145/2543581.2543591. hal- 01540047 HAL Id: hal-01540047 https://hal-mines-paristech.archives-ouvertes.fr/hal-01540047 Submitted on 15 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Synchronous Programming in Audio Processing: A Lookup Table Oscillator Case Study KARIM BARKATI and PIERRE JOUVELOT, CRI, Mathématiques et systèmes, MINES ParisTech, France The adequacy of a programming language to a given software project or application domain is often con- sidered a key factor of success in software development and engineering, even though little theoretical or practical information is readily available to help make an informed decision. In this paper, we address a particular version of this issue by comparing the adequacy of general-purpose synchronous programming languages to more domain-specific
    [Show full text]
  • Chuck: a Strongly Timed Computer Music Language
    Ge Wang,∗ Perry R. Cook,† ChucK: A Strongly Timed and Spencer Salazar∗ ∗Center for Computer Research in Music Computer Music Language and Acoustics (CCRMA) Stanford University 660 Lomita Drive, Stanford, California 94306, USA {ge, spencer}@ccrma.stanford.edu †Department of Computer Science Princeton University 35 Olden Street, Princeton, New Jersey 08540, USA [email protected] Abstract: ChucK is a programming language designed for computer music. It aims to be expressive and straightforward to read and write with respect to time and concurrency, and to provide a platform for precise audio synthesis and analysis and for rapid experimentation in computer music. In particular, ChucK defines the notion of a strongly timed audio programming language, comprising a versatile time-based programming model that allows programmers to flexibly and precisely control the flow of time in code and use the keyword now as a time-aware control construct, and gives programmers the ability to use the timing mechanism to realize sample-accurate concurrent programming. Several case studies are presented that illustrate the workings, properties, and personality of the language. We also discuss applications of ChucK in laptop orchestras, computer music pedagogy, and mobile music instruments. Properties and affordances of the language and its future directions are outlined. What Is ChucK? form the notion of a strongly timed computer music programming language. ChucK (Wang 2008) is a computer music program- ming language. First released in 2003, it is designed to support a wide array of real-time and interactive Two Observations about Audio Programming tasks such as sound synthesis, physical modeling, gesture mapping, algorithmic composition, sonifi- Time is intimately connected with sound and is cation, audio analysis, and live performance.
    [Show full text]
  • Audio Signal Processing in Faust
    Audio Signal Processing in Faust Julius O. Smith III Center for Computer Research in Music and Acoustics (CCRMA) Department of Music, Stanford University, Stanford, California 94305 USA jos at ccrma.stanford.edu Abstract Faust is a high-level programming language for digital signal processing, with special sup- port for real-time audio applications and plugins on various software platforms including Linux, Mac-OS-X, iOS, Android, Windows, and embedded computing environments. Audio plugin formats supported include VST, lv2, AU, Pd, Max/MSP, SuperCollider, and more. This tuto- rial provides an introduction focusing on a simple example of white noise filtered by a variable resonator. Contents 1 Introduction 3 1.1 Installing Faust ...................................... 4 1.2 Faust Examples ...................................... 5 2 Primer on the Faust Language 5 2.1 Basic Signal Processing Blocks (Elementary Operators onSignals) .......... 7 2.2 BlockDiagramOperators . ...... 7 2.3 Examples ........................................ 8 2.4 InfixNotationRewriting. ....... 8 2.5 Encoding Block Diagrams in the Faust Language ................... 9 2.6 Statements ...................................... ... 9 2.7 FunctionDefinition............................... ...... 9 2.8 PartialFunctionApplication . ......... 10 2.9 FunctionalNotationforOperators . .......... 11 2.10Examples ....................................... 11 1 2.11 Summary of Faust NotationStyles ........................... 11 2.12UnaryMinus ..................................... 12 2.13 Fixing
    [Show full text]
  • An Agent Based Approach to Interaction and Composition
    Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece An Agent Based Approach to Interaction and Composition Stephen Pearse David Moore University of Sheffield University of Sheffield [email protected] [email protected] ABSTRACT The Agent Tool was born as a means of creating a flexible composition and performance interface based upon these The Agent Tool [1] is a complex composition and perfor- ideas. mance environment that affords the scripting of abstract agents of varying complexity to control elements of syn- 2. TECHNICAL OUTLINE thesis and sound manipulation. The micro-threaded ar- chitecture of the system means that all scripts are written In the Agent Tool we can assign abstract entities, known from the perspective of an agent/performer. Consequently, as agents, to control performance parameters. Within the complex compositions, gestures and performances can be system an agent’s behaviour can be scripted to control syn- crafted in a simple and efficient manner. It is designed thesis, compositional and/or performance logic to varying to be an open-ended framework whereby all data can be degrees of complexity. Consequently the agent Tool offers emitted via Open Sound Control (OSC) for external pro- a form of object oriented composition and interaction. The cessing if required. User interaction with the system can scripting engine allows users to program dynamic map- come in a variety of forms. These include, but are not lim- pings of abstract data to audio and/or control parameters. ited to graphical manipulation, scripting, real time video Agents communicate bi-directionally with external tools input and external control via OSC.
    [Show full text]
  • An Enabling Technology for Musical Networking
    Open Sound Control: an enabling technology for musical networking MATTHEW WRIGHT Center for New Music and Audio Technology (CNMAT), University of California at Berkeley, 1750 Arch St., Berkeley, CA 94709, USA Center for Computer Research in Music and Acoustics (CCRMA), Dept of Music, Stanford University, Stanford, CA 94305-8180, USA E-mail: matt@{cnmat.Berkeley, ccrma.Stanford}.edu Since telecommunication can never equal the richness of that networks are strictly a disadvantage when used face-to-face interaction on its own terms, the most interesting simply as a transmission medium: they enable a examples of networked music go beyond the paradigm of hobbled form of musical contact over a distance, but musicians playing together in a virtual room. The Open can never be ‘as good as’ face-to-face music making on Sound Control protocol has facilitated dozens of such its own terms. The point isn’t that physical proximity innovative networked music projects. First the protocol itself is inherently superior to technologically mediated is described, followed by some theoretical limits on communication latency and what they mean for music communication, but that we should use computer net- making. Then a representative list of some of the projects working to provide new and unique forms of musical that take advantage of the protocol is presented, describing communication and collaboration. As Hollan and each project in terms of the paradigm of musical interaction Stornetta say, ‘we must develop tools that people that it provides. prefer to use even when they have the option of inter- acting as they have heretofore in physical proximity’.
    [Show full text]
  • DAW Plugins for Web Browsers Jari Kleimola Dept
    DAW Plugins for Web Browsers Jari Kleimola Dept. of Media Technology School of Science, Aalto University Otaniementie 17, Espoo, Finland [email protected] ABSTRACT ScriptProcessor node (or its future AudioWorker reincarnation) A large collection of Digital Audio Workstation (DAW) plugins is for custom DSP development in JavaScript. Unfortunately, available on the Internet in open source form. This paper explores scripting support leads to inevitable performance penalties, which their reuse in browser environments, focusing on hosting options can be mitigated by using Mozilla’s high performance asm.js [6] that do not require manual installation. Two options based on and Emscripten [12] virtual machine as an optimized runtime Emscripten and PNaCl are introduced, implemented, evaluated, platform on top of JavaScript. Google’s Portable Native Client and released as open source. We found that ported DAW effect (PNaCl) technology [4] provides another solution for accelerated and sound synthesizer plugins complement and integrate with the custom DSP development. Instead of compiling C/C++ source Web Audio API, and that the existing preset patch collections code into a subset of JavaScript as in Emscripten, PNaCl employs make the plugins readily usable in online contexts. The latency bitcode modules that are embedded into the webpage, and measures are higher than in native plugin implementations, but translated into native executable form ahead of runtime. expected to reduce with the emerging AudioWorker node. Emscripten/asm.js and PNaCl technologies work directly from the open web and do not require manual installation. Categories and Subject Descriptors Since Emscripten and PNaCl are both based on C/C++ source Information systems~Browsers, Applied computing~Sound and code compilation, reuse of existing codebases in web platforms music computing, Software and its engineering~Real-time systems comes as an additional benefit.
    [Show full text]
  • Using OSC to Communicate with a Raspberry Pi Created by Todd Treece
    Using OSC to Communicate with a Raspberry Pi Created by Todd Treece Last updated on 2018-10-09 09:39:58 PM UTC Guide Contents Guide Contents 2 Overview 3 Setting Up Your Raspberry Pi 4 Connecting to Your Raspberry Pi via SSH 4 Expanding the Filesystem 6 Installing Node.js 7 Downloading the OSC Examples Repository 7 Setting Up Your Workstation 9 Cycling '74 Max 9 Pure Data 9 ChucK 9 Examples 9 Testing Communication 11 Max 7 11 Pure Data 12 ChucK 14 Real-Time Interaction with Web Browsers 16 Starting the Node.js Script 16 Opening the Test Web Page 16 Open the Test Patch 17 Behind the Scenes 18 Sending Data from Hardware 20 Installing the Dependencies 20 Starting the Node.js Sine Script 20 Sine Wave Example 20 Sample Trigger Example 21 Modifying the Node Examples 22 Feedback 22 © Adafruit Industries https://learn.adafruit.com/raspberry-pi-open-sound-control Page 2 of 22 Overview If you are a regular user of audio/visual programming environments like Cycling '74's Max, Pure Data, or ChucK, you may have encountered instances where you would like to communicate with remote devices and hardware. There are plenty of ways you could approach this, but a protocol known as Open Sound Control (https://adafru.it/eUg) (OSC) is probably the best supported solution. Here's a short description of OSC from opensoundcontrol.org: Open Sound Control (OSC) is a protocol for communication among computers, sound synthesizers, and other multimedia devices that is optimized for modern networking technology. Bringing the benefits of modern networking technology to the world of electronic musical instruments, OSC's advantages include interoperability, accuracy, flexibility, and enhanced organization and documentation.
    [Show full text]
  • To Graphic Notation Today from Xenakis’S Upic to Graphic Notation Today
    FROM XENAKIS’S UPIC TO GRAPHIC NOTATION TODAY FROM XENAKIS’S UPIC TO GRAPHIC NOTATION TODAY FROM XENAKIS’S UPIC TO GRAPHIC NOTATION TODAY PREFACES 18 PETER WEIBEL 24 LUDGER BRÜMMER 36 SHARON KANACH THE UPIC: 94 ANDREY SMIRNOV HISTORY, UPIC’S PRECURSORS INSTITUTIONS, AND 118 GUY MÉDIGUE IMPLICATIONS THE EARLY DAYS OF THE UPIC 142 ALAIN DESPRÉS THE UPIC: TOWARDS A PEDAGOGY OF CREATIVITY 160 RUDOLF FRISIUS THE UPIC―EXPERIMENTAL MUSIC PEDAGOGY― IANNIS XENAKIS 184 GERARD PAPE COMPOSING WITH SOUND AT LES ATELIERS UPIC/CCMIX 200 HUGUES GENEVOIS ONE MACHINE— TWO NON-PROFIT STRUCTURES 216 CYRILLE DELHAYE CENTRE IANNIS XENAKIS: MILESTONES AND CHALLENGES 232 KATERINA TSIOUKRA ESTABLISHING A XENAKIS CENTER IN GREECE: THE UPIC AT KSYME-CMRC 246 DIMITRIS KAMAROTOS THE UPIC IN GREECE: TEN YEARS OF LIVING AND CREATING WITH THE UPIC AT KSYME 290 RODOLPHE BOUROTTE PROBABILITIES, DRAWING, AND SOUND TABLE SYNTHESIS: THE MISSING LINK OF CONTENTS COMPOSERS 312 JULIO ESTRADA THE UPIC 528 KIYOSHI FURUKAWA EXPERIENCING THE LISTENING HAND AND THE UPIC AND UTOPIA THE UPIC UTOPIA 336 RICHARD BARRETT 540 CHIKASHI MIYAMA MEMORIES OF THE UPIC: 1989–2019 THE UPIC 2019 354 FRANÇOIS-BERNARD MÂCHE 562 VICTORIA SIMON THE UPIC UPSIDE DOWN UNFLATTERING SOUNDS: PARADIGMS OF INTERACTIVITY IN TACTILE INTERFACES FOR 380 TAKEHITO SHIMAZU SOUND PRODUCTION THE UPIC FOR A JAPANESE COMPOSER 574 JULIAN SCORDATO 396 BRIGITTE CONDORCET (ROBINDORÉ) NOVEL PERSPECTIVES FOR GRAPHIC BEYOND THE CONTINUUM: NOTATION IN IANNIX THE UNDISCOVERED TERRAINS OF THE UPIC 590 KOSMAS GIANNOUTAKIS EXPLORING
    [Show full text]
  • Chuck: a Strongly Timed Computer Music Language
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/289495366 ChucK: A Strongly Timed Computer Music Language ARTICLE in COMPUTER MUSIC JOURNAL · DECEMBER 2015 Impact Factor: 0.47 · DOI: 10.1162/COMJ_a_00324 READS 6 3 AUTHORS, INCLUDING: Ge Wang Spencer Salazar Stanford University Stanford University 76 PUBLICATIONS 679 CITATIONS 10 PUBLICATIONS 15 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Ge Wang letting you access and read them immediately. Retrieved on: 08 January 2016 Ge Wang,∗ Perry R. Cook,† ChucK: A Strongly Timed and Spencer Salazar∗ ∗Center for Computer Research in Music Computer Music Language and Acoustics (CCRMA) Stanford University 660 Lomita Drive, Stanford, California 94306, USA {ge, spencer}@ccrma.stanford.edu †Department of Computer Science Princeton University 35 Olden Street, Princeton, New Jersey 08540, USA [email protected] Abstract: ChucK is a programming language designed for computer music. It aims to be expressive and straightforward to read and write with respect to time and concurrency, and to provide a platform for precise audio synthesis and analysis and for rapid experimentation in computer music. In particular, ChucK defines the notion of a strongly timed audio programming language, comprising a versatile time-based programming model that allows programmers to flexibly and precisely control the flow of time in code and use the keyword now as a time-aware control construct, and gives programmers the ability to use the timing mechanism to realize sample-accurate concurrent programming. Several case studies are presented that illustrate the workings, properties, and personality of the language.
    [Show full text]
  • Software Documentation V
    software documentation v. 0.9.20 This document is based on: Scordato, J. (2016). An introduction to IanniX graphical sequencer. Master's Thesis in Sound Art, Universitat de Barcelona. © 2016-2017 Julian Scordato Index 1. What is IanniX? p. 1 1.1 Main applications p. 2 1.2 Classification of IanniX scores p. 3 2. User interface p. 5 2.1 Main window p. 5 2.1.1 Visualization p. 6 2.1.2 Creation p. 7 2.1.3 Position p. 8 2.1.4 Inspection p. 9 2.2 Secondary windows p. 10 2.2.1 Script editor p. 11 3. IanniX objects p. 15 3.1 Curves p. 16 3.2 Cursors p. 17 3.3 Triggers p. 19 4. Control and communication with other devices p. 21 4.1 Sent messages p. 21 4.1.1 Cursor-related variables p. 22 4.1.2 Trigger-related variables p. 24 4.1.3 Transport variables p. 25 4.2 Received commands p. 25 4.2.1 Score instances and viewport p. 25 4.2.2 Object instances and identification p. 26 4.2.3 Object positioning p. 27 4.2.4 Object appearance p. 28 4.2.5 Object behavior p. 29 4.2.6 Sequencing p. 30 4.3 Network protocols p. 31 4.3.1 OSC p. 31 4.3.2 Raw UDP p. 33 4.3.3 TCP and WebSocket p. 34 4.3.4 HTTP p. 35 4.4 MIDI interface p. 36 4.5 Serial interface p. 37 4.6 Software interfaces p.
    [Show full text]
  • AAC, 18 Ableton LIVE, 84 Absorption, 40 Absorption Coefficient, 40
    Cambridge University Press 978-0-521-17042-0 - Cambridge Introductions to Music: Music Technology Julio D'Escriván Index More information Index AAC, 18 A-weighting, 16 Ableton LIVE, 84 azimuth, 48 absorption, 40 absorption coefficient, 40 balancing, 29 abstract algorithms, 78 Barron, Louis and Bebe, 146, 173 ACID, 84 BBCut2, 70 Acousmonium, 90, 104, 188 BEAST, 90 ADAT, 20 Beatles, The, 42 ADAT Lightpipe, 19, 32 Bell Laboratories, 10, 57 additive synthesis, 13, 77 bidirectional, 48 ADSR, 80 Big Bank Hank, 114 AES, 19 bit-depth, 10 AES/EBU, 19 Bliss, Melvin, 111 Afrika Bambaataa, 105, 114 Blu-Ray disc, 59 AIFF, 16, 17 Bongers, Bert, 165 AKAI MPC60, 88, 106, 191 Boulanger, Richard, 160 AKAI S900, 106 bounce, 35 ALESIS, 19 Briscoe, Desmond, 151 ambisonics, 61 Brown, Earle, 173 amplitude, 3 busses, 24, 29 analogue, 7 analogue to digital conversion, 9 Cage, John, 145, 173, 175 aperiodic, 13 Cakewalk, 109 Apple, 17 capacitor, 34 Apple loop, 17, 110 CD quality, 10 Arduino, 106 Chamberlin, 86, 104 artifacts, 18 channel strip, 27 attack transient, 12 Chemical Brothers, 117 audio, 21 Chic, 111 Audio Engineering Society, 63 Chion, Michel, 132 audio sequencers, 27 ChucK, 160 audio signal, 7 CNMAT, 68 audio technology, xiii codecs, 9 automation, 32 codeword, 9 auxiliary channel, 24, 29 coincident pairs, 55 Avraamov, Arsenii, 130 Coldcut, 116 210 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-17042-0 - Cambridge Introductions to Music: Music Technology Julio D'Escriván Index More information Index
    [Show full text]
  • Ten Years of Tablet Musical Interfaces at CNMAT
    Ten Years of Tablet Musical Interfaces at CNMAT Michael Zbyszynski Matthew Wright Ali Momeni, Daniel Cullen CNMAT, UC Berkeley CNMAT/UCB and CCRMA/Stanford CNMAT, UC Berkeley 1750 Arch Street Stanford University 1750 Arch Street Berkeley, CA 94709 USA Stanford, CA 94305-8180 Berkeley, CA 94709 USA +1.510.643.9990 matt@{cnmat.Berkeley, +1.510.643.9990 [email protected] ccrma.stanford}.edu [email protected], [email protected] ABSTRACT We summarize a decade of musical projects and research Table 1. Control Dimensions for a 9x12 Intous3 Wacom employing Wacom digitizing tablets as musical controllers, Tablet with Couturier’s Wacom object v3.1ß5 for OS X. discussing general implementation schemes using Max/MSP and OpenSoundControl, and specific implementations in musical Dimension Output Precision (accuracy) improvisation, interactive sound installation, interactive X-axis 0 to 32480 multimedia performance, and as a compositional assistant. We Y-axis (± 0.25 mm: pen; ± 0.5 mm: mouse) 0 to 65535 examine two-handed sensing strategies and schemes for gestural Pressure mapping. (1024 discrete values) -60 to 60 Tilt (X and Y) Keywords (± 60 degrees) Rotation 0 to 23049 Wacom tablet, digitizing tablet, expressivity, position sensing, (6D Art Pen) (1773 values, 0.2 degree resolution) gesture, mapping, algorithmic composition. 8 buttons (tablet) Binary 1 1. WHY THE WACOM TABLET? 2 touch strips (tablet) Up/down The issue of musical control has long been a topic for research 2 buttons (Grip pen) Binary and pedagogy at UC Berkeley’s Center for New Music and Audio 5 buttons (mouse) Binary Technologies (CNMAT). In addition to custom controllers, we advocate creative use of standard gestural controllers: joysticks, Another promising aspect of the tablet, with respect to potential gamepads, etc.
    [Show full text]